CHAPTER fT

GENERAL PROPARTTES  OF  MYPONORMAL OPERATORS

The following theorem gives a necessary and
suffieient condition for an operator T to be normal, The
significance of the condition lies in the fact that it involves

the adjoint operatbr:

fHROREM, A. An operator T is normal if and only if there

R

exists a unitary operator U guch that T = UT ,

We begin by proving a result regarding
hyponormal eperators, which is analogous to the above

mentioned theorem.

THEOREM. 251, An operator T is hyponormal if %ﬁa'énii \

if there ‘Sxists &n operabtor V with D(V) = R(T) such that
*® i

T" = Ve znd V] = 1.

L B '
PROOF: TLet T = VT with [Vl = 1 and D(V) = R(T). Then
Izl = fvexl & Ivil.lzxl = IPxll for all x € B i.es T is

hyponermal.

To prove that the conditiong are necessary;
*
let T be hyponormal., If Tx = 2z and T x = y for an arbltrary
x € H, we define a mapping V on R(T) by the relation

y = Vz. Obviously, V is linear and *x = VIx for every x € H
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i.ee TF = VI, The relation [[V]| = 1 follows from the facts
that ¥ = VT and V)| = fzll.

From this theorem; we derive the following:

GOROLLARY 2,15 If T is an invertible hyponormal

operator, then T™1 is also hyponcrmal.

ng—

PROOF: It follows from the definition of V in theorem 2.1
that D(V) = H and V1 exists when T is an invertible
hyponormal operator. First, taking adjoint and then inverse
of the relation T'= VT, we get T~1 = (Vf);l(T"l)f iece

(e 1y* = v* 7L, yhere V] = V]l = 1. Hence T™T is

hyponormal by theorem 2,1.

We next prove a theorem pertaining to the
ascent of a hyponormal operator T, This theerem is an
extension to hyponormal operators of known result concerning

normal operators.

THEOREM 2,2. If T i§ hyponormal,then the ascent of T is

St

0 é_;[_'_ l.

PROOF: If x € N(Tz); then % = 6. T being hyponormal,
the relation T Tzl € 7%k implies that [27Ix] = 0 i.e.

x & N(T¥T) = §(T) {A. Es Taykor [30)page 250). Hence

N(Tz) S N(T). Since the reverse inclusion is true for any
operator, we have N(T) = N(Tz). This completes the preof of

the theorem.
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The notion of semi-bare points, which is more
general than that of bare points, leads to some interesting
results. This notion was introduced by T. Yoshinol) who

proved the following theorem:

- e

THEOREM 2.,B, If T is hyponormal, them B (s(T)) @ r(T) = f#.

We give the following generalisation of the

theorem 2,B.
THEOREW' “8,8., 1If T is an oberator whose resolvent fias first

order rate of growth (i.e. T satisfies the gonditiom Gq),
theni B4(s(T)) n »(T) = 4.

To prove this theorem; we need the following

known results:

P

 LEMMA 2,15 If T ¥s an operator for which |IT]l = |«] for
« € s(T), then « € a(T),

T

LEMMA ™ 9.,¢

i - -

2 If T is an invertible operator, then < € a(T)
if and eniy IFf <1 ¢ a(t™1),

PROOF"OF THEOREM 2.8: Assume, to the contrary, that

< € Bg(s(T)) 0 r(T)., Then there exists a complex number
B £ s(T) such that |« - g] = d(B , s(T)). Since p £ s(T),
(t - ﬁI)“l = Bg exists gnd Kﬂﬁﬁ & |« - ﬁ]-l by hypothesis,

1) T, Yoshino |31}
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But |« ~ ]t 2 gl |Dunfora-schwartz (8) page 566 ) 1.

uaﬁu = |« - g]™t = |« = 8", Now < - B € s(T - BI) and

nence (£ = g)™T € s((T - p1)™L), Using lemmas 2.1 and 2.2,

we have (% - )L € al{Tm BI)™Y) amd '« - € a((T - I))
vhiech in turn implies that « € a(T), This comtradiction

proves the theorem.

In the next chapter; we will prove that the
hyponormal operators satisfy the condition Gy and hence
theorem 2.B becomes a particular case of theorem 2.3. We

derive the following corollary from this theorems:

o T, N E

COROLLARY ' 2,2, If T satisfies the condition™Gy and «

is an isolated point of s(T), then < & al(T).

1o 2 o
e T——

PROOF: Since every isolated point of s(T) is a semi-bare

point of s(TY, the corollary follows immediately from the

main theorem.

Regarding the isolated points of s(T), when

1

T is hyponormal, J. G. Stampfli™ proved the following

theorem?
THEOREM  2,C. If T is hyponormal znd « is an isolated
point of s(T), theii « & p(T).

1) 7. 6. Stampfli [26)
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For a hyponormal operator T, 72 need not be

hyponormal as was shown by P. Re Ealmos 1) by means of an
example, This implies that if Tl and‘T2
operators which commute; then their product Tl Ty 1s not

are two hyponormal

necessarily hyponormal. As -mere commutativity is not
enough to ensure the hyponormality of the product, it
seems desirable to find conditions under which the product
of two hyponormal operators is algo hyponormal, Our next

theorem is an attempt in that direction.

Tﬁﬁ@ﬁﬁﬁ““%:@‘ If T, and T, are two hypohormal operatofs
such that T, Tz = T Ty then Tq T, is hyponormal,

oo*’-

PROOF?

(Tlig) (T,7,) = Tz Tl Ty Ty > Tp Ty Tl T, =

* ; * _ , k
Ty T Ty Tl 21, T, TZ_TI = (T T,) (T7 T,).

icee Tl g 1s hypenormal.

T. AndAz), Se Ko Berberians) and J.G,. Stampflié)

proved independently of each other that if T is a compaect
hyponormal operator; then T is normal. We generalise this

result in the form of the fellowing theorem:

THEOREM 2.5. If T is hyponormel such that T° is compact,

where p 1¥ &n integer % 1, then T is normsl and tonsequently

compact.

1) P. B. Falmos {10]  2) T. And$ [1] 3) S. K. Berberian 3]
4) 7, €, Stamprii [26)
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To prove this theorem, we need certain

results which we state below in the form of lemmas.

IEMMA - 2,35 |T. Andd \1}} Tr T is hyponormal, then s(T)

contains #:complex number « such that [T = |«].

LEMMA * 2,47 [A. C. Zaanen (82) page 317 | If T is & normel

operator. such that T (p is an inbeger > 1) is compact,

then T Is itself compact.

LEMMA 2.5, Let T Be a hyponormal operator. If the proper

subspaces of T are a total family, them T is normal.

PROOF OF LEMMA 2,58 If Np(«) and Np(g) are the proper

subspaces of T corresponding to two distinct proper values
« and B, then we hav%

(1) Np(<) & Fp#(X) 3

(ii) Np(«) reduces T and T/Hp(«) is normal ;

(111)  Nep() 1 Np(p).

Now the legma follows from the glven hypothesis
with the help of préperties listed above.

PROOF' OF THEOREM 2,5¢ For the case p = 1,
see S, K. Berberian (3} .

Consider the case p > 1. T being hyponormal;

we have [Tl = |«| for some < € s(T) by lemma 2.3. Since
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TP is ccmpact; «° ¢ p(TP), Now the relation
p(1?) ={«® ; « ¢ p(1)] implies that « & p(T) i.e. p(T) # 4.

~ Denote by Hi; the smallest linear subspace of
H which contains every proper subspaces of T. Then Hi £ {9}.

A
Let H2 = Hl . The subspace Hz reduces T and the restrictions

T/Hg and TP/H2 are-respectively hyponormal and compact. If

s(T/HQ) #'{O}, it would contain a non=-zero number § such
that HT/Hzﬂ = |g|. Again, as above, B is a proper value of
T/H,. This is contrary to the definition of Hy. Hence
s(1/H,) = {@\ ices Hy ={6}. In other words, the proper
subspaces of T are.total. Hence T is normal by lemma 2.5

and compact by lemma 244 .

Se Ko Berberian}) proved that if T is hyponormal,
then s(T%) = a(T?). Here we give gn easy and direct proof of

this result,

. e e . e *
f T is hyponormsl, then (T ) = £.

THEOREM 2,6%

i

PROOF; If possible, let « € r(T" ), Then X € p(T). Since T

is hyponormal, this leads to the conclusion that « € p(T*);

a contradictien. Hence r(T*) = g,

This elementary result plays an important part
in the proof of the main theorem of chapter V of the present

thesis.

1) S. K. Berberian (3)



