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RESEARCH METHODOLOGY 

 

As indicated in the title, this chapter includes a detailed description of the research methods employed 

in the study and the logic behind the use in context of the study carried out.  

 

 

 

For the purpose of the research, the analysis is divided into three parts. The first part follows the exploratory 

data analysis; while, the second part adopts time series analysis. The final part of the study adheres to 

probability theory and statistics. The section containing the exploratory data analysis discusses the basic 

features of the data used in the study which provides simple summary statistics of the sample used. Thereafter, 

time series analysis is carried out which consist of models used for variety of reasons – predicting future 

outcomes, developing a pattern of past outcomes, making policy recommendations and much more. The 

present data is modelled with the help of Auto regressive conditional heteroscedasticity and General Auto 

regressive conditional heteroscedasticity models. These are the time-domain approach of time series modelling 

future values as a function of past as well as present values. This approach is based on time series regression 

of present value on its own past values and also past values of other variables. This kind of an approach is 

very popular in econometric time series analysis.  

 

Further in the study, copula models are constructed which are high dimensional statistical applications that 

estimate the distribution of the random variables and help in determining the strength of dependence structure 

prevailing in the data. These are basically mathematical tools applied to areas of finance to identify market 

risk, credit risk, operational risk, option pricing, portfolio value-at-risk and economic capital adequacy. Since 

distribution in financial markets are always non-normal in nature such techniques are used to deal with skewed 

or asymmetric distributions.  
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5.1 DATA  

 

The indices used in the study are widely accepted benchmark indices for two major Indian stock markets. 

These popular indices are the Bombay Stock Exchange's Sensex and the National Stock Exchange's Nifty50. 

The BSE Sensitivity Index (Sensex) was the company's first index, released in 1986. The BSE Sensex index 

of equity share prices was first introduced in 1978-79, with a base value of 100. It is made up of 30 firms and 

the companies were chosen to represent all of the key economic sectors based on their market capitalization, 

turnover, and the quality of their fundamentals. It has offered 21 indices in the last 15 years, including 12 

sectoral indices. The Nifty50 of the National Stock Exchange is another prominent index (NSE). The National 

Stock Exchange (NSE) was founded in November 1992. The Nifty50 was first introduced on November 3, 

1995, with a base value of 1000 rupees. It is made up of 50 equities that are ranked based on market 

capitalization and liquidity. The NSE has a total of 23 indicators. 

 

In addition, sectoral indices of the Bombay stock exchange that are - S&P BSE Basic Materials, S&P BSE 

Energy, S&P BSE Fast Moving Consumer Goods, S&P BSE Finance, S&P BSE Healthcare, S&P BSE 

Industrials, S&P BSE Information Technology, S&P BSE Telecom, S&P BSE Utilities, S&P BSE AUTO, 

S&P BSE BANKEX, S&P BSE Capital goods, S&P BSE Consumer durables, S&P BSE Metal, S&P BSE 

OIL & GAS, S&P BSE Power, S&P BSE Realty, S&P BSE TECK are used to investigate the objectives. 

Further, the indices of National stock exchange that are included in the study have been selected from the 

sectoral as well as thematic indices. These are Nifty financial services index, Nifty media index, Nifty Pharma 

index, Nifty Private bank index, Nifty Public bank index from the sectoral index and Nifty commodities index, 

Nifty manufacturing index, Nifty India consumption index, Nifty infrastructure index and Nifty service sector 

index.  

 

The research is based on secondary data. Secondary data is usually published in some manner (printed, 

electronic CD, or the Internet). Some government or research body has already gathered these data. The study's 

stock price data was gathered from www.bseindia.com and www.nseindia.com. 

 

The study uses data on daily closing prices of BSE and NSE benchmark indices as well as the selected sectoral 

and thematic indices of India, from January 2006 to August 2020. All the 19 sectors of the Bombay stock 

exchange are included in the study followed by the sectors of National stock exchange (excluding the ones 

already included from BSE sectoral indices) and five thematic indices selected on the basis of their importance 

and performance also considering the availability of the data.  
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5.2 METHODOLOGY 

 

5.2.1 Exploratory data analysis  

 

1. Rate of return 

The following formula was used to compute the rate of return of the indices as well as the sectors: 

 

𝑟𝑡 =  
𝑝𝑡 −  𝑝𝑡−1

𝑝𝑡−1
… (5.1) 

 

Where, 𝑟𝑡 is the rate of return of the index/sector at time t, 𝑝𝑡 price of the index/sector at time t, 𝑝𝑡−1 price of 

the index/sector at the time t-1.  

 

2. Descriptive statistics 

The descriptive analysis includes the statistic values such as minimum, maximum, mean, median, standard 

deviation, skewness, kurtosis.  

 

The minimum and the maximum values are selected from the data set as per the minimum and maximum 

values of prices as well as returns calculated. The first which is also known as the lower quartile basically 

separates the lowest 25% of the data from the highest 75%. The third quartile or the upper quartile distinguishes 

between the highest 25% of data from the lowest 75%. The median, which is the second quartile divides the 

number into two equal parts.  

 

Figure 5.1: Quartiles 

 

Source: Mathematical statistics by Gupta & Kapoor 

When the data set is arranged in ascending order the quartiles are represented as, 
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1. First quartile Q1 = [(n+1)/4]th term 

2. Second quartile Q2 = [(n+1)/2]th term 

3. Third quartile Q3 = [3(n+1)/4]th term 

 

Mean, which is the average of the numbers is calculated as follows:  

µ =  
𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛
… (5.2) 

 

here, µ is the mean value of the observations. Similarly, standard deviation is calculated using the below 

formula: 

𝜎 =  √
∑(𝑥𝑖 − µ)2

𝑁
… (5.3) 

 

here, 𝜎 is the population standard deviation, N is the number of observations, 𝑥𝑖 is each value from the 

population and µ if the population mean.  

 

Further, to categorize the data as per its location, variability and shape the descriptive analysis includes 

skewness and kurtosis. Skewness measures lack of symmetry, while kurtosis measures whether the data are 

heavy-tailed or light-tailed as compared to the normal distribution. The histogram is an effective graphical 

technique to represents skewness and kurtosis of the data set.  

 

In case of univariate data X1, X2, …, XN, the formula for skewness is: 

 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
∑ (𝑋𝑖 −  𝑋̅)3

𝑁
⁄𝑁

𝑖=1

𝑠3
… (5.4) 

 

Where, 𝑋̅ is the mean, s is the standard deviation, 𝑋𝑖 is each value from the population, and N is the number 

of observations. This formula is the Fischer-Pearson coefficient of skewness used by many software programs.  

Similarly, for univariate data X1, X2, …, XN, the formula for kurtosis is: 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =   
∑ (𝑋𝑖 −  𝑋̅)4

𝑁
⁄𝑁

𝑖=1

𝑠4
 … (5.5) 



 

105 

 

Where, 𝑋̅ is the mean, s is the standard deviation, 𝑋𝑖 is each value from the population, and N is the number 

of observations. A standard normal distribution has skewness of zero and kurtosis of three. The case of positive 

and negative skewness is shown in the graphs below:  

 

Figure 5.2: Different kinds of Skewness 

 

Source: Mathematical statistics by Gupta & Kapoor 

 

Histogram of positive and negative kurtosis looks something like this: 

 

Figure 5.3: Different kinds of Kurtosis 

   

Source: Mathematical statistics by Gupta & Kapoor 

 

3. Beta values 

The beta value measures the fluctuations in the stock prices to the overall changes in the stock market. It is a 

basic measure of volatility, a shot-term risk used in the CAPM model. In the thesis, the beta values of every 

sectoral indices as well as thematic indices are calculated with respect to the market. The formula used for the 

same is as follows: 
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𝐵𝑒𝑡𝑎 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝛽) =  
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑅𝑒 , 𝑅𝑚)

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅𝑚)
… (5.6) 

 

Where, 𝑅𝑒 is the return on an individual stock (in this case, sectoral/thematic index). Rm is the return of the 

overall market. The beta values of sectoral indices of Bombay stock exchange with respect to the S&P BSE 

Sensex has been calculated. Similarly, beta values of sectoral and thematic indices are calculated with respect 

to Nifty 50 index. The beta values are very insightfully for investors to understand the movement of the 

sectoral/thematic index in comparison to the market. If the beta value is equal to zero, it indicated the 

sectoral/thematic index are strongly correlated with the market. If the value is greater than zero, it indicates 

that the sectoral/thematic index is more volatile than the market. Similarly, if the value is less than zero, it 

shows that the sectoral/thematic index is less volatile than the market.  

 

4. Correlation 

The correlation coefficient depicts relationship between movements of any two variables. The values range 

between -1 (negative correlation) to +1 (positive correlation). This statistic can be of great use to the investors 

in adjusting their portfolios. It can also be used for diversification of the portfolio. There are a number of ways 

to calculate correlation coefficient but the most common is the Pearson’s coefficient (r)(Pearson,1895). The 

formula for calculating correlation coefficient is as follows: 

 

𝜌𝑥𝑦 =
𝐶𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦
… (5.7) 

 

Here, 𝜌𝑥𝑦 represents correlation between x and y variables, 𝜎𝑥𝜎𝑦 are standard deviation of x and y. In the 

study, the correlation of all the sectoral and thematic indices with the respective market index is being 

calculated.  

 

Accordingly, the formula employed in the study is as follows:  

 

𝜌𝑠𝑚 =
𝐶𝑜𝑣(𝑠𝑒𝑐𝑡&𝑡ℎ𝑒𝑚𝑎 𝑖𝑛𝑑𝑒𝑥, 𝑚𝑎𝑟𝑘𝑒𝑡 𝑖𝑛𝑑𝑒𝑥)

𝜎𝑠𝑒𝑐𝑡 & 𝑡ℎ𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑥𝜎𝑚𝑎𝑟𝑘𝑒𝑡𝑖𝑛𝑑𝑒𝑥
… (5.8) 
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Where, 𝜌𝑠𝑚 represents correlation between sectoral/thematic index and market index, 𝜎𝑥𝜎𝑦 are standard 

deviation of sectoral/thematic index and market index. The correlation coefficient of both Bombay as well as 

National stock exchange is measured with respect to their sectoral/thematic index.  

 

5. Jarque-Bera test of normality 

Jarque-Bera Test, is a test for normality, which is a form of Lagrange multiplier test (Jarque & Bera, 1980). 

Many statistical analyses assume normality; the Jarque-Bera test is commonly used before one of these tests 

to validate normality. Because other normality tests are unreliable when n is big, it is typically employed for 

huge data sets. The test compares the skewness and kurtosis of data to check if they are similar to a normal 

distribution. A normal distribution has a skewness of zero (i.e. it's completely symmetrical around the mean) 

and a kurtosis of three, which indicates how much data is in the tails and how "peaked" the distribution is. 

 

The Jarque-Bera test statistic (also known as the JB test statistic) has the following formula: 

 

𝐽𝐵 =  
𝑛

6
 (𝑆2 +

1

4
(𝐾 − 3)2) … (5.9) 

 

Where, n is sample size, S is the sample skewness coefficient, K is the kurtosis coefficient.  

 

The test's null hypothesis is that the data is normally distributed; the alternative hypothesis is that the data is 

not normally distributed. 

 

5.2.2 Granger causality  

 

Granger causality is a statistical hypothesis testing which checks whether a time series can be used to forecast 

the other. It is very close to determining the cause effect relation although not in exact way. It basically tells 

us whether a time series is caused by the other. This relationship can be one way and two way. If time series 

A is caused by time series B, and time series B is also caused by time series A it is called a bi-direction relation. 

Whereas, if time series A is caused by time series B but time series B is not caused by time series A then it is 

called a uni-directional relationship. The null hypothesis of the test states that time series A does not cause 

time series B. If the probability value is less than five percent level of significance, than the hypothesis will 

be rejected.  
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The causality test of each sectoral and thematic indices is carried out with respect to the market index. It is 

also run amongst itself, the results of which is presented in the appendix. To run the granger causality, the 

following bivariate regression is carried out: 

 

𝑏𝑡 = 𝛾0 + 𝛾1𝑏𝑡−1 + ⋯ + 𝛾1𝑏𝑡−1 + 𝛿1𝑎𝑡−1 + ⋯ +  𝛿1𝑎−1 + 𝜀𝑡 … (5.10) 

𝑎𝑡 = 𝛾0 + 𝛾1𝑎𝑡−1 + ⋯ + 𝛾1𝑎𝑡−1 + 𝛿1𝑏𝑡−1 + ⋯ + 𝛿1𝑏−1 + 𝑢𝑡 … (5.11) 

(𝛿1 = 𝛿2 = ⋯ = 𝛿𝑡 = 0) 

 

Here, a and b are time series variables, a represents the various sectoral and thematic indices and b represents 

the market index. The null hypothesis states that a does not granger-cause b in the equation 12 and that b does 

not granger-cause a in the equation 13.  

 

5.2.3 ARCH and GARCH models 

 

1. Unit root test 

A unit root is a stochastic trend present in a time series, which is also called a “random walk with drift”. If a 

time series has a unit root, it depicts a systematic pattern which is unpredictable in nature.  

 

Figure 5.4: Unit root 

 

Source: Basic econometrics by Gujarati  

 

The red line represents the fall in output and path of recovery if the timeseries has a unit root. Blue, on the 

other side, shows the recovery if there is no unit root and the series is stationary. The presence of unit root can 

cause the analysis to have a spurious regression and errant behavior in the distributions. So, unit root is a test 

for stationarity in a time series model. A time series is stationary only if a change in time has no significant 

impact in the shape of the distribution.  
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There are a number of tests to check for stationarity, but this study makes use of the two most significant tests 

– Dickey Fuller test and Phillips-Perron (PP) test.  

 

Augmented Dickey Fuller Test- This test was devised by David Dickey and Wayne Fuller in 1979 (Dickey & 

Fuller, 1979). It is based on linear regression and handles bigger, more complex models. The ADF test, when 

applied to a return series rt, regresses the first difference of the series against the series lagged k times, as 

illustrated below: 

𝑟𝑡 =  𝜌𝑟𝑡−1 + 𝑥𝑡′𝛿 + 𝜖𝑡 … (5.12) 

 

Where, 𝑥𝑡 is optional regressors which may consist of constant, or a constant and trend, 𝜌 and  𝛿 are parameters 

to be estimated, while 𝜖𝑡  is the white noise.  

 

Null hypothesis (H0) = The series contains a unit root. 

Alternative hypothesis (H1) = The series is stationary.  

 

Acceptance of the null hypothesis implies that the dataset is non-stationary. The acceptance is based on the 

values of the probability, i.e., if the value is lesser than 5% confidence interval than the null hypothesis is 

accepted. Alternatively, if the probability value is greater than 5% confidence interval than the null hypothesis 

is rejected and the alternative hypothesis is accepted stating that the series is stationary. The ADF test is 

commonly used in most of the timeseries model; however, it cannot be applied in case of serial correlation.  

 

Phillips-Perron Test – This test is a modification of the Augmented dickey fuller test and corrects the errors 

for autocorrelation and heteroscedasticity (Phillips & Perron, 1988).  The Phillips-Perron test is calculated on 

the basis of following formula: 

 

𝜏𝛼 = 𝑡𝛼(
𝛾0

𝑓0
)

1
2⁄ −  

𝑇(𝑓0 − 𝛾0)(𝑠𝜖(𝛼̂))

2𝑓0

1
2⁄

𝑠
… (5.13) 

 

Where 𝛼̂ is the estimate, and 𝜏𝛼 the t-ratio of 𝛼. (𝑠𝜖(𝛼̂)) is coefficient of standard error, s is the standard error 

of the test regression. 𝛾0 is the consistent estimate of the error variance and 𝑓0 is an estimator of the residual 

spectrum at frequency zero.  
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2. Autoregressive conditional heteroscedasticity 

A simple autoregressive (AR) model is denoted as: 

 

𝑟𝑡 = 𝜃0 + 𝜃1𝑟𝑡−1 + 𝑎𝑡 … (5.14) 

 

Here, time series 𝑟𝑡 is the dependent variable and 𝑟𝑡−1 is the explanatory variable, 𝑎𝑡 is the white noise series 

with zero mean and variance. In the literature of the time series, equation 16 is represented as an autoregressive 

model of order 1 or AR (1) model.  

 

Similarly, an AR(p) model can be denoted as: 

 

𝑟𝑡 = 𝜃0 + 𝜃1𝑟𝑡−1 + ⋯ + 𝜃𝑝𝑟𝑡−𝑝 + 𝑎𝑡 … (5.15) 

 

Here, p is assumed to be a nonnegative integer and 𝑎𝑡 is the white noise series with zero means and variance. 

The model states that the past p variables rt-1 (i=1,…, p) jointly determine the conditional expectation of rt.  

Autoregressive indicates that heteroscedasticity observed over different time periods may be autocorrelated. 

Conditional indicates that variance is based on past errors; while, heteroscedasticity means that the series has 

unequal variance. Thus, forming an Autoregressive conditional heteroscedasticity (ARCH) model. It simply 

indicates that the series has a time-varying variance that depends on lagged effects. Engle (1982) introduced 

the ARCH models. It assumes that the variance of the current error term is akin to the size of previous period 

error terms. 

 

ARCH models the attitude of investors not only towards expected returns but also risk. It can be used to form 

an economic forecast and also to measure volatility. For instance, inflation in itself may not be bad but its 

variability is bad which makes financial planning difficult. Similarly, for importers, exporters, traders in the 

foreign exchange markets, face variability in the exchange rates resulting in either huge losses or profits. In 

case of stock markets, investors are interested in the volatility in stock prices. A high volatility could mean 

huge losses or gains. Hence, it becomes important to model these variabilities in order to understand the 

existing patterns and forecast the future.  

Considering the following model: 

 

𝑌𝑡 = 𝑐 + 𝑢𝑡 … (5.16) 

𝑢𝑡~𝑖𝑖𝑑 𝑁(0, 𝜎𝑡
2) … (5.17) 
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𝜎𝑡
2 =  𝑏0 … (5.19) 

 

This model is a simple regression model containing a constant term and no explanatory variables. Equation 

18 is the mean equation, where Yt dependent variable is equal to the sum of constant and white noise error 

term, 𝑢𝑡 . The error term is normally distributed with mean 0 and variance 𝜎𝑡
2. The variance 𝜎𝑡

2 is a constant 

i.e., 𝑏0 which changes over time.  

 

Further making three major adjustments in the model: 

 

1. Allowing the error variance to be time-varying, which is, heteroscedastic ht. 

𝜎𝑡
2 =  ℎ𝑡 … (5.20) 

 

2. Allowing the distribution of error term to be conditionally normal representing information available 

at time t-1.  

𝑢𝑡[𝐼𝑡−1~𝑁(0, 𝜎𝑡
2) … (5.21) 

 

3. Allowing ht to be a function of a constant term and lagged squared error, 𝑢𝑡−1
2 . 

ℎ𝑡 = 𝑏0 + 𝑏1𝑢𝑡−1
2 … (5.21) 

𝜎𝑡
2 = 𝑏0 + 𝑏1𝑢𝑡−1

2 … (5.22) 

𝑏0 > 0, 0 ≤ 𝑏1 < 1 … (5.23) 

 

Equation 19 is the variance equation of the ARCH (1) process. 

  

For ARCH(q) model the variance equation would be as follows: 

 

ℎ𝑡 = 𝑏0 + ∑ 𝑏1𝑢𝑡−𝑖
2

𝑞

𝑖=1

… (5.24) 
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Therefore, in totality the ARCH(1) model would be as follows: 

 

𝑎𝑡 = 𝜀𝑡√𝛼 + 𝛼1𝑎𝑡−1
2 … (5.25) 

 

Here, at is a time series,  

𝜀𝑡 is the white noise or error term,  

𝛼  is a constant and  

𝑎𝑡−1
2  is the value of the time series yesterday.  

√𝛼 + 𝛼1𝑎𝑡−1
2  is the volatility of time series at.  

 

Now, the problem with the ARCH model is that it is quite “bursty”.  This means it has burst of volatility rather 

than persistence of volatility. That is whey generalized ARCH model comes into the picture.  

  

3. Generalized autoregressive conditional heteroscedasticity 

Constant variance has been one of the most classical assumptions of conventional time series and econometric 

models. However, that changed after the introduction of ARCH (Autoregressive Conditional Heteroskedastic) 

process introduced by Engle (1982) which emphasized on the connection between conditional and the 

unconditional variance. The conditional variance was allowed to change over time as a function of past errors 

in the ARCH model. It was the first model that provided a systematic method to model volatility and was used 

widely by financial practitioners, academicians and policy makers.  

 

After an extensive use of the model, people found out a few weaknesses in the model such as long lag length, 

large number of parameters and it is not easy to control the existence of negative variance. Thus, in order to 

overcome these drawbacks, Bollerslev (1986) proposed the generalized ARCG, GARCH (Generalized 

Autoregressve Conditional Heteroscedasticity) model. 
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The GARCH(p,q) specification may be written as follows: 

 

𝜎𝑡
2 = 𝛽0 + ∑ 𝛽1𝜀𝑡−𝑖

2 + ∑ 𝛽2𝜎𝑡−𝑗
2

𝑝

𝑗=1

𝑞

𝑖=1

… (5.26) 

 

Where, 𝛽0𝛽1>0 and (𝛽1+𝛽0) < 1, 𝜎𝑡
2 represents the conditional variance,  𝜀𝑡−𝑖

2  is the white noise. The 

conditional variance is a linear mixture of the conditional return's equation's q lags of the squared residuals 

and the conditional variance's p lags. 

 

Considering one lag of 𝜎𝑡
2 and 𝜀𝑡

2 i.e., 𝜎𝑡−1
2 , 𝜀𝑡−1

2 , then the estimation of the conditional variance would be: 

 

𝜎𝑡
2 = 𝛽0 + 𝛽1𝜀𝑡−1

2 + 𝛾1𝜎𝑡−1
2 … (5.27) 

 

Here, 𝜎𝑡
2 is volatility at time t, 𝜎𝑡−1

2  is volatility of previous period and 𝜀𝑡−1
2  is the error of previous period. 𝛽0 

is a constant, 𝛽1 and 𝛾1are coefficients.  

 

A range of GARCH(p,q) models with different values of p and q along with different distributions of the error 

term will be estimated on the basis of the information criterion that will be discussed.  

 

a. Exponential GARCH 

The Exponential GARCH or EGARCH model was proposed by Nelson in 1991, based on log transformation 

of conditional variance. In this model the conditional variance always remains positive because of natural 

logarithm of the dependent variable. This model enables to capture the asymmetries present in the error term 

caused as a result of negative and positive news. The ARCH term is divided into two different independent 

variables. The first variable indicates the sign effect of shocks on index volatility and the second variable 

indicates the size or magnitude effect of shocks on volatility in the financial time series. The specification of 

EGARCH model used to study the conditional variance as in Brooks (2014) is as below: 

 

ln(𝜎𝑡
2) =  𝜔 +  𝛽 ln(𝜎𝑡−1

2 ) +  𝛾
𝑢𝑡−1

√𝜎𝑡−1
2

+  𝛼 [
|𝑢𝑡−1|

√𝜎𝑡−1
2

−  √
2

𝜋
… (5.28) 
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The model has several advantages over the model presented in equation 23. Firstly, the ln(𝜎𝑡
2) is modeled, so 

that none of the parameters will be negative. Thus, there is no need to impose non-negative constraints in the 

model and since asymmetries are allowed, if the relation between volatility and returns are negative, 𝛾 will be 

negative. The second term in the model represents the impact of GARCH term on the future conditional 

variance and the third term indicates the sign effect of ARCH on conditional volatility. The fourth term signals 

the size effect of ARCH on conditional volatility. The EGARCH will be tested with skewed distribution.  

 

b. GJR GARCH 

The GJR-GARCH is named after Glosten, Jagannathan and Runkle (1993) which models the positive and 

negative shocks on the conditional variance asymmetrically with the help of an indicator function I. The 

specification of the GJR GARCH model as in Brooks (2014) is as follows: 

 

𝜎𝑡
2 = (𝜔 +  ∑ 𝜁𝑗𝑣𝑗𝑡

𝑚

𝑗=1

) + ∑(𝛼𝑗𝜀𝑡−𝑗
2

𝑞

𝑗=1

+ 𝛾𝑗𝐼𝑡−𝑗𝜀𝑡−𝑗
2 ) + ∑ 𝛽𝑗𝜎𝑡−𝑗

2

𝑝

𝑗=1

… (5.29) 

 

Here, 𝛾𝑗 represents the leverage term, the value of indicator function is 1 for 𝜀 ≤ 0 and 0 alternatively. In 

presence of the indicator function, persistence of the model relies on the asymmetry of conditional distribution 

and is represented as: 

 

𝑃̂ =  ∑ 𝛼𝑗

𝑞

𝑗=1

+ ∑ 𝛽𝑗

𝑝

𝑗=1

+ ∑ 𝛾𝑗

𝑞

𝑗=1

𝑘 … (5.30) 

 

Here, k is the expected value of standardized residuals zt.  

 

𝑘 = 𝐸[𝐼𝑡−𝑗𝑧𝑡−𝑗
2 ] … (5.31) 

 

If the distributions are symetric, the value of k is 0.5. The ARCH(q) parameters are 𝛼𝑗 , leverage (q) parameters 

are 𝛾𝑗 and GARCH (p) parameters are 𝛽𝑗. Finally, the variance intercept parameter is omega.  
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c. ASYMMETRIC – POWER GARCH 

Ding, Granger and Engle (1993) while investigating the ‘long memory’ property of stock returns found that 

absolute returns are not the only ones having a higher correlation compared to normal returns, but the power 

transformation of the absolute returns also result in higher autocorrelation for long lags. The ARCH models 

are based on squared returns, however Ding et. al (1993) found that the autocorrelation function for a fixed 

lag has a unique maximal point which makes linear relationship among absolute returns neither a necessary or 

efficient property of ARCH specification. This gave rise to Asymmetric – Power GARH put forward by Ding 

et. al (1993). The specification of the APARCH model is as follows: 

 

𝜎𝑡
𝛿 = (𝜔 + ∑ 𝜁𝑗𝑣𝑗𝑡

𝑚

𝑗=1

) + ∑ 𝛼𝑗(|𝜀𝑡−𝑗 − 𝛾𝑗𝜀𝑡−𝑗|)𝛿

𝑞

𝑗=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
𝛿

𝑝

𝑗=1

… (5.32) 

 

The 𝜎𝑡 and 𝛾𝑗 are the leverage term.  

 

The persistence model is given by: 

 

𝑃̂ =  ∑ 𝛽𝑗

𝑝

𝑗=1

+ ∑ 𝛼𝑗

𝑞

𝑗=1

𝑘𝑗 … (5.33) 

 

Here, 𝑘𝑗 is the standardized residual’s (zt) expected value.  

 

𝑘𝑗 = 𝐸 (|𝑧| − 𝛾𝑗𝑧)𝛿 … (5.34) 

 

The ARCH parameters are the 𝛼𝑗, leverage parameters are 𝛾𝑗, power parameter is 𝛿. The GARCH parameters 

are 𝛽𝑗 and variance is omega.  

 

d. Univariate fractional integrated volatility model 

 

The long memory attribute can be explained using the properties of autocorrelation function, which are 

expressed as 𝜌𝑘 =
𝑐𝑜𝑣(𝑥𝑡− 𝑥𝑡−1)

𝑣𝑎𝑟(𝑥𝑡)
 for integer lag k. Autocorrelation such that lim

𝑘→∞
𝜌𝑘= 0 is expected to be present 

in a covariance stationary time series process. For ARMA (p,q) process, the autocorrelation decay at relatively 
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fast exponential rate so that 𝜌𝑘 ≈ |𝑚|𝑘, |𝑚| < 1 in case of stationary and invertible time series processes. 

While, in case of long memory processes, the autocorrelation decay at an hyperbolic rate, 𝜌𝑘 ≈  𝑐1𝑘2𝑑−1 as k 

increases without limit, where 𝑐1is a constant and d is the long memory parameter.   

 

In GARCH (1,1) process the estimated sum of parameters 𝛼1 and 𝛽1, if close to unity exhibits strong 

persistence. However, if the sum of the parameters is less than 1 then the 𝜀𝑡 process is second order stationary 

and a shock to conditional variance ℎ𝑡 has a decaying impact on ℎ𝑡+ℎ, when h is increasing and is 

asymptotically negligible. The influence on ℎ𝑡+ℎ does not die out asymptotically when the sum of parameters 

is higher than or equal to 1.  

 

Engle and Bollerslev (1986) developed the IGARCH model under the restriction of 𝛼1 + 𝛽1 = 1 stating that 

current information is of importance while forecasting the volatility for all horizons. 

 

∅(𝐿)(1 − 𝐿)𝜀𝑡
2 =  𝜔 + [1 − 𝛽(𝐿)]𝜐𝑡 … (5.35)  

 

Where, 𝜐𝑡 = 𝜀𝑡
2 − 𝜎𝑡

2 is the innovation in the conditional variance mechanism, has mean 0 and absence of 

serial correlation. However, volatility changes over time, and the consequences of a shock might take a long 

time to decay as demonstrated by Ding et. al. (1993). As a result, it appears that the distinction between I(0) 

and I(1) processes is overly rigid. Moreover, shocks die out at an exponential pace in an I(0) process (capturing 

only short memory), while shock persistence is infinity in an I(1) process with no mean reversion, whilst 

0<d<1 shocks die out at a slow hyperbolic pace.  

 

Therefore, to determine the long memory effect in volatility, Baillie et al. (1996) presented the fractionally 

integrated GARCH model (FIGARCH), which permits a hyperbolic decay of the coefficient, 𝛽𝑗, that is 

positive, summable and fulfils the unit root requirement. Chung(1999) identified and argued that Baillie’s 

method of parametrization of FIGARCH model may have been specification problem resulting in difficult 

interpretation of the estimated parameters. The fractional differencing operator applies to constant term in the 

mean equation and not in variance equation. Bollerslev and Mikkelsen (1996) expand the FIGARCH process 

to FIEGARCH in order to handle asymmetries between positive and negative shocks, known as the leverage 

effect. This corresponds to Nelson’s (1991) exponential GARCH model, which allows for asymmetry.  
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The FIEGARCH (p,d,q) model is given as, 

 

ln(ℎ𝑡) =  𝜔 + ∅(𝐿)−1(1 − 𝐿)−𝑑[1 + 𝛼(𝐿)]𝑔(𝑧𝑡−1) … (5.36) 

𝑔(𝑧𝑡−1) = 𝜃𝑍𝑡 + 𝛾[|𝑧𝑡| − 𝐸|𝑧𝑡| … (5.37) 

 

𝜃𝑍𝑡 is the sign effect and 𝛾[|𝑧𝑡| − 𝐸|𝑧𝑡| is the magnitude effect. The roots of ∅(𝐿) and 𝛼(𝐿)  

 

In the lag operator L, the roots are auto regressive polynomial and moving average polynomial. In case of d=0, 

the FIEGARCH model reduces to EGARCH proposed by Nelsen (1991), while, when d=1 the process 

becomes an integrated EGARCH process (IEGARCH). Bollerslev and Mikkelsen (1996) provided evidence 

for the effectiveness of QMLE when used to estimate the FIEGARCH process parameters.  

 

5.2.4 Copula models 

 

Copula, a joint distribution function, is made up by two marginal distributions, say, ƒ(x) and ƒ(y) integrated 

into a copula function C(ƒ(x),ƒ(y)|¥), where ¥ is a set of data that is available at t-1point in time.  

F(x) denotes the marginal distribution of a variable x, while F(y) denotes the marginal distribution of a variable 

y. If the joint distribution of x and y is G(x,y), then the copula function C for every (x,y) is as follows: 

 

𝐶(𝐹(𝑥), 𝐹(𝑦)) = 𝐺(𝑥. 𝑦) … (5.38) 

 

In financial time series data, however, changes in a variable is always dependent on changes in others. 

Therefore, a conditional parameter is used to include the conditionalities, where F1|Ω and F2|Ω signifies the 

marginal distribution of x and y, dependent on Ω. As a result, the copula function is stated as follows:  

 

𝐹1,2|𝛺(𝑥, 𝑦|𝛺) = 𝐶( 𝐹1|𝛺(𝑥|𝛺), 𝐹2|𝛺(𝑦|𝛺)|𝛺) … (5.39) 

 

This bivariate distribution does not have to be normal; it can be represented by several copulas from the copula 

family. Gaussian copula and Student t distributions, both of which are classified as elliptical copulas, are two 

of the most well-known copulas. In addition, the research uses three prominent Archimedean copulas that are 

Gumbel copula. Clayton copula, and Frank copula. All of these copulas represent various sorts of tail 

dependence, allowing for the simulation of a wide range of dependent structures.  
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1. ELLIPTICAL - GAUSSIAN COPULA  

The Gaussian copula, whose distribution is symmetric, is the simplest fundamental copula and is represented 

as follows: 

∅𝑝(∅−1(𝑥), ∅−1(𝑦)) =  ∫ ∫
1

2𝜋(1 − 𝜌2)

∅−1(𝑦)

−∞

∅−1(𝑥)

−∞

𝑒 ∫{−
𝑠2 − 2𝜌𝑠𝑡 + 𝑡2

2(1 − 𝜌)
}𝑑𝑠𝑑𝑡 … (5.40) 

 

Here, ∅−1 = inversion of the standard normal distribution's cumulative distribution function (cdf) 

∅𝑝 is the cumulative distribution function of a two variate normal distribution 

𝜌 is the Pearson correlation.  

 

Tail dependence (left/right) does not exist in Gaussian copulas. 

 

2. ELLIPTICAL - STUDENT T COPULA 

The student t-copula is represented as below: 

 

𝐶𝑑
𝑇(𝑢; 𝑣; Σ) =  ∫ … 

𝑡𝑣
−1(𝑢1)

−∞

∫
𝜏 (

𝑣 + 𝑑
2 )

𝜏 (
𝑣
2) √(𝜋𝑣)𝑑|Σ|

𝑡𝑣
−1(𝑢𝑑)

−∞

 (1 +
𝑥′Σ−1𝑥′

𝑣
)−

𝑣+𝑑
2 𝑑𝑥 … (5.41) 

 

Here, 𝑡𝑣
−1 is the inverted cumulative distributed function of a standard Student’s t-distribution with v degrees 

of freedom, Σ(𝜌𝑖𝑗)𝑖,𝑗=1,…,𝑑 is a dispersion matrix. The Student t distribution is symmetric and a bell shaped 

quite similar to gaussian; however, it has heavier tails and is prone to producing values that fall far from its 

mean.  

 

3. ARCHIMEDEAN - CLAYTON COPULA 

Archimedean copulas allow modelling dependence structures of distributions in arbitrarily high dimensions 

with the help of only one parameter. These copulas can be defined as: 

 

𝐶(𝑢1, … … , 𝑢𝑑; 𝜃) =  𝐹(𝐹−1(𝑢1; 𝜃)+. . +𝐹−1(𝑢𝑑; 𝜃); ∅) … (5.42) 

 

Here, F is the generator function of the copula. It is a continuous function but strictly decreasing on [0, 𝐹−1(0)]. 

𝐹−1 is the pseudo inverse of the function F.  
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A table on the generator function and its inverse along with the parameters is represented below: 

 

Table 5.1: Generator functions and parameter range of Archimedean Copulas 

COPULA 

 

GENERATOR FUNCTION (∅) GENERATOR FUNCTION 

INVERSE (∅−𝟏) 

PARAMETER RANGE 

CLAYTON (1 + 𝜃𝑡)−1/𝜃 1

𝜃
(𝑡−𝜃 − 1) 

𝜃 ∈ [−1, ∞){0} 

GUMBEL 1 − 𝜃

exp(𝑡) − 𝜃
 log (

1 − 𝜃(1 − 𝑡)

𝑡
) 

𝜃 ∈ [−1,1) 

FRANK 1

𝜃
log (1 + exp(−𝑡) (exp(−𝜃) − 1)) − log (

𝑒𝑥𝑝(−𝜃𝑡) − 1

𝑒𝑥𝑝(−𝜃) − 1
) 

𝜃 ∈ 𝑅{0} 

Source: Copula methods in finance by Cherubini, Luciano & Vecchiato 

 

Embrechts et al. (2005) suggested the use of Clayton copula which incorporates the lower tail dependence and 

Gumbel copula that incorporates the upper tail dependencies.  

 

The clayton copula is represented as below with dependence parameter 𝜃 ∈ (0, ∞), 

 

max [(𝑥−𝛼 + 𝑦−𝛼 − 1)−
1
𝛼, 0] … (5.43) 

 

Here, 𝛼 is the parameter of a copula, 

The variables x and y have marginal distributions of ƒ(x) and ƒ(y), respectively. 

 

The lower tail dependence (𝜆1) is transformed as 2−
1

𝛼 (when, 𝛼 = 0 signifies absence of tail dependence). 

Below is the diagrammatic representation of the Clayton copula.  
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Figure 5.5: Clayton copula 

 

Source: Copula methods in finance by Cherubini, Luciano & Vecchiato 

 

4. ARCHIMEDEAN - GUMBEL COPULA 

The Gumbel copula is represented as below with dependence parameter as 𝜃 ∈ [0, ∞).  

 

𝐶(𝑥, 𝑦|𝛺) = exp {−[(− 𝑙𝑛 𝑥)𝜃 +  (− 𝑙𝑛 𝑦)𝜃]
1
𝜃} … (5.44) 

Here, exp - exponential function, ln - natural logarithm. Maximum dependencies are achieved when 𝜃 → ∞, 

while upper tail dependence is generated when 𝜃 > 1. The lower tail dependence (𝜆𝑢) is normalized as 2 −

2
1

𝜃. Shown below is the diagrammatic representation of the Gumbel copula: 

 

Figure 5.6: Gumbel copula 

 

Source: Copula methods in finance by Cherubini, Luciano & Vecchiato 
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5. ARCHIMEDEAN - FRANK COPULA 

The Frank copula with parameter 𝜃 ∈ 𝑅{0} is represented as below: 

 

𝐶𝛼(𝑢, 𝑣) =  −
1

𝛼
ln (1 +

(𝑒−𝛼𝑢 − 1)(𝑒−𝛼𝑣 − 1)

𝑒−𝛼 − 1
) … (5.45) 

 

Here, ln is the natural logarithm and 𝛼 ∈ (−∞, ∞)/{0}. The following figure shows a diagrammatic 

representation of a frank copula.  

 

Figure 5.7: Frank copula 

 

Source: Copula methods in finance by Cherubini, Luciano & Vecchiato 

 

Conclusion –  

Overall, this chapter discusses various methodologies used for research in the study starting from exploratory 

data analysis to calculating the beta values, correlation and normality. Further, causality test, i.e., Granger 

causality is carried out followed by the ARCH and GARCH family models such as exponential GARCH, GJR 

GARCH, asymmetric power GARCH, univariate fractionally integrated volatility model – FIEGARCH. 

Further, in order to study the associations between sectors copula models are used – elliptical and archemedian 

copulas.   

 

  


