CHAPTER I

INTRODUCTTION

1.1. . The present thesis is devoted to the study of
Eertain problems relating to linear operators and
partieulérly hyponermal.operatprs in a Hiibert space.

As the titlp suggests; this chapter is of introductory
character and seeks to give a brief surveﬁ of problems
dealt with in the thesis. It will be convenient to begin

by defining certain notions which we shall constantly usee.

1.2, DEFINITIONS AND ' NOTATIONS

Let X be a complex vector space. X is called
an INNER: PRODUCT SPACE if there is defined on X x X

a complex—valued function (x 4 y) (called the inner product

of vectors x and y) having the following propertiess

1, (x +57 , Z)w=,‘xﬁ;;5) +(y,2)y, 26X

2 (x,y) =(F, x) (the bar denotes the complex
conjugate)

3, («x,35) =z, y), < scalar

4, (x‘yx) >0, when x #6 .

If X is an immer-product space, then the

non-negative real number vY(x ; x) has the properties of a



. norm and X becomes a normed vector space with the norm

xll of a vector x defined as |zl = V{x 5 %) »

An inner product space X is called a

HILBERT SPACE if it is complete in the metric topology
associsted with the norm. If X 1is a finite~dimensional
inmer-product space; then it is called a

EUCLIDEAN SPACE (or UNITARY SPACE). Through out the

thesis; H will denote a Hilbert space. The Roman letters
X 47 s 2 etec. with or without suffixes will be used to
denote the elements of H, The Greek letters < 5 B 4 Y etc.
will denote complex numbers, A vector x € H will be called

a UNIT VECTOR if [x] = 1.

A mapping T ¢+ H- H is said to be linear in

”~

¢ase o0 .
T(«x + gy) = «(Tx) + g(Ty)

for all vectors x s y and complex numbers € o Bo T is

said to be CONTINUOUS at a point x € H if for-every

convergent sequence'{xn} with limit x, 1im Tz, = Tx.
oo

T is sald to be continuous on H if ;t is continuous at
every point of H; A mapping T of H into H 1s said
to be bounded if there exists a constant M J O such that

lrx]] & Mllx]] for a11 x € H, x # 6. The smallest number
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M satisfying the above inequality is called the norm of
T and is denoted by [Tle Thus

Izl = 288 el

x#6 X

It is easy to prove that a linear mapping T is continuous
if and only if T is bounded. A continuous (or bounded)

linear mapping of H intoe H is called an OPERATOR.

If T is an operator on H, then there exists a
unique operator T*, called the ADJOINT of T, on H such
that (Tx y y) = (x , ') for all x ; y ¢ H.

Tt is not difficult to see that any two
eperators-Tl and Tz defined on a Hilbert space H can

be added and multiplied in an obvious way. That is
(T, + Tolx = Tqx + Tox 'y x € H
(,)x = T9(Tyx)y x € H

In fact, the set of all operators on a Hilbert space forms

an algebra. '

The subspace of H on which T is defined is
called the DOMATN of T and is denoted by D(T). The
RANGE R(T) and the NULL-SPACE N(T) of an operator T



are the gets defined by the relationss
- R(D) ={y s Tx
and  N(T) ={x s Tx

1}

y  for some x € D(T)}
o}.

The smallest positive integer. nf,' for which

it

N(T®) = N(T'L) is called the ASGENT of T, T is sald to
be ONTO if R(T) = H, T is said to be DENSE in H if
C1(R(T)) | i.es the closure of R(T)] = H and it is
ONE-TO-ONE if Tx = 6 implies that x = 6., T is said to
be REVERSIBLE if it is one-to-one and it is said to be
INVERTIBLE if it is both one-to-one and onto. .

1.3, THE SPECTROM OF AN OPERATOR T,

The operator which maps every element =x into

x is called the IDENTITY OPERATOR and is denoted by I.

Thus Ix = x for every x € He, The POINT SPECTRUM p(T),

the CONTINUOUS SPECTRUM c(T), the RESTDUAL SPECTRUM r(T)
and the APPROXIMATE POINT SPECTRUM a(T) of an operator

T are defined as follows:

p(T) ={°( $ T - «<I is not one-to-onek;
e(T) = {cc 3 T - «I is one-to-one and R(T -~ «I)
is dense in If, but not equal to H} y
r(T) = {cc $ T - «I is one-to-eme and CL(R(T - «I) )# H},
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a(T) ={°( $ there exists a sequence {x,} of unit
vectors such that [(T - %I)xnﬂ - O} .

The sets p(T), e¢(T) and r(T) are disjeint
and their union is called the SPHECTRUM of T and is denoted
by s(T). Thus

s(T) = p(T) U o(T) U =(T),
Equivaléntly, ' .
s(T) = {« 3 T = «T 1s not invertible).

If T is a bounded linear operator, then it is
known that s(T) is a non-empty closed bounded set. The
complement of the set s(?) is. ecalled the RESOLVENT SET

of T and is denoted by _(T). The convex hull of the

set s(T) is denoted by Z(T) i.e. Z(T) is the intersection
of all convex sets which contain \s,(‘T). If < £ s(T), then
(T - <D™ exists and is denoted by Ry. It is not
difficult to see that p(T) S a(T) =s(T). Every point «
of the set p(T) 1is called a PROPER-VALUE of T. For a
proper-value « of T, we defin the <—th PROPER SUBSPACE

NT(x) of T by the relations

Nf(%) = {x 3 Ix = Xx}.

If x € Np(<), then % 1is called a PROPER-ELEMENT of T

corresponding to the proper-value « of T,



A family of closed linear subspaces is
said to be TOTAL if the null-vector is the only vector

orthogonal to every subspace belonging to the family.

An operator T is sald to have a PURE -POINT
SPECTRUM if the proper subspaces of T constitute a total
family. '

1.4. THE NOUMERICAL RANGE OF AN OPERATOR T

The NOMEHICAL RANGE W(T) of an operator T

is the set of all complex mumbers (Tx , x) such that

fixll = 1. Tt is a convex set in the complex plane and its
closure C1(W(T)) contains the set Z(T), the convex hull of
s(T) as a subset i.e. I(T)& CL(W(T)).

A point £ of a non-empty convex set S 1is

said to be an EXTREME POINT of S, if no line segment

joining any two points of S, each different from «, contains
«, We denote by E(S), the set of all extreme points of S,
Clearly, B(2(T)) € s(T) and the convex closure of E(S(T))

is exactly ZkT).

Following C. Re Putnaml), we shall say that a

complex number « will belong to the INTERIOR of C1(W(T)),
if « is in C1(W(T)) and one of the following three

1) C, R, Putnam [2@]

Wote: Numbers in square brackets [ ] in the body of the thesis
refer to the corresponding item listed in the
bibliography at the end of the thesis. )



conditions holds:

(1) if 61(W(T)) is two-dimensional, them X dees mot
lie in the boundary of CL(W(T)) ;

(1i) if C1(W(T)) is a line-segment, then < is not an
end-point 3

(1ii)  CL(W(T)) consists of < alone.

We sghall call with T, Yoshinal); a poimt « of
a closed bounded set S a SEMI-BARE POINT of 8, if there

exists a cirele G through « such that S 6 C ={«|. The

symbol BS(S) will denote the set of all semi-bare points
of S.

I e Von~Neumann2) introduced the notion of a

SPECTHAL SET. According to hiﬁ, a closed proper subset S

of the complex plane is a spectral set for an operator T if
laCT)) £ sup-{1u(x)| s < €8 }

for every rational function u of <« having no poles on S,

The distance between.a point < and -a'set 8 is

denoted by d(« , S),.

1.5. DIFFERENT TYPES OF OPERATORS

An operator T is said to be POSITIVE-DEFINITE

if (Tx 4y x) 2 0 for all x € H, The positive-definiteness

1) T. Yoshino [3;] 2) J.Von-Neumann téz s DD 446;]
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of T is also expressed in symbol by T > 0. T is said

to be SELF-ADJOINT if T = T*, BNITARY if T T* = 7% = I,
NORMAL 1if T T* = r¥r, HYPONORMAL if T'T - T T* > o,
Equivalently, T is hyponormal if‘HT*xH < lrxll for all

x € H, T is said to be QUABT-WORMAL ir (T™T)T = T(T*D),
SEMI-NORMAL if either T or T  is hyponormal. We say
that T is an OPERATOR ©F 0Lass (W)  if Jirx|® < |IT%x] for

all unit vectors x €.H. Given any bounded sequence of
vectors {xng if the sequence {Txn} has a convergent
subsequence, then T is said to be a EOMPACT OPERATOR, If

there exists a Hilbert space H' ’ containiqg H.as a
subspace and a normal operator B on H' such that Tx = Bx

for x € Hy then T is said to be a SUBNORMAL OPERATOR,

We have the following proper inclusion relation for classés
of operators: A
Normal & Quasi-normal = Sub~normal <= Hyponormal & Operator

of class (W),

An operator T is said to be ISOMETRIC' if
Itxll = Ixll for every x & H., Tt is known that T is isometric
if and only if T¥T = T, T is said to satisfy the condition
Gl;'if the:rresolvent of T has exactly first order rate of

growth with respect to the spectrum of T i.e.

Bl & atey s L or « 6 pCT).



A unitary operator U is sald to be CRAMPED

if its._spectrum is contained in an open semi-circle
ie , o .
e"” 3 0, <8< B+ T of the unit circle.

For any operator T; there exists two self-adjoint
operators A and B such that T = A + iB, The self-adjoint

- *- ¥
operators A and B are given by A4 = 2’; Lyp= & giT )

The representation of T in the form T = A + iB is called
the CARTESIAN DECOMPOSITION of T. If T is

positive-definite, then there exists a pesitive~defiﬁite
operator R such that R% = T, The operator R is called the
POSITIVE SYMMETRIC SQUARE ROOT of T. Given an operater T,

there exists an isometric operator U and a positive-definite
operator R such that T = UR, Indeed, R is the positive
symmetric séuére root of the positive~definite operator T*T.
The representation of an operator T in the form T = UR,
where U is isometric and R is positive-definite, is called

the POLARDECOMPOSITION of T. If T is invertible, then U

is unitary and R is invertible.

Finally, a closed linear subspace L is saild
to be INVARIANT under an operator T if Tx € L for all x € L.
In this case, we denote the restriction of T to L by I/L.
Thus T/L is a mapping from L to.L such that (®/L)x = Tx
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for x € L, If a closed linear subspace L and its
_ N _
orthogonal complement L  are both invariant under T,

then L 1is said to reduce T.

1.6, The basic nature of hyponormal operators

was noticed for the first time in the year 1950 by

P. R. Halmos'). He observed that if an operator T has a

normal extension, then T%T > Tf. Taking his clue from this

observation, he called an operator T subnormal if ¥ 2T T*.

What ‘Halmos called a sﬁbnormal operator came to be known

as a hyponormal operator later on. Using the concept of trace,

Halmos also proved that the notion of hyponorma;ity coinéides’

with that of normelity on a finite dimensional space, However;'

hyponormal operators exist in large numbers to justify a

study of their properties. The study of hyponormal operaters

can be dtvided broadly in three parts namely

(1) study of those properties which are similatr to the
properties of normal operatorss

(41) investigation of sufficient conditions under which a
hyponormal operator is normal and

(1ii) study of their general properties.

It is known that for an invertible normal operator N,

1) P. B, Halmos [10)
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its inverse N1 is also normal. We obtain, in chapter IT,
a similar result pertaining to hyponormal operators.

In fact, the analogous result for hyponormal operators is
deduced as a corollary to the following theorem proved in

chapter IT :

(1.1) THEOREM. An operator T is hyponormal if and only
if there exists an operator V with D(V) = R(T) such that

T = VT gnd |Iv] = 1.

We also prove in chapter IT the. following

theorem:

If T is hyponormal, then the ascent of T is

P i ——— B —— o ——  O—— %

(1.2) THEOREM.

0 or 1.

‘It will be observed that this theorem extends

t6 hyponormal operators a property possessed by normal

operators.

Using the notion of semi-bare points of a closed
bounded set, Takashi YOshinol) proved that for a hyponormal
operator T, Bg(s(T)) N r(T) = B, We extend this result to
any operator satisfying the comditien G4 in the form of

the following:

1) Takashi Yoshino [81]
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(1.3) THEOREM. If T is an operator whose resolvent has
first order rate of growth (i.e. T satisfies the condition

Gy)y then By(s(T)) A »(T) = 2.

In view of the fact established in chapter III,
that a hyponormal operator satisfies the condition Gy , it
follows that the result of Ti Yoshino is a special case of
our theorem. A second corollary of our theorem is the

following:

If T satisfies the condition 6; and < is

an isolated point of s(T), then <« € a(T),

"It may be . noted here that if « is an iselated
point of s(T); when T is hyponormal, then} in accordance

with a result proved by J. G. Stampflil), < 6 p(T).

It is known that the product Tq T of two
hyponormal operators Tl and T2 need not be hyponormal even
if they commute. In view of this situation, it seems to De
quthwhile to investigate cenditions under which the product
of two hyponormal operators is also hyponormal. We prove in

chapter II the follewing theorem in this direction:

(1.4) THEOREM, If Ty and Ty are two hyponormal operators
. * ‘ N oL
guch that Tl T2 = Tg Tl s then Ty T is hyponormal.

1) J. G. Stamprli [26]
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T, ’Andé’l)‘," S. K. Berberian®) and J.G.’StampfliS)

proved independently of each other that a compact
hyponormal operator is necessérily normal. We generalise

this result in the following form:

(1.5) THEOREM. If T ig a hyponormal operator such that

TP is compact, where p is an integer > 1, then T is normal

and hence compact.

We also give in chapter II a different and

simple proof_of the follewing theorem, which was proved

by S. K. Berberiang). ’

(1.6) THEOREM. If T is hyponormal, then (T =p .

The relation I(T) < C1(W(T)) is true for every

bounded operator T, M. H, Stoneé)

was first te prove that
if T is mermal, then Z(T) = CL(W(T)), S. K. Berberian®
conjectured that this result is also true for hyponormal
operators. This conjecture of Berberian was proved to be
true only recently by C. R. Putnams); Je G Stampf1i7),
T. Yoshino and T, Saitog) independently of each other, We

give in chapter III another proof of the same result namely

(1.7) for & hyponormal gperator T, Z(T) = CL(W(T)).

1) T. Ando [1] 2) S. K. Berberian [3] 3) J.G.Stampfli {26
4) M. H, Stome [29]  5) 8. K, Berberian {4¢) 6) C.R.Putnem [21]
7) J. G. Stampfli (27} 8) T.Yoshino and T. Saito (23]
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In the course of the proof of this result,

we are able to give a new proof of the following result:

(1.8) THEOREM. If T is hypomormal and s(T) lies on
the unit cirele, then T is unitary.

Recently, C. R. Putnéml)

proved the spectral
relations between a semi-normal operator T and its
cartesian decompositions - A and B, His results ares

s(8) = JRet 5 < & s(1)}

s(B) = {mx; «e s(T)} .

Actually, C. R. Putnam made use of the
18pectral Integral Theory'! in proving these results. In
chapter IV, we prove these relations by using only
elementary methods without resorting to the 'Séectral
Integral Theory'. In addition to this, we also prove in

chapter IV the following theorem:
(1,9) THEOREM., If T = A + iB is hyponormal, then'

(1) p(4) ={Reoc ;s X € p(T)}, p(B) = {Imec 3 < € p(T)} R

(11)  Wp(s)= UPNp(«) for all « € p(T) and ReX = s ,
Np(t)= U@Np(x) for all < € p(T) and ImX = B.

(iii) If < = s +it (s and % being real) € p(T), then
Np(«) = Np(s) A Np(t).

1) C. R. Putnam (21}
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The result that Z(T) = C1(W(T)) for a

hyponormal operator T can aléo be derived as a corollary
of the theorem (1.,9). As a second corollary of this
result we show that for a hyponormal operator T,
E(W(T)) = p(T), which extends to hyponormal operators a
result proved earlier by C. R. Mac@LUERl)(and consequently
that of €, H,. Mengz)) regarding extreme points of the

numerical range of a normal operator.

We A. Beck and C. R, Putnama) have proved

the following theorem:

(1.10) THEDREM, Let N be a normal operator. If AN = N'A

for an arbitrary invertiblé operator A = UR, for which U
is cramped, then N = N i.es N is gelf-adjoint.

8. K. Berberi g4) has given an abstract proof
of this theorem for any Bf—algebra and C. A, MbCarthyS) has
given another proof of a glightly improved version of

this result,

In chapter V, we extend this result to

hyponormal operators under slightly more restrictive conditions

on A, In fact, we prove the following:6>

1) C. R, MacCLUER (14] 2) C. H, Meng '[_16] 3) g: é: Sﬁgﬁmaﬂd 2]

4) S. K. Berberian (5] 5) C. A. MeCarthy[15) 6) I.H.Sheth (25]
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(1.11) THEOREM. Let N be & hyponormal operator. If

AN = N'A foF an arbitrary operator A, for wnich
0 £ C1(W(A)), then N is self-adjoint.

Now if 0 £ CL(W(A)), then A is invertible.
Also S, K. Berberian;) has proved that for such an operator
A, with polardecomposition-A = UR, U is cramped. Hence it
f&llows that the condition 0 £ C1(W(A)) is stronger than the

condition that U is cramped,

It is known that for any Hilbert space
(separable or nonseparable) a hyponormal operator with a pure
point spectrum is normal. In chapter VI, we examine the
question whether the hyponormality of T together with
s(T) = p(T) imply the normality of T and we;profe the‘fmllowing

two theorems in this respect:

(1.12) THEOREM, [Let T be a hyponormal operator with
congideration is separabla.
(1.13) THEOREM. If H is ponseparable then there exists a

non-normal hyponormal operator with s(T) = p(T).

In his paper [4); S. K. Berberian raised the

following question,

1) 8. K. Berberian [4]
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If T = UR is an invertible operator such :that

U is cramped, does it follow. that O £ CL(W(T)) ?

He proved that if, in addition, T is normal,
then the answer to the above question is in the affirmative.
We construct an example in chapter VII to show that there
exist invertible operators T with polardecompositien T = UR,
where U is cramped, such that 0 € C1(W(T)). We alsoe show
that the answer to Berberian's question is still in the
affirmative for certain special types of operators and more
particularly for hyponormal operators. In fact, we prove

the follewing three theorems in chapter VII:
(1.14) THEOREM., If T £ UR is an invertible hyponormal

~ P

operator such tHa¥ U 1§ ¢ramped, then O £ C1L(W(T)).

xxxxxx

(1315) THROREM, IF T = UR i an invertible operator guch
that U 1§ cramped; theh O £ CL(W(T)) provided that %(T) is &

spectral set for T.

(1.16) THEOREM. If H is finite dimensional, then there
exists an invertible operator T = BR guch that U is cramped
and O & W(T).

P. R, Halmosl) showed by means of an example

that the hyponormality of T does not necesgsarily imply that

1) P. B. Halmos Lm]
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T2 is hyponormal. But our investigation shows that the
situation with regard to the operators. of class (N) is
differentf,'v in that f@r every operator T of class (N), Tn\ is
alse of class (N) for every positive integer n. In fact,
we prove the following three theorems pertaining the

operators of class (N) in chapter VIII:

(1.17) Tﬁﬁbﬂm. If T is of class (W), j;he;g ™ is also

of class (N) for dvery pogitive integer n.

(1.18) THEOREM., If T is of class (N), then the agcent of
T is either O or 1.

(1.19) THROREM, If T is of ¢ gg (¥) and s(T) lies on the
unit oireid, then T 1§ wnltary. "

In answering the gquestion raised by T. Nieminenl,

2)

W, F. Donoghue Jr. proved- the followifg ‘theorems -

(1.20) ?’EE@RE&",’ The following three classes of beunded

operators on 2 Hilbert &pace H are identical:
(1) Thé unita¥y operaters;

(1) The operators T for which
(a) 71 2xists and i$ everywhere defined and [ITxl > l=l
for every x 6 H g_x_a_c_i_

T WS et S S——— it

1) T. Nieminen il‘?] 2) W. F. Donoghue Jr [7}
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(III)  The operators T for which

(a') 0 5§ % the resoivent set and [Boll € 1 and

(b') for an unbounded sequence of pumbers £, > 1,

Rl < (g, - D71 if [«| =5, )

Combining this theorem of We Fo Donoghue Jr.,
with the fact that a unitary operator U is cramped if and
only if 0 g C1(W(U)), which was proved by S. K. Berberianl)§

we immediately get the following theorem:

(1.21) THEOREM, The Following iwo classes of bounded
operators on & Hilbert space H are identical:

1 , e - oy
(1) The unitary operators with cramped gpectrum and

(1) The operators T for which
(2) [Irxll & Jlx|| for every x € H knd
(b) 0 £ CL(W(T)) and W(T) is p subset of the unit disc.

Bt Wh O ——————— Wn—  So——— Sou————

We give a new and simple proof of this theorem
in chapter IX, Our proof seems to have same interest in
view of the fact that it is not based on the 'Spectral
Integral Theory!, where as the proof of theorem (1.20) leans
on the 'Spectral Integral Theéry'.

1) 'S, K. Berberian (4]



