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1.1. The present thesis is devoted to the study of
certain problems relating to linear operators and

f

particularly hyponormal operators in a Hilbert space.
Is the title suggests.,- this, chapter is of introductory 
character and seeks to give a brief survey of problems 
dealt with in the thesis. It will be convenient to begin 
by defining certain notions which we shall constantly use*

1.2* DEFINITIONS AED ' NOTATIONS

let X be a complex vector space. X is called 
an INNER'PRODUCT ~SPACE if there is defined on X x X 
a complex-valued function (x , y) (called the inner product 
of vectors x and y) having the following properties*
1* (x +. y , z) = (x^, j, z) +.(y , z), z 6 X

• *v > '

2* (x , y) = (j , x) (the bar denotes the complex 
conjugate)

3. (°Cx , y) = «C(x , y), °C scalar
4* (x*, x) > 0 , when x ^ 6 .

If X is an inner-product space, then the 
non-negative real number V(x , x) has the properties of a
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norm and. X "becomes a no.rmed ■vector space with the norm 

flxfl of a vector x defined, as jjx|| = V'(x , x) »

An inner product space X is called a 

HILBERT SPACE if it is complete in the metric topology 

associated -with the norm. If X is. a finite-dimensional 

inner-product space, then it is called a 
EUCLIDEAN SPACE (or UNITARY' SPACE). Through out the 

thesis, H will denote a.Hilbert space. The Roman letters 

x , y , z etc. with or without suffixes will be used to 

denote the elements, of H*. The Greek, letters < , p , Y etc. 
will denote complex numbers. A vector x 6 H will be called 
a UNIT TEC TOR if ||x[| = 1.

said to be CONTINUOUS at a point x 6 H if for every

T is said to be continuous on H if it is continuous at 

every point of H, A mapping T of H into H is said 

to be bounded if there exists a constant M 0 such that 
|Txll § MM for all x 6 H, x / 0. The smallest number

A mapping T : S - I is said to be linear in

d. U V 1

T(<x + py) st °c(Tx) + p(Ty)

for all vectors x , y and complex numbers °C , p. T is

case i>':'
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It is easy to prove that a linear mapping T is continuous 
if and only if T is bounded.' A continuous, (or bounded) 

linear mapping of H into H is called an OPERATOR.

If T is an operator on H, then there exists a 
unique operator T*, called the ADJOINT of T, on H such 
that (Tx , y) * (x , T*y) for all x , y G H.

It is not difficult to see that any two 
operators T^ and Tg defined on a Hilbert space H can 
be added and multiplied in an obvious way. That is

(?! + Tg)x = T.jX + Tgx *| x 6 H

(T1T2)x * Ti(T2x), x 6 H.

In fact, the set of all operators on a Hilbert space forms 

an algebra.
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The subspace of H on which T is defined is 
called the DOMAIN of T and is denoted by D(T). The 
MMI B(T) and the TOLL-SPACE N(T) of an operator T
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are the sets defined by the relations:

R(T) ss { y ; Tx s y for some x G D(T) j 
and N(T) ={x ; Tx = 0 } .

The smallest positive integer n, for which 
N(Tn) = H(Tn+1) is called the ASCENT of T. T is said to 

be ONTO if R(T) = H. T is said to be DENSE in H if 
Gl(R(T)) jjl.e. the closure of R(T)J = H and it is 

ONE-TO-ONE if Tx = 0 implies that x = 0. T is said to 
be REVERSIBLE if it is one-to-one and it is said to be 
INVERTIBEE if it is both one-to-one and onto.

1.3. THE SPECTRUM OF AN OPERATOR T.

The operator which maps, every element x into 
x is called the IDENTITY OPERATOR and is denoted by I.
Thus lx *b x for every x 0 H. The POINT' SPECTRUM p(T), 

the CONTINUOUS SPECTRUM e(T), the RESIDUAL SPECTRUM r<T) 
and the APPROXIMATE POINT' SPECTRUM a(T) of an operator 

T are defined as follows:

p(T) « ; T - «CI is not one-to-one|,

c(T) = ; T - <1 is one-to-one and R(T - <E)
is dense in 1, but not equal to H } , 

r(T) = ; T - <=CI is one-to-one and Cl(R(T - <E) )£ h],
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a(T) there exists a sequence {x^\ of unit 

vectors such that |j(T - ‘COxJ - o] .

The sets p(T), e.(T) and r(T) are disjoint 
and their union is called the SPECTRUM of T and is denoted 
by s(T). Thus

s(T) = p(T) ¥ e(T) ¥ r(T).
Equivalently,

s(T) » (< ; f - <1 is not invertible] .

If T is a bounded linear operator, then it is 
known that s(T) is a non-empty closed, bounded set. The 

complement of the set s(T) is. called.the RESOLVENT SET
'i

of T and is denoted by /’(T). The convex hull of the 
set s(T) is denoted by 2(T) i.,e. S(T) is the intersection

of all convex sets which contain s.(T), If < £ s(T), then 
(T - °CI) 1 exists and is denoted by R^. It is not

"to 36© i/iisi* p(T) s.(T) 3(T) • IiaV’0x^r pojLrrfc °C
of the set p(T) is called a PROPER-VALUE of T. For a 

proper-value °C of T, we defin the °C-th PROPER SUBSPACE 
N^C^) of T by the relation:

%(«<) = (x ; Tx = °Cx ] .

If x 6 %(<), then x Is called a PROPER-ELEMENT 0f T

corresponding to the proper-value < of T*
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A family of closed linear subspaces is 

said to be TOTAL if the null-vector is the only vector 

orthogonal to every subspace belonging to the family.

An operator T is said to have a PUKE -POINT 
SPECTRUM if the proper subspaces of T constitute a total 

family.

1.4. THE NUMERICAL RAISE OF AN OPERATOR T

The HUMMiCiU' RANGE W(T) of an operator T 
is the set of all complex numbers (Tx , x) such that 
llxl = 1. It is a convex set in the complex plane and its 

closure C1(W(T)) contains the set 2(T), the convex hull of 
s(T) as a subset i.e. Z(T) Q C1(W(T)).

A point =C of a non-empty convex set S is 
said to be an EXTREME POINT of S, if no line segment 
joining any two points of S, each different from °C, contains 
°C. We denote by E(S), the set of all extreme points of S. 
Clearly, E(£(T)) C s(T) and the convex closure of S(2(T)) 

is exactly 2(T).

Following C. R« Putnam , we shall say that a 
complex number °C will belong to the INTERIOR of Gl(W(T)), 
if °C is in Cl(W(T)) and one of the following three

1) C. R. Putnam [2©]
Notes Numbers in square brackets [ 3 in the body of the thesis 

refer to the corresponding item listed in the 
bibliography at the end of the thesis.
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conditions holds*

(i) if Gl(W(T)) is two-dimensional, then °C dees not 
lie in the boundary of Cl(W(T)) *

Cii) if Cl(W(T)) is a line-segment, then °C is not an 

end-point ;
(iii) Cl(W(T)) consists of °C alone.

exists a circle G through < such that S 0 0 < j . The
symbol Bg(s) will denote the set of all semi-bare points 
of S.

SPECTEAL SET. According to him, a closed proper subset S 
of the complex plane is a spectral set for an operator T if

for every rational function u of < having no poles on S.

The distance between a point =C and ca set S is

We shall call with T. Yoshin©"^, a point °C of 

a closed bounded set S a SEMI-BARE P0IHT ©f s, if there

2)J* Von-Neumarm introduced the notion of a

denoted by d(°C , S).

1.5. DIFFERENT'TIPIS'OF OPERATORS

An operator T is said to be POSITIVE-DEFINITE 
if (Tx , x) > 0 for all x 6 H. The positive-definiteness

l) T. Yoshino [3lJ
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of T is also expressed in symbol by T > 0. T is said 
to be SELF-ADJOINT if T = T*, UNITARY if T T* = T*T = I, 
NORMAL if T T* *= T*T, HYPONORMAL if T*T - IT* > 0, 
Equivalently, T is hyponormal if ||T*x|l < ]lTx|j for all 
X 6 1, T is said to be QUASI-NORMAL if (T*T)T = T(T*T), 
SEMI-NORMAL if either T or T* is hyponormal. We say 
that T is an OPERATOR OF GLASS (N) if UTx||2 < J|T2xfI for 

all unit vectors x 6 03. Given any bounded sequence of 
vectors [xn| if the sequence has a convergent
subsequence, then T is said to be a COMPACT' OPERATOR. If 
there exists a Hilbert space H* , containing Has a 
subspace and a normal operator B on H* such that Tx = Bx 

for x 0 H, then T is said to.be a SUBNORMAL OPERATOR,
We have the following proper inclusion relation for classes 
©f operators:
Normal Quasi-normal Sub-normal Sr Hyponormal Operator 
of class (N).

An operator T is said to be ISOMETRIC' if 
||TxJ| — j|x|| for every x 6 I. It is known that T is isometric 
if and only if T*T = I. T is said to satisfy the condition 

G^, if therresolvent of T has. exactly first order rate of 
growth with respect to the spectrum of T i.e.

flBecll § d(°C, s(T)> for < 6 /’(T).
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A unitary operator B is said to be CRAMPED 
if its-spectrum is contained.in. an open semi-circle

; 00 < 0 < 8q + tt } of .the unit circle.

Eor any operator T, there exists two self-adjoint 
operators A and B such that T « A + iB. The self-adjoint

m 4. m* ~ T T *operators A and B are given by A » —g— ’ B = —gj— *

The representation of T in the form T = A + iB is called 
the CARTESIAH DECPMPOSITIGjf of T. If T is 
positive-definite, then there exists a positive-definite

o ;operator R such that R = T. The operator R is called the 
POSITIVE SYMMETRIC'SQUARE ROOT of T. Given an operator T, 
there exists an isometrie operator B and a positive-definite 
operator R such that T = DR, Indeed, R is the positive

Up,symmetric square root of the positive-definite operator T T. 
The representation of an operator T in the form T * DR, 
where U is isometric and R is positive-definite, is called 
the POLARDECOMPOSITIOH of T. If T is invertible, then U 
is unitary and R is invertible*

Finally, a closed linear subspaee L is said 
to be IFVARIADT under an operator T if Tx 6 L for all x 6 L. 
In this case, we denote the restriction of T to L by T/L.
Thus T/L is a mapping from L to L such that (T/L)x = Tx

. 1
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for x S L. If a closed, linear subspace L and itsXorthogonal complement L are both invariant under T, 
then L is said to reduce T.

1*6. The basic nature of hyponormal operators
■was noticed for the first time in the year 1950 by 

1}P. 1. Halmos • He observed that if an operator T has a 
normal extension, then T*T ^ T T*. Taking his clue from this 

observation, he called an operator T subnormal if T T > T T .
What Halmos called a subnormal operator came to be known 
as a hyponormal operator later on. Using the concept of trace, 
Halmos also proved that the notion of hyponormality coincides 
with that of normality on a finite dimensional space* However, 
hyponormal operators exist in large numbers to justify a 
study of their properties. The study of hyponormal operators 
can be divided broadly in three parts namely 
(i) study of those properties which are similar to the

properties of normal operators;
Cii) investigation of sufficient conditions under which a 

hyponormal operator is- normal and 
(iii) study of their general properties.

It is known that for an invertible normal operator N,

1) P. B. Halmos
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its inverse If**' is also normal. We obtain, in chapter II, 

a similar result pertaining to hyponormal operators.
In fact, the analogous result for hyponormal operators is 
deduced as a corollary to the following theorem proved in 
chapter II :

(1.1) THEOREM. An operator T is hyponormal if and only 
if there exists an operator Y with D(T) = R(T) such that 
T* = YT and |M| = 1.

We also prove in chapter II the.following
theorem:

(1.2) THEOREM. If T is hyponormal. then the ascent of T is 
0 or 1.

It will be observed that this theorem extends 
to hyponormal operators a property possessed by normal 
operators•

Using the notion of semi-bare points of a closed
1)bounded set, Takashi Toshino proved that for a hyponormal 

operator T, Bg(s(T)) O r(T) = 0. We extend this result to 
any operator satisfying the condition G^ in the form of 
the following:

1) Takashi Toshino
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(1*3) THEOREM. If T is. ail operator whose resolvent has 

first order rate of growth (i.e* T satisfies the condition 
G.^, then Bg(s(T)) n r(T) = JO.

In view of the fact established in chapter III, 

that a hyponormal operator satisfies the condition G-^ > it 
follows that the result of T. Yoshino is a special case of 

our theorem. A second corollary of our theorem is the 
following:

If T satisfies the condition G-^ and °C is 
ah isolated point of s(T), then' <=£ 6 a(T).

It may be. noted here that if «C is an isolated 
point of s(T), when T is hyponormal, then, in accordance 

with a result proved by J. G. Stampfli1^, < 6 p(T).
It Is known that the product T-j_ Tg of two 

hyponormal operators T^ and T^ need not be hyponormal even 
if they commute. In view of this situation, it seems to be 

worthwhile to investigate conditions under which the product 
of two hyponormal operators is also hyponormal. We prove in 
chapter II the following theorem in this direction:

(1.4) THEOREM. If T^ and1 Tg are two hyponormal operators
......such that T-^ Tg = Tg , then T^ Tg is. hyponormal.

1) J. G. Stampfli [26]
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T. Ando1^, S. K. Berberian2^ and <J.G.Stampfli3) 

proved independently of each other that a compact 
hyponormal operator is necessarily normal. We generalise 
this result in the following form:

(1.5) THEOREM. If, T a hyponormal operator such that
Tp is compact, where p is m integer > 1, then T is normal 

and hence compact.

We also give in chapter II a different and
simple proof of the following theorem, which was proved

2) - - by S. K. Berberian .

(1.6) THEOREM. If T is - hyponormal. then r(T*) = J0 .

The relation E(T) CCl(W(T)) is true for every
4)bounded operator T, M. H. Stone was first to prove that 

if T is normal, then E(T) = Cl(W(T)). S. K. Berberian 
conjectured that this result is also true for hyponormal 
operators. This conjecture of Berberian was proved to be

ay 7)true only recently by C. R. Putnam I. 0. Stampfli ,
8)T. Toshino and T. Saito independently of eaGh other. We 

give in chapter III another proof of the same result namely

(1.7) - for £ hyponormal operator T, £(T) = 01(W(T)).

l) T. Ando [l] 2) S. K. Berberian [3] 3) J.G.Stampfli \26
4) M. 1. Stone [29] 5) S. K. Berberian 6) C.R.Putnam J\2lJ
7) J. G. Stampfli [27) 8) T.Toshino and T. Saito ^23]
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In the course of the proof of this result, 

we are able to give a new proof of the following results

(1.8) THEOREM. If T is hyponormal and s(T) lies on 

the unit circle, then T is unitary.

1)' Recently, C. R. Putnam proved the spectral 
relations between a semi-normal operator T and its 
cartesian decompositions A and B. His results are: 

s(A) = |le°C ; < 6 s(T)^ 
s(B) = ilm°£ ; < 6 s(T) } .

Actually, C. R. Putnam made use of the 
’Spectral Integral Theory* in proving these results. In 

chapter IV, we prove these relations by using only 
elementary methods without resorting to the ’Spectral 
Integral Theory*. In addition to this, we also prove in 

chapter IV the following theorem:

(1.9) THEOREM. If T = A + iB ig. hyponormal. then

(i) p(A) ={Re« ; * 6 p(T)} , p(B) = { 3ja=C 5 =C S p(T)} ,

(ii) Ha(s)= U€&Nj(<) for all °C S p(T) and Re°£ = s , 

%(t)= W®HT(°C) for all.* 6 p(T) and 3m* = p.
(iii) If °C = s +it (s and t being real) 6 p(T), then

%(*) = n^(s) n NB(t).

1) e. R. Putnam [21)



15
The result that E(T) = Cl(W(T)) for a

hyponormal operator T can also he derived as a corollary
of the theorem (1.9). As a second corollary of this
result we show that for a hyponormal operator T,
E(W(T))'C.p(T), which extends to hyponormal operators a

l)result proved earlier by C. E. MacGLEER (and consequently
2) \that of C. 1. Meng ) regarding extreme points of the 

numerical range of a normal operator.
3)W. A. Beck and C. H. Putnam have proved 

the following theorem:

(1.10) i BEGEM, Let M be a normal operator. If AW a N*A 

fbr an arbitrary invertible' operator A = 1R, for which U 
is cramped, then 1 = N i.e. M is self-ad.ioint.

A\3. K. Berberian^' has given an abstract proof 
of this theorem for any B -algebra and C. A. McCarthy has 
given another proof of a slightly improved version of 
this result.

In chapter 7, we. extend this result to 
hyponormal operators under slightly more restrictive conditions

g)on A. In fact, we prove the following:

1) C. R. MacCLUER [id] 

4) S. K. Berberian [5]

2) G. H. 

5) C. A.

Meng fl6l 3) W. A. Beck and
L J G. R. Putnam [2J

McCarthy(l5) 6) I.H.Sheth [25]
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(l*ll) THEOREM. Let’ H be h* hyponormal operator. If

$ - -i,.. - - . ■ - - ,, - -

AI * I A for an arbitrary operator A, for which 
0 ft Cl(W(A)), then H is self-ad..joint.

How if 0 & C1(W(A)), then Jk is invertible.
Also S. K. Berberian^ has proved that for such an operator 

A, with polardecomposition A =* HE, H is cramped. Hence it 
follows that the condition 0 t> Cl(W(A)) is stronger than the 
condition that U is cramped.

It is known that for any Hilbert space 
(separable or nonseparable) a hyponormal operator with a pure 
point spectrum is normal. In chapter VI, we examine the 
question whether the hyponormality of T together with 
s(T) = p(T) imply the normality of T and we prove the following 
two theorems in this respects

(1.12) THEOREM. Let T be a hyponormal operator with 
s(T) = p(T). Then T is normal if the Hilbert • space under' 
consideration is separable.

(1.13) THEOREM. If H is nonseparable then there exists & 
non-normal hyponormal operator with s(T) » p(T).

In his paper [d}, S. K. Berberian raised the 

following question.

l) S. K. Berberian W
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If T = UR is an invertible operator suchithat 

U is cramped, does it follow.: that 0 0 Cl(W(T)) ?

He proved that if,, in addition, T is normal, 
then the answer to the above question is in the affirmative. 
We construct am. example in chapter VII to show that there 
exist invertible operators T with polardecomposition T = HE, 
where U is cramped, such that 0 G ClCW(T)). We also show 
that the answer to Berberiam*s question is still in the 
affirmative for certain special types of operators and more 
particularly for hyponormal. operators. .In. fact, we prove 
the following three theorems in chapter VII:

(1.14) THEOREM. If T « US is gh invertible hvnomormal 

onerator such that U :£s cramped..then 0 0 Cl(W(T)).

(lilS) THEOREM. If T = UR is an invertible.operator' such' 
that U Is cramped'.' then 0 0 ClCW(T)) provided that 2(T) ig g. 
spectral ggt for T.

(1.16) THEOREM. If H ig. finite dimensional. then there 
exists an Invertible operator T = UR such that U ig, cramped: 
and 0 6 W(T).

1)P. R. Halmos showed by means of an example 
that the hyponormality of T does not necessarily imply that

.1) P. R. Halmos {_!©]
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oT is hyponormal. But our investigation shows that the 
situation with regard to the operators- of class (N) is 
different,- in that for every operator T of class Off), T12 is 

also of elass (N) for every positive integer n. In fact, 
we prove the following three theorems pertaining the 
operators of class CM) in chapter TUI*

(1.17) THEOREM, T ig. of class (l), then Tn is also
of class.(M) for every positive integer n.

(1.18) THEOREM. If T ig of class (H), then the ascent of
T is. either 0 or 1.

(1.19) THEOREM. If T is of class (N) and’ s(T) lies on the 
unit circle, then T is unitary.

l)In answering the question raised by T. Nieminem , 
2)W. F. Eonoghue Jr. proved the followiig -theorem:

(1.20) THEOREM.' The following three classes of bounded 
operators on a Hilbert Space H are identical:

(I) The' unitary1 operators:
(II) The operators T for which

(a) T~1 exists and is everywhere defined and l|Txil > flxll 

for every x 6 H and
(b) W(T) is a subset of the unit disc:

l) T, Hieminen ^17} 2) W, F. Bonoghue Jr lv]
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(III) The operator's T Tor whi'ch

(a*) Q Is S the resolvent set and UR0|| < 1 and 
(b*) for an unbounded sequence of numbers fn > 1,

< (fQ - l)-1 if |<I = fn •

Combining this theorem of W. F. Donoghue Jr.*
with the fact that a unitary operator U is cramped if and

- iVonly if 0 0 Cl(W(lT)), which was proved by S. K. Berberian »
we immediately get the following theorems

(l.2l) THEOREM. The' following two classes of bounded 
operators bn $£ Hilbert space H are identicals

(I ) The unitary operators with cramped spectrum and
t , ..(II ) The operators T for which
(a) [jTxjl |f {|x|l Tor every x 6 H and

(b) 0 0 Cl(W(T)) and W(T) is a subset of the unit disc.

We give a new and simple proof of this theorem 
in chapter IX. Our proof seems to have some interest in 
view of the fact that it is not based on the 1Spectral 
Integral Theory*} where as the proof of theorem (1*20) leans 
on the 'Spectral Integral Theory*.

1) +S. K. Berberian (4)


