
CHAPTER 5

SIMULATION AND IMPLEMENTATION

OF CROSSBAR SWITCHES WITH

SCHEDULING ALGORITHMS

SIMULATION AND IMPLEMENTATION OF CROSSBAR

SWITCHES WITH SCHEDULING ALGORITHMS

5

5.1 INTRODUCTION
Matrix-like space division switch fabric includes controller hardware that handles port contention by

ensuring that only one input port accesses each output port at any time. There is a centralized scheduler in

an NxN switch that considers requests from all the input queues and determines the best realizable input to

output mapping for the crossbar during each time slot by using a scheduling algorithm. This scheduling

algorithm has to be fast, efficient (good throughput), easy to implement in hardware, fair in serving all the

inputs, low latency, and QOS support. We start with a brief introduction of scheduling algorithms like

PIM, RRM, iSLIP, RPA and DPA and detail their features. Then we simulate 4x4, 8x8, 16x16 and 32x32

input buffer crossbar switches with above scheduling algorithms. At last we implement, 4x4 and 8x8 ATM

crossbar switch, in VHDL using ALTERA’s MAXPLUS II /QUARTUS software and compare above

switches with above scheduling algorithms based on simplicity of implementation, area requirement on

the same platform.

5.2 STANDARD SCHEDULING ALGORITHMS FOR INPUT QUEUE

SWITCH
In general, scheduling algorithms can be divided into two areas: maximum matching and

maximal weighted matching. An algorithm that finds the maximum number of matches between inputs

and outputs and provides the highest possible throughput in each slot for an input-queued switch is known

as maximum matching algorithm. Maximum match takes too long time to compute and converge and

starve some connections. Maximal matching algorithm, iteratively adds connections to fill in the missing

connections left by the previous iteration, because connection made in the previous iteration may not be

removed. It achieves a close approximation to maximum for many traffic pattems.[refl7compa]

A maximum matching algorithm finds a match with the maximum size or weight, called maxsize and

maxweight matching respectively, (maxweight is maxsize if the weight on each of the edges is unity.)

5.2.1 Maximum Size Matching: Scheduling algorithm by McKeown, Anantharam, and Warland

[67] attempts to maximize the number of connections made in each cell time, and hence maximize the

throughput by connecting maximum number of edges. If the traffic is independent and identically

108

distributed (i.i.d.) arrivals and uniformly distributed among all the VOQ’s, the algorithm will result in a

higher throughput. This algorithm is stable and achieves 100% throughput for independent uniform

traffic but could lead to starvation and hence queue overflow or instability, if the arrival processes are

not uniform [67]. It does not consider the backlog of cells in the VOQ’s or the cells that have been

waiting in line to be served so cause a reduction in throughput for non-uniform traffic. This algorithm is

too complex to implement in hardware and takes too long to complete [68]. The best known maximum
size matching algorithm converges in O (n5/2) time [65].

5.2.2 Maximum Weight Matching: This algorithm assigns a weight to each input queue. The

matching algorithm finds an input-output match that has the highest sum of weights. This algorithm is

stable for both uniform and non-uniform traffic [67], The weight assigned to each queue is usually equal

to the occupancy of the queue and therefore the longest queue has the highest weight Hence this

algorithm is also called Longest Queue First (LQF).It needs multi-bit comparators to compare the
weights of the queues and hence complexity is high i.e., O (N3logN).

5.2.3 Oldest CeliFirst (OCF): This algorithm uses the waiting times of cells as requesting weights

and selects a match such that the sum of all queue waiting times is maximized. It has high complexity
i.e., O (N3logN) and difficult to implement in hardware [69].

5.2.4 Longest Port First (LPF): Algorithm by McKeown is a variation of the LQF scheme [68]. In

LQF algorithm, each queue has a weight equal to the length of the queue. In LPF, however, the weight

(also called port occupancy) of each queue is the sum of aggregate input and output queue occupancies.

This algorithm finds the match that is both maximum size and maximum weight. The complexity of the
LPF scheme is O (Nls), and can be implemented in hardware.

5.2.5 Parallel Iterative Matching (PIM): PIM algorithm was developed by DEC system research

centre. It is based on randomness (to avoid starvation) and iteration [65]. This algorithm converges on a

conflict-free match in multiple iterations. All inputs and outputs that have not been match in previous

iterations are eligible for matching in the next iteration. There are three steps in each iteration and

operate in parallel on each input and output as follows:

a. Request: All unmatched inputs send requests to every output for which they have queued cell;

b. Grant: If an unmatched output receives any request, it grants at random one of its requesting

input;

109

c. Accept: If an input receives a grant, it accepts it but if it receives multiple grants then it accepts

one by selecting an output randomly among those that granted its request.

These three steps are repeated for the inputs that are not paired with any outputs, until they converge to a

maximal match. A maximal match is one in which each node is either matched or has no edge to an
unmatched node. PIM can be viewed as an algorithm that finds a matching in a N2 X N bipartite graph

(because there are N queues at each input, one for each output) with independent arbiters at each input

and output port making decisions randomly in step 2 and 3.

Advantages: 1. In each iteration of random matching, a minimum average of 3/4 of the remaining

possible connections are matched or eliminated. Therefore this algorithm converges to a maximal match

in an average of O (log N) iterations.

2. It ensures that all requests are eventually granted.

Disadvantage: 1. It has large queuing latency in the presence of heavy traffic load. 2. It is expensive and

difficult to implement in hardware. 3. It can lead to unfairness between connections and the multiple

iterations are time consuming. 4. Inability to provide prioritized QoS.

5.2.6 Round Robin Matching (RRM): RRM is perhaps the simplest and most obvious form of iterative

round-robin scheduling algorithms, comprising a 2-D array of round-robin arbiters; cells are scheduled

by round-robin arbiters at each output, and at each input. The three steps of RRM arbitration as shown in

figure 5.1 are:

Step 1: Request. Each input sends a request to every output for which it has a queued cell.

Step 2: Grant. If an output receives any requests, it chooses the one that appears next in a fixed, round

robin schedule starting from the highest priority element. The output notifies each input whether or not

its request was granted. The pointer to the highest priority element of the round-robin schedule is

incremented (modulo N) to one location beyond the granted input.

Step 3: Accept. If an input receives a grant, it accepts the one that appears next in a fixed, round-robin

schedule starting from the highest priority element. The pointer to the highest priority element of the

round-robin schedule is incremented (modulo N) to one location beyond the accepted output.

RRM algorithm removes the unfairness and complexity inherent in the PIM algorithm. The algorithm

performs well on a single iteration and converges to a maximal match in an average of O (log N)

iterations.

110

Figure 5.1: RRM scheduling algorithm (a) Request, (b) Grant, and (c) Accept.

The reason for the poor performance of RRM lies in the rules for updating the pointers at the output

arbiters. So, the RRM algorithm performs poorly under heavy traffic due to a synchronization

phenomenon [65]. RRM does not perform well, but it helps us to understand how iSLIP performs.

5.2.7 iSLBP: iSLIP is an iterative algorithm, achieved by making a small variation to the RRM scheme

[65]. The iSLIP algorithm improves upon RRM by reducing the synchronization of the output arbiters.

Request step and accept step of iSLIP are same as RRM, the only difference in grant step is that iSLIP

does not move grant pointers unless the grant is accepted.

Step 2: Grant. If an output receives any requests, it chooses the one that appears next in a fixed round-

robin schedule, starting from the highest priority element. The output notifies each input whether or not

its request was granted. The pointer to the highest priority element of the round-robin schedule is

incremented (modulo N) to one location beyond the granted input if, and only if, the grant is accepted in

Step 3.

Those inputs and outputs not matched at the end of one iteration are eligible for matching in the next.

This small change to the RRM algorithm makes iSLIP capable of handling heavy loads of traffic and

eliminates starvation of any connections. The algorithm converges in an average of O (log N) and a

maximum of N iterations. iSLIP can fit in a single chip and is readily implemented in hardware[64].

This small change to the algorithm leads to the following properties of iSLIP with one iteration:

111

Property 1: Lowest priority is given to the most recently made connection. This is because when the

arbiters move their pointers, the most recently granted (accepted) input (output) becomes the lowest

priority at that output (input).

Property 2: The algorithm should not allow a nonempty VOQ to remain unserved indefinitely. This is

because an input will continue to request an output until it is successful. The output will serve at most N-

1 other inputs first, waiting at most N cell times to be accepted by each input. Therefore, requesting
input is always served in less than N2 cell times.

Property 3: Under heavy load, all queues with a common output have the same throughput. This is a

consequence of Property 2: the output pointer moves to each requesting input in a fixed order, thus

providing each with the same throughput [65].

The iSLIP algorithm uses rotating priority (“round-robin”) arbitration to schedule each active input and

output in turn. The main characteristic of iSLIP is its simplicity; it is readily implemented in hardware

and can operate at high speed.

5.2.8 Wave Front Arbiter (WFA) (RPA-DPA)
WFA is a fair crossbar scheduler with a round robin priority rotation. The scheduling algorithm is based

on a small combinational logic arbiter cell assigned to each input/output pair. When there is a request to

send packets from a certain input port to a certain output port, the corresponding arbiter cell receives a

request from the input. The arbiter then issues a grant for the requested output based on both the position

of the priority round robin, and the grants issued to higher priority cells.

5.2.8.1 Rectilinear Propagation Arbiter (RPA)
In 4x4 two-dimensional ripple carry arbiter, bold cells are cells with request and shaded cells are cells

that have received grant as shown in figure 5.2(a) and (b).

Figure 5.2: Two dimensional ripple-carry arbiter (request) (b) Two dimensional ripple-carry

arbiter (grant)

112

Here, the rows correspond to the input ports and the columns correspond to the output ports of the

switch. The arbiter is built from modular cells. A modular arbiter cell is shown in figure 5.3, with its

internal combinational logic is shown in Figure 5.4. The label pairs i, j written on each cell specify that

the cell is responsible for handling packets destined to go from input port i to output port j.

Input signal R (Request), to every i, j arbiter cell is active when there is a packet destined for output port

j at the head of the input port i buffer. This means that there is a packet at the head of queue j of input

port module i.

Output signal G (Grant), from every i,j arbiter cell, is active when the request from input port i to output

port j has been granted by the scheduler and the arbiters on the top and left have not issued a grant.

R (Request) N (North)
*____

W (West)- Arbiter
cell

1

N (North)

E (East) R (Request)

W (West)

S (South)

G (Grant)

E (East)

S (South) e (Grant)

Figure 5.3: The RPA arbiter cell Figure 5.4 Internal combinational logic of RPA cell [51]

-Since each input can be sending (and each output can be receiving) only one packet at a time, there

should never be two or more granted requests in each row (and each column). For instance, having two

requests granted in the same column at one time, causes that the output port corresponding to that

column to receive two packets simultaneously. To ensure that this problem never occurs, signals N

(North), S (South), W (West), and E (East), shown in Figure 5.3, are introduced. These signals in each

cell have the duty of relaying to the next cell, or receiving from the former cell. In the ripple-carry

architecture the E signal of every arbiter cell is connected to the W signal of the cell on its right.

Similarly, the 5 signal of every arbiter cell is connected to the A signal of the cell on its bottom. (The W

signal of cells in the first column and the N signal of cells in the first row are always set to logic one.

The S signal of the cells in the last row and the E signal of the cells in the last column are floating). The

logic circuit of figure 5.4 shows that whenever a Grant signal is high for a cell, signals South and East

are forced to logic low, so that the cells on the right and bottom are never able to issue grants.

The arbitration process in the architecture of figure 5.2 is based on the following steps:

1) Start from the top left most cell (i.e. 1,1);

2) Once any cell is reached, move to its right and bottom cells

3) For each arbiter cell, the G (Grant) signal is activated if and only if the R (Request) signal

is active and there has not been any requests granted in the cells at the top and to the left;

4) If a request is granted, activate the E (East) and S (South) signals.

113

Mask

E(EasQ

Figure 5.5 Arbitration cell for RPA

As shown in figures 5.5, arbitration cell is used as the basic building block. As shown in figure 5.4, each

arbitration cell has three inputs (North, West, and Request) and three outputs (South, East, and Grant).

Nij indicates that none of the rows above have been given any grant for output port j. Wij indicates that

none of the columns before for input port i have been given any grant.

Gij = Rijn Nij D Wij

Sij = Nij n NOT(Gij)

Eij = Wij fl NOT(Gij)

All the N inputs in row 1 and N inputs in column 1 are set to 1 [96].

The ripple-carry design gives the priority to the cells that are higher and to the left. It creates the issue of

unfairness. Specifically, it gives the highest priority to cell (1, 1). Optimally one should be able to rotate

the priority so that every cell has the chance of being the highest priority cell. One solution to this

problem could be to make a cyclic architecture by connecting the South signals of the cells in the last

row to the North signals of the cells in the first row. Similarly, the East signals of the last column have

to be connected to the West signals of the first column as shown in figure 5.6.

114

Figure 5.6 (a) A cyclic two-dimensional ripple carry arbiter architecture (b) Selected cells (in the

shaded squares) with highest priority cell (1,1).

Such architecture would be fair because every cell can have the opportunity to be the highest priority

cell. However, this architecture-suffers from “combinational feedback loop” problem. Such architectures

are difficult to design; they are not very well supported by logic synthesis tools and they have to be

carefully simulated at the physical layout level. To overcome the cyclic feedback problem and to rotate
the priorities, Hurt et al. have found a solution. At every time slot only n2 cells (marked by the n *n bold

window shown in figure 5.7and 5.8) are active. We call the bold window “the active window”. In RPA,

arbitration process begins at cell (1,1) - top left of the architecture mask and ends at cell (4,4) - bottom

right of the mask as shown in figure 5.8. To provide equal opportunities to all the cells, we need to rotate

priority round robin, first column wise and then row wise. We need two vectors Pr and Qr to rotate

priority column and row wise. In figure 5.7, Pr = 1111000 and Qr = 1111000 to give highest priority to

cell (1, 1). To give highest priority to cell (1, 2), set Pr = 111 1000 and Qr = 0111100 as shown in figure

5.8. Highest priority cell switches from (l,l)-> (l,2)-> (1,3)~> (l,4)-> (2,1)----- at last (4,4) as each

time slot progresses. Bold square indicates that the corresponding cell (i, j) has been requested (Ry = 1)

i.e. a request from input port i to transfer a cell to output port j. If request of the particular cell (i, j) is

granted, it will block input port i and output port j for further requests. Granted cells are shown as dark

squares.

115

Figure 5.7 RPA architecture with highest priority cell (1,1).

Figure 5.8 RPA architecture with highest priority cell (1,2).

When the highest priority cell is (1, 1) as shown in figure 5.7, four grants were issued to cells (1, 1), (2,

2), (3, 3) and (4, 4). But, when the highest priority cell is (1, 2) as shown in figure 5.8, three grants were

issued to cells (1, 3), (2, 2) and (3, 4). Assuming that each arbiter cell has a delay of D, for an n*n

switch, the maximum arbitration delay through the whole switch is (2n-l) D, and then the time needed

for realization of any permutation would be (2n-l) D for any nxn arbiter. J. Hurt, A. May, X. Zhu, and

B. Lin have also introduced a modified version of the two-dimensional arbiter that has a shorter

arbitration delay [51]. This new design called the diagonal propagation arbiter (DPA) is described in the

next section.

116

5.2.8.2 Diagonal Propagation Arbiter (DPA) Architecture

As shown in figure 5.2, there are some cells in the two dimensional propagation arbiter that are

independent of one another, in the sense that granting one of them does not prevent granting the others.

The cells that are independent of one another are put in diagonal rows, as shown in Figure 5.9. Diagonal

I consists of cells (1, 1), (4, 2), (3, 3) and (2, 4), which are independent of each other. Diagonal II

consists of cells (2, 1), (1, 2), (4,3) and (3,4). Diagonal III consists of cells (3, 1), (2, 2), (1, 3) and (4,

4). Diagonal IV consists of cells (4,1), (3,2), (2, 3) and (1 4).

Figure 5.9 Diagonal Propagation Arbiter (DPA)

The arbitration process in the DPA architecture begins by considering the diagonal I. If there is a request

for every cell in the first diagonal of Figure 5.9, they can all be granted. The cells with requests in the

diagonal II will only receive grants if no cells on the top or on the left of them have yet received grants.

In this design, the arbitration delay for an n * n switch is nD, D being the delay of a single arbiter cell.

This is smaller than the delay in the RPA, which was (2n-l) D.

In this new architecture, shown in Figure 5.9, the first (n-1) diagonals of an n*n DPA scheduler are

repeated after the last row. The W signals of the first column and the N signals of the first diagonal are

assigned to logic one.

The cells on the first diagonal inside the active window have the highest priority. The active window

moves one step down in every time slot to rotate the priority. When the top most diagonal is diagonal n,
the active window has traveled all the way through the DPA scheduler and, therefore, goes back to its

starting position.

To implement priority rotations in this design, vector P is introduced. The (2n-l) elements of vector P
are named pr. They correspond to the (2n- 1) diagonals of the scheduler in Figure 5.10. When the Ith

117

element of this vector is equal to 1, the i* diagonal of the arbiter is active, (and resides in the active

window). The algorithm for priority rotations is:

set P = “1111000”.

ifP= “0001 111” then

set P = “1111000”

else

P= one bit right shift (P)

(This step is like moving the window one step down.)

As shown in figure 5.10, highest priority is given to the first diagonal. Figure 5.11 shows the arbiter cell

of the rotating priority DP A. This arbiter is somewhat different from the basic arbiter cell introduced

earlier. The difference is a signal called “Mask(identical to the elements of vector P,pr) that indicates

whether the arbiter cell is in the active zone. If the Mask input of a cell is logic 0, then there are no

Grants given to that cell, and therefore, E and S signals shown in Figure 5.11 are forced to logic 1. The

additional gates (one AND and two ORs) ensure that every request only takes effect if Mask is logic

high. Figure 5.12 shows a similar example only with the highest priority given to the third diagonal.

Figure 5.10: Diagonal Propagation Arbiter (DPA) with highest priority to the diagonal I.

118

Mask

Figure 5.11: Modified arbitration cell for diagonal propagation arbiter (DPA) architecture [51].

Figure 5.12: Diagonal Propagation Arbiter (DPA) with highest priority to the diagonal III.

5.3 SIMULATION AND COMPARISON OF DIFFERENT SCHEDULING

ALGORITHMS
We have simulated PIM, RRM, iSLIP, RPA and DPA algorithms for 4x4, 8x8, 16x16, and 32x32

crossbar switches with four different traffic models (A,B,C and D) using MATLAB 7.0. Algorithms are

simulated for 10000 time slots and results are taken by averaging the outcomes for 100 simulations for

4x4 and 8x8 switches. Algorithms are simulated for 1000 time slots and results are taken by averaging

119

40 50 60 70
Offered load(%)

Figure 5-13 Throughput (%) v/s offered load

Traffic model A
{4x4 crossbar switch)

P1M
RRM
SUP
RPA
DPA

10 20 30 40 SO 60 70 80 90 100
Offered to3d(%)

Figure 5.15 Average Latency v/s offered load
Buffer Size

Figure 5.16 Average Latency v/s buffer size

the outcomes for 10 simulations for 16x16 and 4 simulations for 32x32 switches and various parameters

like throughput, average latency and delay variance have been measured for variation in offered load as

well as variation in buffer size. For variation in offered load the buffer size is 2 in 4x4, 3 in 8x8 and

16x16 switches, while buffer size is 4 in 32x32 switches. For variation in buffer size the offered load is

90% for 4x4 switch and 80% for 8x8, 16x16 and 32x32 switches. All the scheduling algorithms run for

one iteration only. Each data pattern from A to D generates its own data, which is applied to all the

scheduling algorithms and the results are compared as shown below.

5.3.14x4 Switch Comparisons

Traffic model A
(4x4 crossbar switch)

- PIM
" RRM
“ SLIP
- RPA
' DPA

Traffic model A
(4x4 crossbar switch)

- PIM
------ B—- RRM

- BLIP
- ft------~ RPA

DPA

—*— PIM
“-S— RRM
—e—slip

Traffic model A — RPA
(4x4 crossbar switch) —i DpA

2 3 4 5 6
Buffer Size

Figure 5.14 Throughput (%) v/s buffer size

Th
ro

ug
hp

ut
 E

ffi
ci

en
cy

(%
)

Th
ro

ug
hp

ut
 E

ffi
et

en
cy

(%
)

A
ve

ra
ge

 L
at

ea
cy

(ti
m

e s
lo

ts)

A
ve

ra
ge

 L
at

en
cy

 (t
im

e s
lo

ts)

120

10 20 30 40 50 60 70 80 90 100
Offered foad(%)

Figure S.21 Average Latency v/s offered load

Figure 5.20 Throughput (%) v/s buffer size

30

1 2 3 4 S 6 7 8
Buffer Size

Figure 5.22 Average Latency v/s buffer size

121

Figure 5.19 Throughput (%) v/s offered load

Traffic model A
(4x4 crossbar switch)

- PIM
------B—- RRM
------©—- SLIP

RPA
DPA

A
ve

ra
ge

 L
at

en
cy

 (t
un

e s
lo

ts
)

o o
©

—

 r* r~
-u

 a-v o
o — t

o-
bo

vo
e

A
ve

ra
ge

 L
at

e*
ic

y(
tu

ne
 sl

ot
s)

«
•&

. oi en
ss

D
el

ay
 v

an
an

ce
(t»

m
e s

lo
ts

)
Th

ro
ug

hp
ut

 E
ffi

ci
en

cy
(%

)

Figure 5.23 Delay variance v/s offered load Figure 5.24 Delay variance v/s buffer size

100

95
>»i

{5
**-W

90

a
CD
soVi

JS

H

85

80

Traffic model C (4x4
crossbar switch)

- - - - - - - - - - - - 4—- P1M
__ —- RRM

- - - - - - - - - - - ©—- BLIP
- - - - - - - - - - - *— RPA
------------ i—- DPA

75o

Figure

20 40 60
Offered load(%)

5.25 Throughput (%) v/s offered load Figure 5.26 Throughput (%) v/s buffer size

Figure 5.27 Average Latency v/s offered load Figure 5.28 Average Latency v/s buffer size

122

(40 60 80 100
Offered !oad(%)

Figure 5.33 Average Latency v/s offered load Figure 5.34 Average Latency v/s buffer size

4 5
Buffer Size

Figure 5.29 Delay variance v/s offered load

m.-------- i ——_L__—1_----- -----0 20 40 60 80 100
Offered load(%)

Figure 5.31 Throughput (%) v/s offered load

Traffic model D
(4x4 crossbar switch)

------ ^----- PIM
------e—- RRM
------©—- BLIP
------#— RPA
------- 1— DPA

40 60
Offered load(%)

Traffic model C
(4x4 crossbar switch)

- PIM
---- e—“ RRM
......o— “ SLIP

--- *--- RPA
DPA

Buffer Size

Figure 5.30 Delay variance v/s buffer size

Traffic model D
(4x4 crossbar switch)

A
ve

ra
ge

 L
at

en
cy

(ti
m

e s
lo

ts
)

po
p

--
*-1f
t

to

A
ve

ra
ge

 L
at

en
cy

 (t
im

e
slo

ts
)

T
hr

ou
gh

pu
t E

ffi
ci

ea
cy

(%
)

D
el

ay
 v

ar
ia

nc
e(

tim
e

slo
ts

) oM

D
el

ay
 v

ar
ia

nc
e(

tu
ne

 sl
ot

s)

123

40 60
Offered !oad(%)

Figure 5.35 Delay variance v/s offered load Figure 5.36 Delay variance v/s buffer size

As shown in figure 5.13, Throughput v/s offered load is 3% to 6% higher for RPA and DPA as compared

to iSLIP for traffic model -A. In RRM, throughput of RRM is the lowest due to problem in updating the

pointers. Grant pointer change in lock-step, like in cell time 1, all point to input 2 and during cell time 2

all point to input 3. This synchronization phenomenon leads to a maximum throughput of 58% for this

traffic pattern, at 100% offered load. The overall throughput v/s offered load in traffic model-B is 5% to

8% less than traffic model-A as shown in figure 5.19 due to normally distributed traffic pattern. Traffic

model-C resembles to traffic model-A with 10% to 12% more throughput as compared to traffic model -

A for all the five scheduling algorithms due to Markov on-off type traffic pattern as shown in figure 5.25.

In traffic model-D throughput v/s offered load is higher despite of normal traffic pattern because of

Markov on-off type traffic pattern as shown in figure 5.31.

As shown in figure 5.14, throughput increases with increase in buffer size for PIM, iSLIP, RPA and DPA.

In RRM, as buffer size increases, repetitive load increases, schedulers move in lock step and throughput

(efficiency) in percentage decreases. In traffic model B, 2 % to 3% increase in throughput for PIM, RRM

and iSLIP as we increase buffer size from 1 to 8, while in RPA and DPA 4% to 5% increase in

throughput as we increase buffer size from 1 to 8. For traffic model-C as shown in figure 5.26 throughput

increases 10% to 15%, as we increase buffer size from 1 to 8 for all scheduling algorithm except RRM. In

RRM, due to uniform output distribution, scheduler move in lock step and throughput (efficiency) in

percentage decreases. For traffic model-D as shown in figure 5.32 throughput increases 10% as we

increase buffer size from 1 to 8 for all scheduling algorithm.

As shown in Figure 5.15 average latency is very small for low offered load for all algorithms. But for

higher offered load, average latency is in descending order for RRM, PIM, iSLIP, DPA and RPA. In

RRM due to synchronization phenomena throughput reduces and hence average latency increases. For

traffic model-B as shown in figure 5.21 average latency is in descending order for PIM, RRM, iSLIP,

Traffic model D
(4x4 crossbar switch)

------ *—- PIM
—a—- RRM

- iSLIP
—*—- RPA
-------1— DPA

D
el

ay
 v

ar
ia

nc
e(

tim
e s

lo
ts)

D
el

ay
 v

ar
ia

nc
e (

tim
e s

lo
ts

)
•—

Si

G

J
4^

124

RPA and DP A. For traffic model-C as shown in figure 5.27 average latency is resembles to traffic model-

A. For traffic model-D as shown in figure 5.33 average latency increases with increase in offered load for

all algorithms and resembles to traffic model-B. In traffic model-D average latency v/s buffer size is less

due to normal and on-off type traffic pattern

As shown in Figure 5.16 in traffic model-A average latency is very small for small buffer size. As buffer

size increases from 2 to 8 there is a drastic increase in average latency for RRM and PIM compared to

RPA and DPA. For traffic model-B as shown in figure 5.22, due to normally distributed traffic pattern

average latency is in descending order for PIM, RRM, iSLIP, RPA and DPA. For traffic model-C as

shown in figure 5.28 average latency is in descending order for RRM, PIM, iSLIP, RPA and DPA and

average latency is resembles to traffic model-A. For traffic model-D as shown in figure 5.34 average

latency increases with increase in buffer size for all algorithms and descending order for PIM, RRM,

iSLIP, RPA and DPA. In traffic model-D average latency v/s buffer size is less due to normal and on-off

type traffic pattern.

As shown in Figure 5.17, delay variance is very small forJow offered load for all algorithms. But for

higher offered load delay variance is high for RRM and PIM and it is in descending order for RRM, PIM,

iSLIP, DPA and RPA .For traffic model-B as shown in figure 5.23 delay variance is in descending order

for PIM, RRM, iSLIP, RPA and DPA. For traffic model-C as shown in figure 5.29 delay variance is

resembles to traffic model-A. For traffic model-D as shown in figure 5.35 delay variance increases with

increase in offered load for all algorithms and resembles to traffic model-B.

As shown in Figure 5.18, delay variance is very small for small buffer size for all algorithms. As buffer

size increases from 2 to 8 there is drastic increase in delay variance for RRM and PIM compared to RPA

and DPA. For traffic model-B as shown in figure 5.24 delay variance is in descending order for PIM,

RRM, iSLIP, RPA and DPA. For traffic model-C as shown in figure 5.30 delay variance is in descending

order for RRM, PIM, iSLIP, RPA and DPA. For traffic model-D as shown in figure 5.36 delay variance

increases with increase in buffer size for all algorithms but overall delay variance is less due to normal

and on-off type traffic pattern.

125

5.3.2 8x8 Switch Comparison

Figure 5.40 Average Latency v/s buffer size

Figure 5.38 Throughput (%) v/s buffer size

iO 20 30 40 SO 60 70 80 90 100
Offered bad(%)

Figure 5.39 Average Latency v/s offered load

10 20 30 40 50 60 70 80 90 100
Offered toad{%)

Figure 5.37 Throughput (%) v/s offered load

10 20 30 40 50 60 70 80 90 100
Offered foad(%)

Figure 5.41 Delay variance v/s offered load

—P1M Traffic mode! A
—B— RRlVf (8x8 crossbar switch)
—s— SUP
—*— RPA
—*—DPA

3 4 5 6
Buffer sire

Figure 5.42 Delay variance v/s buffer size

A
ve

ra
ge

 L
at

en
cy

 (t
un

e s
lo

ts
)

Th
ro

ug
hp

ut
 E

ffi
ct

en
cy

{%
)

A
ve

ra
ge

 L
at

en
cy

 (t
im

e s
lo

ts
)

Th
ro

ug
hp

ut
 E

ffi
ct

en
cy

(%
)

D
el

ay
 va

ria
nc

e
(ti

m
e

slo
ts)

5*

D
el

ay
 v

ar
ia

nc
e (

tim
e s

lo
ts

)
©

, ©0 ©
_ ©w

©
w

126

Figure 5.44 Throughput (%) v/s buffer size

10 20 30 40 50 60 70 80 90 100
Offered Joad(%)

701---------- 1------------ 1-------------- 1------------------------------- *--------- 1-------------- 1------------ 1-------------- 1
10 20 30 40 50 60 70 80 90 100

Offered foad(%)

Figure 5.43 Throughput (%) v/s offered load

80 100

Figure 5.47 Delay variance v/s offered load Figure 5.48 Delay variance v/s buffer size

Figure 5.45 Average Latency v/s offered load Figure 5.46 Average Latency v/s buffer size

Traffic model B
(8x8 crossbar
switch)
---- 4----- PIM

—-B—- RRM

—©--- iSLIP

----&---- RPA
•—i— DPA

40 60
Offered load(%)

A
ve

ra
ge

 L
at

en
cy

 (t
un

e s
lo

ts)

A
ve

ra
ge

 L
at

en
cy

 (t
im

e s
lo

ts)

D
el

ay
 v

ar
ia

nc
e (

tim
e s

lo
ts

)

D
el

ay
 v

ar
ia

nc
e

(tu
ne

 sl
ot

s)
N

J 4s* O
i 08 O

 fO -tfc

Th
ro

ug
hp

ut
 E

ffi
cj

en
cy

(%
)

vo

\e
>

Th
ro

ug
hp

ut
 E

ffi
ci

en
cy

(%
)

127

1 2 3 4 5 6 7 8
Buffer size

Figure 5.54 Delay variance v/s buffer size

Buffer size

Figure 5.52 Average Latency v/s buffer size

Figure 5.50 Throughput (%) v/s buffer size

10 20 30 40 50 60 70 80 90 100
Offered toad(%)

Figure 5.53 Delay variance v/s offered load

Offered toad(%)

Figure 5.51 Average Latency v/s offered load

7010 20 30 40 50 60 70 80 90 100

Offered k>ad{%)

Figure 5.49 Throughput (%) v/s offered load

—P1M
—B—RRM
—O— iSLIP

Traffic model C —*— RPA
(8x8 crossbar switch) —f—DP A

Buffer size

Traffic model C
(8xS crossbar switch)

- pim
------B— RRM
------e— SLIP

RPA
DPA

D
el

ay
 v

ar
ia

nc
e (

tim
e s

lo
ts)

D
el

ay
 v

ar
ia

nc
e

(ti
m

e
sl

ot
s)

A
ve

ra
ge

 L
at

en
cy

 (t
im

e s
lo

ts)
Th

ro
ug

hp
ut

 E
ffi

ci
en

cy
(v

o)
00

03
0a

O
C

\p
v£

>'
>0

'iO
tO

>
00

 o
K
> **

o*
 oo

A
ve

ra
ge

 L
at

en
cy

 (t
im

e s
lo

ts
)

Th
ro

ug
hp

ut
 E

ffi
ci

en
cy

(%
)

128

40 50 60 70 80 90 100
Offered !oad(%}

4 5
Buffer size

Figure 5.59 Delay variance v/s offered load Figure 5.60 Delay variance v/s buffer size

As shown in figure 5.37 throughput v/s offered load is 3% to 8% higher for RPA and DPA as compared

to iSLIP for traffic model -A. Throughput of RRM is the lowest due to problem in updating the pointers

40 50 60 70
Offered bad(%)

Figure 5.57 Average Latency v/s offered load Figure 5.58 Average Latency v/s buffer size

40 50 60 70
Offered fead(%)

3 4 5
Buffer size

Figure 5.55 Throughput (%) v/s offered load Figure 5.56 Throughput (%) v/s buffer size

Traffic model D
(8x8 crossbar switch)

-----^------ piM
------B----- RRM
------©----- SLIP
—*—“ RPA
------ *------ DPA

Traffic model D
(8x8 crossbar switch)

PIM
RRM
SLIP
RPA
DPA

"d
 00

D
el

ay
 v

ar
ia

nc
e

(ti
m

e s
lo

ts)

D
el

ay
 v

ar
ia

nc
e

(ti
m

e
slo

ts)
N

»
U

i
4a

.
U

i
O

s

M
 A O

'
A

 ©s ooA
ve

ra
ge

 L
at

en
cy

 (t
im

e s
lo

ts)

po
oA
ve

ra
ge

 L
at

en
cy

 (t
im

e s
lo

ts)

Th
ro

ug
hp

ut
 E

ffi
ci

en
cy

(%
)

Th
ro

ug
hp

ut
 E

ffi
ci

en
cy

(%
)

129

as discussed earlier. The overall throughput v/s offered load in traffic model-B is 5% to 8% less than

traffic model-A as shown in figure 5.43, due to normally distributed traffic pattern. While traffic model-C

resembles to traffic model-A, with 5% to 7% more throughput as compared to traffic model -A for all the

five scheduling algorithms due to markove on-off type traffic pattern as shown in figure 5.49. In traffic

model-D throughput v/s offered load is higher despite of normal traffic pattern because of markove on-off

type traffic pattern as shown in figure 5.55.

As shown in figure 5.38, throughput increases, with increase in buffer size for PIM, iSLIP, RPA and

DPA. In RRM, as buffer size increases, repetitive load increases, schedulers move in lock step and

throughput (efficiency) decreases. As shown in figure 5.44, in traffic model B, 2 % to 4% increase in

throughput for PIM, REM and iSLIP as we increase buffer size from 1 to 8, while in RPA and DPA 4%

to 6% increase in throughput as we increase buffer size from 1 to 8. For traffic model-C as shown in

figure 5.50 throughput increases 10% to 13% as we increase buffer size from 1 to 8 for all scheduling

algorithms. For traffic model-D as shown in figure 5.56 throughput increases 8% to 10% as we increase

buffer size from 1 to 8 for all scheduling algorithm.

As shown in Figure 5.39 average latency is very small for low offered load for all algorithms. But for

higher offered load average latency is in descending order for RRM, PIM, iSLIP, DPA and RPA. In RRM

due to synchronization phenomena throughput reduces and hence average latency increases. For traffic

model-B as shown in figure 5.45 average latency is in descending order for PIM, RRM, iSLIP, RPA and

DPA. For traffic model-C, as shown in figure 5.51 average latency is resembles to traffic model-A. For

traffic model-D, as shown in figure 5.57 average latency increases with increase in offered load for all

algorithms and resembles to traffic model-B. In traffic model-D average latency v/s buffer size is less due

to normal and on-off type traffic pattern.

As shown in Figure 5.40 in traffic model-A average latency is very small for small buffer size. As buffer

size increases from 2 to 8 there is drastic increase in average latency for RRM and PIM compared to RPA

and DPA. For traffic model-B as shown in figure 5.46, due to normally distributed traffic pattern average

latency is in descending order for PIM, RRM, iSLIP, RPA and DPA. For traffic model-C as shown in

figure 5.52 average latency is in descending order for RRM, PIM, iSLIP, RPA and DPA and average

latency resembles to traffic model-A. For traffic model-D as shown in figure 5.58 average latency

increases with increase in buffer size for all algorithms and descending order for PIM, RRM, iSLIP, RPA

and DPA. In traffic model-D average latency v/s buffer size is less due to normal and on-off type traffic

pattern.

130

1 2 3 4 5 6 7 8
Buffer size

Figure 5.62 Throughput (%) v/s buffer sizeFigure 5.61 Throughput (%) v/s offered load

As shown m Figure 5.41, delay variance is very small for low offered load for all algorithms. But for

higher offered load delay variance is high for RRM and PIM and it is in descending order for RRM, PIM,

RPA , iSLIP, and DPA. For traffic model-B, as shown in figure 5.47, delay variance is in descending

order for PIM, DPA, RPA, RRM and iSLIP. For traffic model-C as shown in figure 5.53 delay variance

resembles to traffic model-A. For traffic model-D as shown in figure 5.59, delay variance increases with

increase in offered load for all algorithms and resembles to traffic model-B.

As shown in Figure 5.42, delay variance is very small for small buffer size for all algorithms. As buffer

size increases from 2 to 8 there is drastic increase in delay variance for RRM and PIM compared to RPA

and DPA. For traffic model-B as shown in figure 5.48, delay variance is in descending order for PIM,

DPA , RPA, RRM and iSLIP. For traffic model-C as shown in figure 5.54 delay variance is in

descending order for RRM, PIM, iSLIP, RPA and DPA. For traffic model-D as shown in figure 5.60

delay variance increases with increase in buffer size for all algorithms but overall delay variance is less

due to normal and on-off type traffic pattern.

5.3.3 16x16 Switch Comparison -
r

Traffic mode! A
(16x16 crossbar switch)

- PIM
------e— RRM
------ ©—- SLIP

RPA
- DPA

20~ 30 40 50 60~~
Offered foad{%)

Th
ro

ug
hp

ut
 E

fn
ci

en
cy

(%
)

131

1 2 3 4 5 6 ?
Buffer size

Figure 5.64 Average Latency v/s buffer size

10 20 30 40 50 60 70 80 90 100
Offered foad{%)

Figure 5.63 Average Latency v/s offered load

7°10 20 30 40 50 60 70 80 90 100

Offered load(%)

Figure 5.67 Throughput (%) v/s offered load Figure 5.68 Throughput (%) v/s buffer size

10 20 30 40 50 60 70 80 90 100
Offered ioad(%)

Figure 5.65 Delay variance v/s offered load

PJM
—9— RRM
—6— SLIP

Traffic model A —*— RPA
{16x16 crossbar switch) * DPA

10 '--------- 1------------1------------1----------- J----------- 1----------- 1------------'
1 2 3 4 5 6 7 8

Buffer sis

Figure 5.66 Delay variance v/s buffer size

D
el

ay
 v

ar
ia

nc
e

{t
im

e
slo

ts
)

oM

o,
.

A
ve

ra
ge

 L
at

en
cy

(ti
m

e s
lo

ts
)

A
ve

ra
ge

 L
at

en
cy

 (t
im

e
slo

ts
)

D
el

ay
 v

ar
ia

nc
e

(ti
m

e s
lo

ts
)

T
hr

ou
gh

pu
t E

ffi
ct

en
cy

(%
)

Th
ro

ug
hp

ut
 E

ffi
ci

en
cy

{%
)

132

82
80 100

Figure 5.73 Throughput (%) v/s offered load Figure 5.74 Throughput (%) v/s buffer size

CL
IO 20 30 40 50 60 70 80 90 100

Offered load(%)

Figure 5.71 Delay variance v/s offered load

70 80 90 100
Offered k>ad(%)

Figure 5.69 Average Latency v/s offered load

4 5
Buffer size

Figure 5.70 Average Latency v/s buffer size

Traffic model B
(16x16 crossbar switch)

------+------ PIM
------B------ RRM
------e------ SLIP
------ *—- RPA

----(---- DPA

Traffic model C
(16x16 crossbar
switch)
—4---- - PIM
—-B—- RRM
—©---- iS UP
-----6---- RPA

--- 1--- DPA

20 40 80
Offered foad(%)

30 40 50 60
Offered foadf %)

Figure 5.72 Delay variance v/s buffer size

—PIM
—B— RRM
—S— BLIP

Traffic model C —*— RPA
(16x16 crossbar switch) —5—DPA

Th
ro

ug
hp

ut
 E

ffi
ci

en
cy

(%
)

t»
 to t

o to
Th

ro
ug

hp
ut

 E
ffi

ci
en

cy
(%

)

D
el

ay
 v

ar
ia

nc
e (

tim
e

sl
ot

s)

D
el

ay
 v

ar
ia

nc
e

(ti
m

e
sl

ot
s)

A
ve

ra
ge

 L
at

en
cy

(ti
m

e s
lo

ts)
, —

 K> V
J ia U

i O' ~
JO

0\
O

A
ve

ra
ge

 L
at

en
cy

 (t
im

e
sl

ot
s)

133

10 20 30 40 50 60 70 80 90 100
Offered load(%)

Figure 5.79 Throughput (%) v/s offered load

0 20 40 60 80 100
Offered load(%)

Figure 5.75 Average Latency v/s offered load

1 2 3 4 5 6 7 8
Buffer size

Figure 5.80 Throughput (%) v/s buffer size

0i----------------- 1----------------- I-----------------1----------------- !----------------- 1-----------------1-----------------

1 2 3 4 5 6 7 8Buffer size

Figure 5.76 Average Latency v/s buffer size

Figure 5.78 Delay variance v/s buffer size

0 20 40 60 SO 100
Offered toad(%)

Figure 5.77 Delay variance v/s offered load

Traffic model D
(16x16 crossbar switch)

- PIM
------0—— RRM
------ 0----- SLIP

— RPA
DPA

Traffic model C
(16x16 crossbar
switch)

---*--- PIM
--”&-- RRM
---©— BLIP
---&-- RPA
--- 1--- DPA

20 40 60
Offered bad(%)

20 40 60
Offered !oad(%)

Th
ro

ug
hp

ut
 E

ffi
ct

en
cy

(%
)

Th
ro

ug
hp

ut
 E

ffi
ci

en
cy

(%
)

£
8

&
3

8
8

D
el

ay
 v

ar
ia

nc
e

(ti
m

e s
lo

ts
)

5,
 o0

oM
 3^

A
ve

ra
ge

 L
at

en
cy

 (t
un

e
sl

ot
s)

o tn
o oi

o cn

A
ve

ra
ge

 L
at

en
cy

(U
m

e
sl

ot
s)

134

10 20 30 40 50 60 70
Offered load(%)

90 100 4 5
Buffer size(%)

Figure 5.85 Throughput (%) v/s offered load Figure 5.86 Throughput (%) v/s buffer size

9

Figure 5.82 Average Latency v/s buffer size

2.5

10 20 30 40 50 60 70 80 90 100
Offered bad(%)

Figure 5.81 Average Latency v/s offered load

10 20 30 40 50 60 70 80 90 100
Offered load(%)

Figure 5.83 Delay variance v/s offered load

The analysis of 16x16 switch results resembles that of 8x8 switch.

5.3.4 32x32 Switch Comparison

Traffic mode! A
(32x32 crossbar
switch)

- PIM
------q—- RRM

- SLIP
“ RPA
- DPA

Buffer size

Figure 5.84 Delay variance v/s buffer size

3 4 5
Buffer size

Th
ro

ug
hp

ut
 E

ff
ic

ie
nc

y(
%

)

Th
ro

ug
hp

ut
 E

ffi
de

nc
y(

%
)

-*
i

ep

<w

s©
c*

©

C

5
©

D
el

ay
 v

ar
ia

nc
e (

tim
e s

lo
ts)

A
ve

ra
ge

 L
at

en
cy

 (ti
m

e s
la

ts)
P

r*
U

l
N

*
Lf

t
to

D
el

ay
 v

ar
ia

nc
e

(ti
m

e
slo

ts)
N

»
t*

*
A

C
ft

o
A

ve
ra

ge
 L

at
en

cy
 (t

im
e s

lo
ts)

P
r*

N

C
*

»-
*

W

c/
1

135

10 20 30 50 60 70 80 90 100
Offered)oad(%)

Figure 5.87 Average Latency v/s offered load Figure 5.88 Average Latency v/s buffer size

60

30 40 50 60 70
Offered Ioad(%)

Figure 5.91 Throughput (%) v/s offered load Figure 5.92 Throughput (%) v/s buffer size

10 20 30 40 50 60 70 80
Offered Ioad(%)

Figure 5.89 Delay variance v/s offered load

Traffic model A
(32x32 crossbar
switch)_________

--- ---- P1M
------B— RRM
------e— SLIP
------- (-------rpa

--- *--- DPA

Traffic mode) B
(32x32 crossbar
switch)

PIM
-----B— RRM
---- ©---- BLIP

RPA
DPA

—*— PIM
—B—RRM
—0— iSLIP -

Traffic model A
(32x32 crossbar switch)

—i—RPA
—*-~DPA

4 5
Buffer size(%)

—♦—PIM
—B— RRM

iSLIP
Traffic model A —f“ RPA
(32x32 crossbar switch) * DPA

10 1----------------- 1----------------- 1----------------- 1----------------- 5----------------- 1------------------'----------------- 1
12 3 4 5 6 7 8

Buffer siz£(%)

Figure 5.90 Delay variance v/s buffer size

A
ve

ra
ge

 L
at

en
cy

 (t
im

e
sl

ot
s)

A
ve

ra
ge

 L
at

en
cy

 (t
im

e
sl

ot
s)

D
el

ay
 va

ria
nc

e
(ti

m
e

sl
ot

s)

ow

o

D
el

ay
 v

ar
ia

nc
e (

tim
e

sl
ot

s)

Th
ro

ug
hp

ut
 E

ffl
ci

en
cy

(%
)

3 a a

Th
ro

ug
hp

ut
 E

ffl
de

nc
y{

%
)

136

30 40 50 60 70
Offered load(%)

3 4 5
Buffer Size

Figure 5.97 Throughput (%) v/s offered load Figure 5.98 Throughput (%) v/s buffer sizi

Traffic mode! C
(32x32 crossbar
switchl________
—*-----PIM
—B—RRM
—e—iSUP
—*—RPA
---- 1---- DPA

- (0-----------»-

iO 20 30 40 50 60 70 80 90 100
Offered load{%)

Figure 5-95 Delay variance v/s offered load

4 5
Buffer size

6 7 8

Figure 5.96 Delay variance v/s buffer size

10 20 30 40 50 60 70
Offered load(%)

Figure 5.93 Average Latency v/s offered load Figure 5.94 Average Latency v/s buffer size

Traffic model B
(32x32 crossbar
switch)__________

-----PIM
-S— RRM

SUP
_j—. RPA

-*— dpa

Buffer size
(%

)i3U
3|D

U
)a indi|gnojiu.

Th
ro

ug
hp

ut
 E

ff
ki

en
cy

(%
)

D
el

ay
 v

ar
ia

nc
e

(ti
m

e s
lo

b)

D
el

ay
 v

ar
ia

nc
e (

tim
e s

lo
ts)

A
ve

ra
ge

 L
at

en
cy

 (t
im

e s
lo

ts)

A
ve

ra
ge

 L
at

en
cy

 (t
im

e
slo

ts)
K

) U* J
- tjl Q

\ -J C
O

 SO

137

Offered load(%)

Figure 5.103 Throughput (%) v/s offered load
Buffer size

Figure 5.104 Throughput (%) v/s buffer size

70 80 90 100
' Offered load(%)

Figure 5.99 Average Latency v/s offered load

10 20 30 40 50 60 70 80 90 100
Offered load(%)

Figure 5.101 Delay variance v/s offered load

°I 2345678

Buffer Size

Figure 5.100 Average Latency v/s buffer size

Traffic model D
(32x32 crossbar switch)
------ ♦-------P1M
------B------ RRM
------0------ BLIP
----- 6------- RPA
------ !------ DPA

Traffic model C
(32x32 crossbar

- PIM
----- a— RRM
------e—- SLIP

“ RPA
DPA

40 50 60
' Offered !oad(%)

Th
ro

ug
hp

ut
 E

ffi
cl

en
cy

(%
)

Th
ro

ug
hp

ut
 E

ffi
ci

en
cy

(e/
o)

g Di g
 8 g

A
ve

ra
ge

 L
at

en
cy

 (t
im

e s
lo

ts
)

A
ve

ra
ge

 L
at

en
cy

 (t
im

e
slo

ts)

D
el

ay
 v

ar
ia

nc
e (

tim
e

slo
ts)

D
el

ay
 v

ar
ia

nc
e (

tim
e

sl
ot

s)

138

K) 20 30 40 5fi 60 70
Offered foad{%)

4 5
Buffer size

Figure 5.105 Average Latency v/s offered load Figure 5.106 Average Latency v/s buffer size

10 20 30 40 50 60 7Q 80 90 100
Offered Ioad(%)

Figure 5.107 Delay variance v/s offered load

The analysis of32x32 switch results resembles that of 16x16 and 8x8 switches.

5.4 VLSI IMPLEMENTATION OF THE SCHEDULING ALGORITHMS
The basic architecture of input queue NxN cross bar switch is given in Figure 5.109. There are N Input

VOQ buffers (input_port) blocks, one scheduler block and one switch fabric block in the NxN ATM cross

bar switch. IP packets have to be fragmented into ATM cells before being input to the switch. The input

lines to the switch are N data lines (each of 8 bit size), N frame start inputs, one clock input, and a reset

input. The output lines of the switch are N data output lines(eaeh of 8 bit size), N data valid lines, N

output frame pulse lines, one clock output, and N outputs that indicate the origin of the data coming to

each data output port. The N data inputs are each 8 bits wide, and carry 53 byte Asynchronous Transfer

Mode (ATM) packets. We use the rising edge of the clock signal to input and output the data. One clock,

called s clk which has a period equal to a packet time is internally generated within the input port

3 4 5
Buffer size

Figure 5.108 Delay variance v/s buffer size

A
ve

ra
ge

 L
at

en
cy

 (t
im

e s
lo

ts)

A
ve

ra
ge

 L
at

en
cy

 (t
im

e s
lo

ts
)

D
el

ay
 v

ar
ia

nc
e (

tim
e

slo
ts)

D
el

ay
 v

ar
ia

nc
e (

tim
e s

lo
ts)

a,

a.

q,

a,

139

modules and used in some of the scheduling algorithms. Similarly N usedword signals are generated

from each input_port module, which give status of the VOQ buffers and used in proposed scheduling

algorithms like m-DPA and DSA discussed in chapter 6 of the thesis. Port request signal of N bits from
all the N input VOQ buffer module, sheduler clk and N2 used word signals each of 8 bits are given to the

scheduler depending on the requirement of scheduling algorithm. Scheduling algorithm generates N grant

signals each of N bits. These grant signals are given to respective input_port module to release the data.

This data is outputted through switch fabric. The frame start inputs are one clock cycle wide signals

indicating the start of packets. The reset input of the switch reset all the counters used in the design and

initialize them to their starting values. The output frame start signals indicate the beginning of outgoing

packets for their corresponding data lines. The data valid output lines indicate whether the data present at

the corresponding output of the switch is valid for sampling. A src no signal each of log2N bits at each

output port indicates from, which input port the data is originated. This signal can later be used for

classifying, outputting and reassembling the data.

Figure 5.109 Basic Architecture of input queue NxN cross bar switch

140

5.4.1 Input VOQ Queuing Device (Input_Port)

Input buffer module is responsible for handling, storing and processing the arriving ATM packets. Each

data byte arriving at the input_port module is first delayed by few clock cycles, so that during that delay,

it will retrieve new VCI value as well as destination output port number from the Look Up Table (LUT)

and then send it as an input of the FIFO.

Bytes 5 48

Header User Data

(a)

8 7 8 5 4 3 2 1

GFC VPI.
VPi .

* Cl
VC! PT OP

HEC
(b)

Figure 5.110 (a) An ATM cell, (b) ATM cell header detail

Figure 5.110 shows an ATM cell with its header and payload bytes. The second, third and fourth bytes of

the packet having Virtual Circuit Identifier (VCI) information are written into VCI registers as well as the

buffer. After the first four bytes of a packet are read, the input port extracts the address information (VCI

bits) from the header of the arriving ATM packet and sends it to a LUT module. The LUT returns the new

VCI together with the destination output port number for that packet. The input port then sends a request

for that specific output port to the scheduler, and awaits a grant.

Figure 5.111 Inputjport internal architecture

141

Once a grant is released for a certain packet, the data bytes are de-queued first in first out basis from the

FIFO of the input buffer. After the entire packet is sent, the same process is repeated for the next packet.

As soon as a grant for an output port is issued, the input port number is sent to the crossbar fabric so that

the output port receiving the data knows the origin of the packet. Figure 5.111 shows a detailed schematic

of the input__port module.

The VOQ buffer holds up to 212N [53 (byte) x N (outputs) x 4 (buffer size for each output)) one-byte

words as shown in figure 5.112. The choice buffer size is a trade off between the switch speed and the

loss rate. The larger the buffer, smaller is the probability of buffer overflow and the loss rate. On the other

hand, the queuing delay increases as the buffer size grows, as discuss in simulation. A large queuing

delay reduces the switching speed and results in a low Quality of Service (QoS) in the network. There are

two counters used in the implementation. The first counter is 6 bits wide and counts the number of bytes

that enter the inputjport module. This counter is set again, once the whole packet is read. The second

counter is used for delaying the data bytes going to the buffer as its input.

Figure 5.112 The VOQ buffer in each input_port module.

The Look Up Table is implemented in a ROM. ROM can be initialized with an arbitrary set of data in a

filename.mif file. The LUT searches through the ROM rows, until it finds a match between the input VCI

142

bits in the ROM and the input_yci input to the LUT. If the match exists on row m of the ROM, the output

VCI bits and the output port number bits in row m are displayed on output yci and outputjportjio

outputs of the LUT component, respectively. The look-up table in all the input port modules of these

switches is initialized with the same values for simplicity reasons. These values are shown in Table 5.1.

Table 5.1: The Look-up table Detail of the switch.

Input vci Output vci Output port no.

3080 E965 1

7747 F6A9 1

2E1E 59E0 2

13E3 B10A 3

2ABA 3BED 0

24D4 FA25 2

2171 0106 3

6838 FA65 0

Initially for four bytes, enable signal is set to logic one using counter, so these bytes are written into the

VCI registers as well as the buffer itself. These bytes contain the VCI information needed for routing the
a

packet through the switch. As soon as all the bytes of the packet are written and counter reaches at

terminal count, it resets and awaits the arrival of a new packet. So the data is being written into the FIFO

according to its destination output port number with updated vci value, input port sends the request to the

scheduler. After receiving the request from the input port, scheduler sends grants to the one of the queue

intended for the same output port. After receiving grant from the scheduler, input port starts reading

packets from the granted FIFO’s queue and sends it to the input of the switching fabric.

5.4.2 Cross Point Switch (Switch Fabric)

The switch fabric module physically connects an input port to its destined output port, based on the output

port number generated by the input port. The outputs of input port modules are connected to the inputs of

switch_fabric. The outputs of switch fabric are connected to the output ports of the switch.

143

OutputJFrameJgk§SlLXl)

SWITCH
FABRIC

OP

Data JlalMLiD

Data teLiS") OP imxD i
Source No.l Clogs N)

O/P Port No. 1 (logsN+l)
flogs Ny

O/P Port No.N (loga j Data yjjMLXS)

I/P FS1 (1)

I/P FSN (I) j Data QwfLX?)

CLK

Figure 5.113 General NxN Switch fabric module.

As shown in figure 5.113, Input signals to the switch fabric module are: elk, datavalid (N xl i.e. N

signals of 1 bit), datain (Nx8), opjport_no(N x (log2N +1)), frame start (N xl). Output signals from the

switch fabric are: op_fs (Nxl), sourceno (Nx (log2N)), datavalid (N xl), and data_out (Nx8). Input

signal data valid indicates that there is a valid 8 bit data at the respective data in input. There are N input

signals op_port_no of size (log2N +1). In each signal log2N bit indicates destination number to switch.

One more bit is required to validate the data like if “000” 00 is the destination number and valid data, but

“100” means invalid data.

5.4.3 Scheduler

Depending on various scheduling algorithms, scheduler generates the grants depending on the request

generated by various inputs and scheduling policy.

5.5 VLSI IMPLEMENTATION OF RRM

As shown in figure 5.114, RRM scheduler block consists of 5 sub blocks. Clkipdrrm block has two clock

inputs: schedule clock (scO) and general clock (elk). At every packet arrival time, it generates four output

clocks, (ctmpO, ctmpl, ctmp2, ctmp3) sequentially in synchronism with main system clock (elk), once scO

is detected as shown in figure 5.119. This output clocks (ctmpO, ctmpl, ctmp2, ctmp3) are given to four

other individual blocks as shown in figure 5.114. Input to the block Port req gen are port request signals

generated by individual input ports. We adjust the request signals in terms of output in such a way that for

each individual output, there is a 4 bit signal which indicates the request from 4 different input ports as

144

shown in figure 5.115. Grtrrm block decides grant of individual outputs. There are N counters required

to generate grant for NxN switch. We have implemented 4x4 and 8x8 crossbar switches so we need 4 and

8 counters respectively. When there is a conflict, i.e. more than one input port wants to transfer data to

same output, then based on the grant pointer, grant will be given to particular input port as illustrated in

figure 5.1. Figure 5.116 indicates the waveforms of GRTRRM blocks for 4x4 switch. Gr ipx indicates

the request of the inputs at output x. Grant counter (gntcntx) indicates the grant pointers at output x, and

gr opx displays the output of x. As shown in figure 5.116 at 36.0 ns, we set the following inputs; gr_ip3=

0110, gr_ip2= 1011, gr_ipl= 0000 and gr_ip0=0111. Initially all grant counters (gnt cntx) are OO.In case

of output3 (gr_ip3=0110), there are two requests from inputl and input2 respectively. Grant counter

(gnt_cnt=00) points to 0 so grant will be given to inputl and gr_op3=0010 and grant counter points to the

next input (gnt_cnt3=10). Similarly, depending on grant input and initial value of grant counter, grant

output are set like this; gr_op3=0010, gr op2=0001, gr_opl=0000, gr_op0=0001 and the grant counters

are set to: gr_cnt3=10, gr_cnt2=01, gr_cntl=00, gr_cnt0=01 (Modulo N increment to grant output),Same

process is repeated after next clock (at 200.0 ns.), with updated grant counter.

Input to the block Port grt gen are grant signals generated by Grtrrm block. We adjust the Grant signals

in terms of input in such a way that for each individual input there is a 4-bit signal which indicates the

request from 4 different output ports as shown in figure 5.117.

Acpt rrm block decides acceptance of individual inputs. There are N counters required to generate

acceptance for NxN switch. We implement 4x4 and 8x8 crossbar switches so we need 4 and 8 counters

respectively. When there is a conflict, i.e. more than one output port give grant to same input, then based

on the accept pointer, accept signal will be given to particular output port as shown in figure 5.1.

As shown in figure 5.118 at 35.0 ns, we set the following accept inputs; acpt_ip3= 0000, acpt_ip2= 0000,

acpt_ipl= 1000 and acpt_ip0=0101. Initially all accept counter (acptcntx) are 00. In case of inputO

(acpt ip0=0101), there are two grants from outputO and output2 respectively. Accept counter

(acpt_cnt=00) points to 0 so accept will be given to outputO and acpt_op0=0001 and accept counter points

to the next output (acpt_cnto=01). Similarly depending on accept input and initial value of accept counter,

accept output set like this; acpt_op3=0000, acpt_op2=0000, acptop 1=1000, acpt_op0=0001 and set the

accept counter like this; acpt_cnt3=00, acpt_cnt2=00, acpt_cntl=00, acpt_cnt0=01 (Modulo N increment

to grant output).Same process is repeated after next clock (at 200.0 ns.), with updated accept counter.

In case of 8x8 RRM scheduler block, all the signals are 8 bits i.e. (7 downto 0) instead of 4 bits (3

downto 0) in 4 x 4 RRM scheduler block and hence complexity of each sub block increases. There is no

change in clkipdorrm sub block.

145

Figure 5.114 4x4 RRM scheduler block

Name; _ Value:
g^-clk 1
si?® prfip3 B 0100
mP* prSp2 B 1001
HIS® prfipl B 1101
Si?* prffpO B0101

pitschS B0110
«HI> prtsch2 B 1011

prtschl B DCtfO
prtschO B 0111

50.0r|s 100.0ns 150.0ns 200.0ns 250.0ns 300.0

juii¥iiimnjijiiiruimjuiriiiarim

n
n

-0100
1001

1101

0101

81:10
1011

:oooo:
; 0111

IX
TT

•101:1 :

r1G01 ; :

looioi

: 110T

0110

in
n

Figure 5.115 Simulation waveform of Port_Req_Gen

146

Name: .Value: .
l 2 '

100.0ns 200.0ns 300,0ns 400.0ns 500.0ns TO.0ns 70
__ I 1 l I?:;::: ;; : ;; :

HHclk 0

gr_ip3 BG110 t=i: \l:&m : :: r •• i:i:i!ia;

SB* gr ip2 81011 f: : :10T:i f ^ x. ' .0000 • i

eI?5 grjpl BOOOO ...om.-r:,. i- - 1101; : ^A^

aP®- grJpO BG111 0111;-:
:ono 0111

gr_op3 B0010 & " 0010- n :: !H0JCft3 T I' :

HP gr_op2 8 0001 COM

§11* gr_op1 BOOOO : -ttoODV - -■ A

B 0001 0001 -gr_opQ A : . 0010:- -......

Z& gnt_cnt3 BID :1

0? gnt_ent2 BOf l :: ::::V :: ’i:i 01.

gni_cntl BOO00 .. 71-01: ;: .i - . .i

{0> qnt cntO B01 A "IrVO-Urv:

Figure 5.116 Simulation waveform of GRTJRRM

Name: .Value: . 25.0ns 50.0ns 75.0ns iQXQns 125.0ns 150.0ns 176.0ns 200.0ns

B-clk
1 l

1 0
' ri : npgfsch3 B 0000 dooo K - ; .0010 ■ . i : 0100! :

W* pgfsch2 B 0000 0000 i ■ ; 0001 : : - A . 0000': :
S5 pgTschl B 0000 : 0000 '

; - A : 0001; :

W? pgfschD B0D00 0000 i . : ; : . .oodr ■; . . : 0)10. :

W& pgtip3 B 0000 . ; • : ; ; 0000 • . . • ; ;
® pgtip2 B 0000 ■ tto ; - ■ xrT^r : iooo

m> pglipl B 0000 ;0000: X : . = : : 1000 : ^ 1 M ! = : ! 0001 :

pgtipQ B 0000 ;oobo; X . . : 0101 . I:-: i • coin;

Figure 5.117 Simulation waveform of Port GRT Gen

_35.0r»s
19

Name: Value: 25.0ns 50.0ns 75.0ns 100.0ns 125.0ns 150.0ns 175.0ns 200.0ns 225.
i

&- reset_sche 0

i^-clk 0 I : = ^ n) = ; - n i ;W5 acptjp3 BOOOO • • : odqo

P* acptjp2 B0000 ; ■ : TOO : ; ’ T-: ’.nr; ;.rr : iooo:

©*■ acpljpl B 1000 ;ooto: X :
: - ; ; . ; 1000 ; t :; . ..rm.. ; =

; oooi

W* acptjpO B0101 ;oon: i ■: ; : ; . ; mm •: ; . t /n.n n.. ; r ; coio •

® acp!_op3 BOOOO

^ acpt__op2 BOOOO ; ’ i : i ; : ^ :000Q: : : ; ; ; ; ;. i ; X = ; ; ; ; iooo • ;

& acpt_op1 B 1000 ; moo • if ‘ 1000 ' X : ; : 0001 : I .

9 acpt_opQ B0DD1 : OOOQ : X : ■ ; oooi ■ • ; . x - ; 0010

acpt_cnt3 BOO - ; ; ; oa: : ; • r ; ' ; ; ■ ; ; : ; : ; ; :
^ acpt_cnt2 BOO ; : : : ; 00 i ■ . ' ; ; ! : :

acpt„cn!1 BOO . . . : 00 - : . - ; : • : -1 ■ X , - ; 01. ;
acpl_cnH) B01 ; 00. A ; ^ ; : : 01; : : i ; : I ;= X ! : : ■ i ; 10: ;

Figure 5.118 Simulation waveform of ACPT RRM

147

Figure 5.119 Simulation waveform of CLKIPDRM

5.6 VLSI IMPLEMENTATION OF iSLIP

Figure 5.120 Internal detail of iSlip Scheduler

Figure 5.120 shows the detail of iSLIP Scheduler. Port req gen. Port _grt_gen and acptrrm blocks are

same as RRM. Since iSLIP updates the grant pointer after confirmation of accept signal, we make change

148

a small change in the grant_islip subblock. Grant phase now accepts final accept signals (acx[3..0J) to

update the grant counter. To accommodate this change, clkipdislip block changes ctmpl output (i.e clock

of grtislip block). Block clkipdislip produces second extra clock pulse at ctmpl output to update the

grant counter after update of accept signals. A grt islip block produces, first grant output at the edge of

first clock signal at ctmpl and then waits for accept signals. After receiving accept signals, at the edge of

second clock signal at ctmpl it updates the grant counter, based on accept signals. So, if accept signal is

not favorable, grant counter is not updated even though grant output is set. (gr2 [3..0)=Q001, but accept is

not given to that output so, grant counter is not updated to solve the synchronization problem.)

Name: .Value:

W5 prirO[3..0{ BQ100

m prin2p..0I B1001

B* prinip..0(B1101

prin0[3..0J B0101

m pr3|3..0j B 0000

m>- pr2p..O] B0000

pr1|3..0] Boooa
W- pi0[3..0] Boooa
W gr3p..0] B 0000

gr2p..0) BOOtS

^ giip.,01 800CS

» giOp..O) BGG0Q

el? ac3f3..0j B0000

ac2p..0| BG0O0
H> ac1l3..0l B0000

acO[3.,OJ B00D0
U |grt_islip:1|grajHag 0

W grtJslip: 1 |gn! _cnt[3t. .30] BOO

&P grtJslip: t [gnt_cnt[21.,20] BOO

5? grtjslip:t|gnl_cnt[11..10l BOO

3^ grtjslip: 1 {grrt_cn?[0t ..00] sts
35^ pt_rrm:2jacpt_cnt(31 ..S)] 3 GO

& pt_rrm:2lacp{__cnt[21. .20) 800

pl_rrm:2(acpf_cnt{11. .10] BOO

SS* pt_rrm:2|acpt_cntpi..D0] B 01
SCO 0

i- reset 0
g^cik G

D |clkipdislip:10Hmpv3 0

31 {clkipdislip: 10|tmpv2 0

% |cikipd»siip:10fimpv1 Q

^ Iclkipdisiip: 10jtmpvO 1

25.0ns 50.0ns 75.0ns 100.0ns 125.0ns 150.0ns 175.0ns 200.0ns 225.0ns 25qj:

: 01DQ ! ! : ! K : -:101G

: 1001
. 0101 = 0010

&mTTf~irr
mm ; •

gm : I rpoop; ; | T
0000

GOGO

;G0C0:

mo

- 00 •

uri

D1 IQ- 1110

! ilOH:

0111-

ooio: n
wm

0001.

bgbo:

T~

: oo

GGOO

1000-

ooov

09 :

go ; • x = • ; 01 : :; i ■.: : ;ip;:

: : :(XI

00

0110

0100;

oooo;
0001:

0010.

1G0Q-
0001:

0010-

ur

m

.r i.~............
FI •:: m

—ft::

JTL

Figure 5.121 Simulation waveform of iSlip scheduler

149

5.7 VLSI IMPLEMENTATION OF RPA

In 4x4 RPA, 4 bit requests from all four inputs are converted to one 16 bit request signal op sched, by

req_all_ip sub block. Similarly 16 bit grant signal from scheduler_RPA is chopped to 4 grant signals

(each of four bit) for each input. In RPA basic arbiter cell is made by using simple combinational logic as

shown in figure 5.5. Such basic modular cells are arranged as shown in figure 5.7 by using component

instantiation statements in VHDL. Due to modularity in structure, VLSI implementation of RPA is easy.

As shown in figure 5.123 at 700ns c_bar_p=1111000 and c_bar_q=0011110 so priority starts from cell 3,

1. Our request input arb req =fffff, so all the cells have requests. Now selected cells as per algorithm are

(3,l),(4,2),(l,3),(2,4).Arrange same in the descending order (4,2),(3,1),(2,4),(1,3). So grant output is

2184H. (i.e. 0010, 0001,1000, 0100 particular output bit is set 1).

Figure 5.122 Internal detail of RPA Scheduler

150

■I#1 V-'

ift■■"

4

lame: Value: } 200.0ns 400.0ns 600.0ns 800 0ns I.Ous 1.2us 1.4us I.Bus 1.8us 2.0us 2.2us
! 1 i t 1 1 !

I-reset

HI
partijeg

1 grant

t c_bar_P

f cjarj

0

0

HFFFF

H2184

81111000

80011110

FFFF
0000 S 8121 I 1812 1 21 i~] 4218 J 8421 { 1842 { 2184 | 4218 |

• 1 1111000 | 0111100 I 0011110

ooooooo |ii»|otiiioo fm i¥|oooiin {mm {oimoo {0011110 {mini {1111000 {0111100 {

Figure 5.123 Simulation waveform of RPAScheduIar

5.8 VLSI IMPLEMENTATION OF DP A

Req_all_ip and grt for ip sub blocks in DPA are same as RPA. In DPA basic arbiter cell is made by

using simple combinational logic as shown in figure 5.11. Such basic modular cells are arranged as

shown in figure 5.10 by using component instantiation statements in VHDL. Due to modularity in

structure VLSI implementation of DPA is easy.

Figure 5.124 Internal detail of DPA Scheduler

151

As shown in figure 5.125 at 2us c_bar_p=0111100, so priority starts from cell 2,1. Our request input

arbreq =fffif, so all the cells have requests. Now selected cells as per algorithm are 2,1, 1,2,4,3,3,4.

We arrange same in descending input order i.e. (4,3),(3,4),(2,1),(1,2). So grant output is 4812H (i.e. 0100,

1000,0001, 0010) particular output bit is set 1.

Name: Value: 1.75ns 2 Jus 2.5us 2.75us 3.25us 3.5us 3.7§us
-------------- 1
l-iesel

l--------
0

__________I___________ » 4 4.........................1........................ . ____________ i____________ 1____________ l____ __

|-ci 1
Partnei] HFFFF FFFF
Ipnt H 4812 1218 1 2481 1 4 }\T] 8124 I 1248 | 0000 2481 | 4812 1 8124 I 1248 \

§ c_bar_P B01111OO - limooofor
Figu

ilpilpiii] Si piipii]iiipiiii|
re 5.125 Simulation waveform of Scheduler for DPA

5.9 IMPLEMENTATION RESULTS
We implement the design in VHDL using ALTERA’s MAX+PLUS II /Quartus tool. The VLSI area

analysis of all the above scheduling algorithms is tabulated below.

Table 5.2 RRM VLSI area requirement for 4x4 ATM switch

Project Device Total Logic

Elements

Total

Pins

Total Memory

Bits

Maximum Clock

Frequency (MHz)

ATM_RRM_4x4
EP20kl500

EBC652-1

5722/51,840

(11%)

79/488

(16%)

33,920/442,368

(8%)
37. 92

Table 5.3 RRM VLSI area requirement for 8x8 ATM switch

Project Device Total Logic

Elements

Total

Pins

Total Memory

Bits

Maximum Clock

Frequency (MHz)

ATM_RRM_8x8
EP20kl500EB

C652-1

26,380/51,840

(51 %)

178/488

(36%)

133,376/442,368

(30%)
21.72

152

Table 5.4 iSlIp VLSI area requirement for 4x4 ATM switch

Project Device Total Logic

Elements

Total

Pins

Total Memory

Bits

Maximum Clock

Frequency (MHz)

ATM_iSLIP_4x4
EP20kl500

EBC652-1

5707 / 51,840

(11%)

87/488

(18%)

33,920/442,368

(8%)
39.70

Table 5.5 iSlip VLSI area requirement for 8x8 ATM switch

Project Device Total Logic

Elements

Total

Pins

Total Memory

Bits

Maximum Clock

Frequency (MHz)

ATM_iSLEP_8x8
EP20kl500EB

C652-1

26,067 / 51,840

(50%)

178/488

(36%)

133,376/442,368

(30%)
21.08

Table 5.6 RPA VLSI area requirement for 4x4 ATM switch

Project Device Total Logic

Elements

Total

Pins

Total Memory

Bits

Maximum Clock

Frequency (MHz)

ATM_RPA_4x4
EP20kl500EB

C652-1

5,810/51,840

(11%)

87/488

(18%)

33,920/442,368

(8%)
10.51

Table 5.7 RPA VLSI area requirement for 8x8 ATM switch

Project Device Total Logic

Elements

Total

Pins

Total Memory

Bits

Maximum Clock

Frequency (MHz)

ATM_RPA_8x8
EP20kl500E

BC652-1

22,855/51,840

(44%)

178/488

(36 %)

133,376/442,368

(30%)
6.78

153

Table 5.8 DPA VLSI area requirement for 4x4 ATM switch

Project Device Total Logic

Elements

Total

Pins

Total Memory

Bits

Maximum Clock

Frequency (MHz)

ATM_DPA_4x4
EP20kl500E

BC652-1

5,656/51,840

(11%)

87/488

(18%)

33,920/442,368

(8%)
13.59

Table 5.9 DPA VLSI area requirement for 8x8 ATM switch

Project Device Total Logic

Elements

Total

Pins

Total Memory

Bits

Maximum Clock

Frequency (MHz)

ATM_DPA_8x8
EP20kl500E

BC652-1

22,778/51,840

(44%)

178/488

(36%)

133,376/442,368

(30%)
6.66

From the VLSI area analysis, iSlip and RRM area requirements are more or less same but from the

MATLAB simulation results, iSlip performance is far better than RRM. VLSI implementation of RPA

and DPA is feasible due to their modular structure. VLSI area requirement of DPA is less than RPA but

its performance is better than RPA as discussed in simulation.

5.10 SUMMARY
In this chapter, we survey basic scheduling algorithms and discuss MATLAB simulation of 4x4, 8x8,

16x16, and 32x32 crossbar switches. We generate 4x4, 8x8, 16x16, and 32x32 data for traffic pattern A,

B, C, D and used this data as stimuli to PIM, RRM, iSLIP, RPA, and DPA algorithms. Throughput

(efficiency) of DPA and RPA is higher than other algorithms, at the same time average latency of DPA

and RPA is the lowest. Delay variance of DPA is less in traffic pattern A, C, and D, while delay variance

of iSLIP is less in traffic pattern B.

We implement the 4x4 and 8x8 crossbar switches along with different scheduling algorithms in VHDL

using ALTERA’s MAX+PLUS II /Quartus tool. We test the functionality of each individual block, as

well as the 4x4 and 8x8 overall switch design using VHDL simulations and observe a correct functional

and timing performance. DPA has lowest area requirement and highest throughput, but iSLIP and RRM

have higher maximum clock frequency. The simulations are run on a PC platform with a 3.2 GHz

Pentium IV processor and a Windows XP operating system.

154

