 CHAPTER _IX

ON A PROBLEM OF T NIEMINEN

-

T. Nieminenl)poséd the following question in

his paper.

If T is a bounded operator on a Hilbert space
H, the gpectrum of which is a subset  of the set S = {x s x| = 1}
and IR < | l«] -1 ]”l on the resolvent set, does it follow

necessarily that T is unitary ?

William. F. Donoghue Jr.z) answered this question

affirmatively in the form of the following theorems:

THEOREM 9.4, ‘The following three classes of bounded operators

on & Hilbert space H are identicals-

(1) The unitary operators 3

(1) The operators T for which

(a) ™1 exists and i everywhere defined and

lexll 2 Izl for every x € H and
(b) W(T) is a subset of the unit dise;

(1III) The operators T for which

(a') 0 is in the resolvent set and [R, | < 1 and

' LT v ¥ ~ .
(b ) for an unbounded sequence of mumbers f, > 1,

IRl & (£, - D78 1F || = £,

-

1) T. Nieminen(17) 2) W. F. Donoghue Jr. |7)
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Combining this theorem of W. F., Donoghue Jr ,
with S. K. Berberian's result that a unitary operator U
is eramped if and only if 0 £ CL(W(U)), we immediately
get the follewing theorem for a subclass of unitary

operators:

THEOREM 9,1, The following two classes of bounded operators
on & Hilbert space H are identical:

' e e
(x) The unitary operators with cramped spectrum ;
(") The operators T for which

(a) =l > =l for every x € H and
(b) 0 £ GL(W(T)) and W(T) is a subset of the unit disc.

We give a new and simple proof of this theorem
in this chapter. The significance of the proof lies in the
fact that it is not based on the 'Spgctral Integral Theory!
where as the proof of theorem 9.2 leans heavily on the

'Spectral Integral Theory',

-

To prove the theorem, we need the following lemma

wvhose proof is obvious.

s -

x is a proper element of T if and enly if |(Tx , x)| = Txl.lx{.
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e .. 1 !
PROOF OF THROREM 9,1: The fact that (I ) =% (II ) is

abvi@us if we take Berberian's result inte consideration.
[ - '
To prove (IT') = (1)

Since 0 £ CL(W(T)), ™1 exists and is everywhere
defined. The relation s(T) = 2(T) =C1(W(T)) and the
hypothesis on CL(W(T)) together imply that if « € s(T),
then |«| <1 i.e. if B € s(T™1), then |B] 3 1. ...eu(9.1)

As lIxl] > lxll for all x € H, we have
BTzl £ Izl for a1l x € H i.e. iz=l} < 1. This shows
that if B € s(T™1), then |B] < 1 . . eee(9.2)

It follows from (9.1) and (9.2) that s(T™1)
and consequently s(T) is a subset of the set 8 = &% s || = l}
- k.
and [zl = ™2 = 1.

Now, if T = UR is the polardecomposition of T,
then [Bx|l = [Txf| > fixl| for a11 x ¢ H, Since R is
positive-definite, this implies that (x , %) & (Rx , x)
for all x € H, Also; it follows frem the relation
T I R that 1 € s(B™1) and hence 1 € s(B) = a(R).
As the property of unitarility or positivity of an @pergtor
T is preserved under *-isOmorphism; we may assume that

1 ¢ p(R) (é).
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Congsider the two subsets L and M of H

defined by the relationg
L = {x‘; Rx = x } and M cix s ITxll = Hxﬂ}.

Obviously, L is a non-empty closed linear
subspace of H. Now-if x € L, then [zf| = IRz = |Tx]] i.e.
Izl = Ir=l.
=l

‘implies that (Bx y x) = fRxl].lx]] i.e. x € L by lemma 9.1 i.e.

x € M, Thus L € M. Conversely, if x € M, then |xl
The relation [zI® = (x , 2) £ (Rx % x) & IRz, fx]

i

i

M =L and hence M = L, Thus;‘ to complete the proof'; it

remains-only to show that L = M = H or in other words

LL-‘-:{G}. ’ |

Assume, to the cont”z;ary that 'LL # Y\e}. ;Then L‘L
is invaxjianpiunder T+ Because, otherwise, we would have |
(Ty , ¥) = 0 for some wnit vector y & I;\‘ s which contradicts
the hypothesls that 0 £ CL(W(T)). Hence, if T, be the
restriction of T to ﬁL; then-ﬂrlxﬂ > x|l for all x € ﬁf.
Since T 1 exists, Til exists and }IT{JXH < Izl for a11 =x € LL

iees nT"lu < 1. This implies that if « ¢ s(T‘l), then

|[«] < 1 and consequently, if 8 € s(T ), then, lﬁl >:1. This
contradicts the relation stT,) CS(T) hence L {o} i.e.
L =H. 23 0 £ C1(W(T)), T has a cramped spectrum by

B-erberian's result. This completes the proof of theorem.



