
CHAPTER IX

OH A PROBLEM OF' TRIMMEST

~ i ^T. Hieminen posed the following question in
his paper,

If T is a hounded operator on a Hilbert space 
H, the spectrum of which is a subset-of the set S = ^°C ; |°c| = 1^

••"I

and IJR^II <| |«c| - 1 J” on the resolvent set, does it follow 
necessarily that T is unitary ?

2)William. F. Donoghue Jr. answered this question 
affirmatively in the form of the following theorem:

THEOREM 9.A. The following' three classes of bounded operators 
Oh' b Hilbert space H are identical: -

(I) The unitary operators ;
(II) The operators T for which

(a) T"^ exists and is everywhere defined and 
||Tx|| > [|x(l for every x 6 H and

(b) W(T) is a subset of the unit disc';
(III) The op er at orb T for which

(a*) 0 is. in the resolvent set and ||R0H < 1 and 

(b ) for an unbounded sequence of numbers fn > 1,
HM 2 (fn - D"1 i£ I«1 = fn

l) T. Nieminen [l7j 2) W. F. Donoghue Jr. [?}
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Combining this theorem of W. F. Donoghue Jr , 
with S. K. Berberian’s result that a unitary operator tJ 

is cramped if and only if 0 & C1(W(U)), we immediately 
get the following theorem for a subclass of unitary 
operators:

THEOREM 9.1. The following two classes of bounded operators 
on §. Hilbert space H are identical:

t. ' - .. . ............. . , .,
(I ) The unitary operators with cramped spectrum ;
(II*) The operators T for which

(a) HTxH > ||x|| for every x 6 H and

(b) 0 & C1(W(T)) and W(T) is ^ subset of the unit disc*

We give a new and simple proof of this theorem 
in this chapter. The significance of the proof lies in the 
fact that it is not based on the ’Spectral Integral Theoiy’ 
where as the proof of theorem 9.1 leans heavily on the 
’Spectral Integral Theory’*

To prove the theorem, we need the following lemma 
whose proof is obvious.

'LEMMA' 9.1. Let' T be an operator. Then & non-zero vector 
x is a proper element of T jLf and only if | (Tx , x)| = |lTxi.|lx|.
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PROOF'OF'THEOREM 9.1:' The fact that (I*) =* (II*) is

obvious if we take Berberian*s result into consideration.

To' prove (n')=^ (I*)

Since 0 t C1(W(T)), T“^ exists and is everywhere 
defined. The relation s(T)"S S(T) ^Cl(W(T)) and the 
hypothesis on C1(W(T)) together imply that if =c e s(T), 
then |«C|' < 1 i.e. if p 6 sOT1)’, then jp| > 1....... (9.l)

As llTxll > {]x|| for all x 6 H, we have 
||T“’1x{| £ ||x[l for all x 6 H i.e. IjT-1!) < 1. This shows 
that if p 6 sCT”1), then |p f < 1 . ....(9.2)

It follows from (9.1) and (9.2) that s(T_1) 
and consequently s(T) is a subset of the set S = \ < ; J=c| = l| 
and !]T*-1|| » [IT*-1!! = 1.

Ifow, if T = UR is the polardecomposition of T, 
then f]Rx|| = I|Txf| > |]x|| for all x 8 H. Since R is 
positive-definite, this implies that (x , x) £ (Rx , x) 
for all x 6 H. Also, it follows from the relation 
It*"1!! = 1 * Ir"1!! that 1 S s(H"1) and hence 1 6 s(R) = a(R). 
As the property of unit aridity oi* positivity of an operator 
T is preserved under *-isomorphism, we may assume that 
i e p(m) [ej.
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Consider the two subsets L and M of H 

defined by the relations

I* * ; Rx = x } and M = | x ; |lTx|f = Hx|l^.

Obviously, L is a non-empty closed linear 

subspace of H. Now-if x 6 L, then [jx|j = \\Rx\\ = ||Txf| i.e. 
x G M. Thus LCM. Conversely, if x G M, then HxfJ = [|Tx|l = ||Rx||. 
The relation M2 = (x , x) < (Rx x) < ||Rx|.|lx|| = I|x|2 

implies that (Rx , x) = |jRx|l.|lxIJ i.e. x G L by lemma 9.1 i.e.
M S:L and hence M = L, Thus, to complete the proof, it 
remains only to show that L = M = H or in other words
l » { e}. i

Assume, to the contrary that Then
is invariant under T. Because, otherwise, we would have 
(Ty , y) = © for some unit vector y 8 L , which contradicts 

the hypothesis that 0 jt Cl(W(T)). Hence, if Tx be the 
restriction of T to L , then IjT-jxil > \\x\\ for all x G l\
Since T 1 exists, T"1 exists and fjTj-^xlj < |jx|| for all x 8 L*

i,e# ^l1^ < This implies that if < e sCT^1), then 
|°C| < 1 and consequently, if p 6 s(T ), then. |p.f.. > :1., This 
contradicts the relation sGT-jJ) Cs(t), hence £ = {e} i.e,

L = H. As 0 £ ei(W(T)), T has a cramped spectrum by 

Berberian’s result. This completes the proof of theorem.


