
CHAPTER ' II

OMERAL PROPERTIES OF 5YPQHORML OPERATORS

The following theorem gives a necessary and 
sufficient condition for an operator T to he normal. The 
significance of the condition lies in the fact that it involves 
the adjoint operators

frgEORM. A, Aii operator T !§. normal if and only if there 
exists a unitary operator IT sueh that T = UT ,

We begin by proving a result regarding 
hyponormal operators, which is analogous to the above 
mentioned theorem.

THEOREM. 2ll. An operator T is hyponormal if and Only 
if there ^exists An operator ¥ with D(¥) = R(T) such that'
T* = ¥T and flV|| = 1.

PROOFS Let T* = ¥T with f|¥|j = 1 and D(¥) = 1(T). Then 

llT*xlI = |¥Txi § iTll.flTxl = IlTxlI for all x 6 H i.e. T is 
hyponormal.

To prove that the conditions are necessary,
*let T be hyponormal. If Tx = z and T x = y for an arbitrary 

x 6 H, we define a mapping ¥ on R(T) by the relation 
y = ¥z. Obviously, ¥ is linear and T*x - ¥Tx for every x G H
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i,e, T* « YT, The relation i]Vj| = 1 follows from the facts 
that T* = YT and i|T*H = Hill.

From this theorem, we derive the followings

OOROLLARY 2,11 If T is an invertible hyponormal 
operator, then T*"*** is also hyponormal.

PROOF'S It follows from the definition of V in theorem 2,1 
that D(V) = H and Y”'*' exists when T is an invertible 

hyponormal operator. First, taking adjoint and then inverse 
of the relation 3?*= YT, we get I""1 = (Y*)~1(T”"1) . i.e, 
(T-1)* a Y* T”1, where ||Y|1 = i|Y*f| = 1. Hence T”1 is 

hyponormal by theorem 2,1,

We next prove a theorem pertaining to the 

ascent of a hyponormal operator T. 3?his theorem is an 
extension to hyponormal operators of known result concerning 
normal operators,

THEOREM 2,2, If 3? is hyponormal,then the ascent of 3? is, 

0 or 1,

- p - 2PROOF: If s S N(T ), then 3? x = 0, 3? being hyponormal,
the relation |]T*Tx|l !§ l|T2x|j implies that |]T*Tx[j ® 0 i,e, 

x 6 H(T*T) = H(3?) |a, E. Taylor (30)page 2§o], Hence 
W(T^) £!(!), Since the reverse inclusion is true for any 
operator, we have H(T) a H(T^), This completes the proof of 

the theorem.
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The notion of semi-hare points, which is more

general than that of hare points, leads to some interesting
l)results. This notion was introduced by T. Yoshino who 

proved the following theorems

THEOREM 2.B. If T is hvponormal. then Bg(s(T)) r(T) a 0.

We give the following generalisation of the
theorem 2.B*

THEOREM" !"~2.3’. If T Is an operator whose resolvent has first 

brder rate of growth (i.e. T satisfies the condition G^), 
then Bs(s(T)) n r(T) = 0.

To prove this theorem, we need the following 
known results:

LEMMA 2.1'. If T Is' hn operator for which |1t|J « |°c| for 
«C 6 s(T), then °£ 6 a(T),

LEMMA 2.2. If T is an invertible operator, theft < 6 a(T) 
i£ and only if -T1 6 aCT*"1).

PROOF^Of THEOREM 2.3': Assume, to the contrary, that

°C 6 Bs(s(T)) 0 r(T). Then there exists a complex number 

P 0 s(T) such that |< - pf a d(p , s(T)). Since p 0 s(T),
(T - pl)“^ = Rp exists and ||Rp8 % |°C - pj ^ by hypothesis*

l) T. Yoshino [3l)
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But |°C ~ (3 { ^ ^ ||Ep {] [xunford-Sehwartz 1.8 ) page 566^ i*e.

llRpfl a |< - pp1 = |(cc - pr1!. low <=C - p e s(T - pi) and

hence («< - p)"*^ 6 s((T - pX) ^), Using lemmas 2*1 and 2*2,

we have (< - pH1 6 aCC'T— pi)"*1) and °C - p 6 a(.(T - pi)) 

which in turn implies,that < 6 a(T). This contradiction 

proves the theorem.

In the next chapter, we will prove that the 

hyponormal operators satisfy the condition &-j_ and hence 

theorem 2.B becomes a particular case of theorem 2.3. We 

derive the following corollary from this theorem:

COROLLARY ' 2*2'.' If T satisfies the’ condition0and <=C 

i's an isolated point of s(T), then °C 6 a(T)*

PROOF: Since every isolated point of s(T) is a semi-bare

point of s(T), the corollary follows immediately from the 

main theorem*

Regarding the isolated points of s(T), when
1)T is hyponormal, X. G. Stampfli proved the following 

theorem:

THEOREM' 2'.C. If T is hyponorkal khd °C is an isolated 

point Of s(T), then' °C S p(T).

1) X. Stampfli [26]
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OFor a hyponormal operator T, T need not be 

hyponormal as was shown by P* R. Ealmos^ by means of an 

example, This implies that if T^ and Tg are two hypomoraal 
operators which commute, then their product Tg is not 
necessarily hyponormal. As mere commutativity is not 

enough to ensure the hyponormality of the product, it 

seems desirable to find conditions under which the product 
of two hyponormal operators is also hyponormal, ©ur next 
theorem is an attempt in that.direction*

THEOREM ~ 2,4. If T-, and T„ are two hyponormal operators
JL c*

such that T^ * ^2 ^1 * ^l ^2 — hyponormal.

EEsm (Tii2) = t* i* ^ t2 £ 4 tx i* ig =
•fc JU <1< .m m jj$ m m m m* _ /m m \ ftp m \1 2 2 il “ 21 A2 1 ~ U1 i2^ U1 *2'

i*e* Ig is hyponormal.

T. AndS^, S. K. Berberian^ and J.G.Stampfli^ 

proved independently of each other that if T is a compact 
hyponormal operator, then T is normal. We generalise this 
result in the form of the following theorem:

THEOREM 2.5. If T is hyponormal such that is compact, 
where p i&. an integer' ^ 1, then T is normal and Consequently 
compact.

1) P. R. Halmos [l©] 2) T. Ando [l] 3) S. K. Berberian \s]
4) J. G. Stampfli [26]
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To prove this theorem, we need certain 

results which we state "below in the form of lemmas#

LEMMA • 2.3i [t. Ando \ll} IfT is hyponormal, then s(T) 

Contains a:.;complex number < such that ||T|1 = |°C| *

LEMMA 1 2.4# ^A. C. Zaanen [32J page 317^ If T Is, a. normal 

operator, such" that Tp (p is an integer > l) is compact, 

then T is itself compact.

LEMMA 2.B. Let I |a a hyponormal operator. If the proper 
sub space s' of T. are a total" family, then T is, normal.

PROOF OF LEMMA 2.58 If Nj(°c) and N^Cp) are the proper 

subspaees of T corresponding to two distinct proper values 
< and p, then we have 
(i) %(=0 ;

Cii) Fy(<=c) reduces T and T/Ij(<) is normal ;
Ciii) %(=C) -L%(p).

Now the lemma follows from the given hypothesis 
with the help of properties listed above.

PROOF' OF THEOREM 2«'5t For the case p = 1, 
see S. K. Berberian [s} .

Oonsider the case p > 1. T being hyponormal, 
we have ||fH * \<\ for some <6 s(T) by lemma 2.3. Since



26
Tp is compact, <<p 6 p(Tp). Now the relation

p(Tp) = {«p . «c 6 p(T)} implies that < S p(T) i.e. p(T) A 0.

Denote by the smallest linear subspace of 
H which contains every proper subspaces of T. Then 
Let 1 a a?" . The subspace 19 reduces T and the restrictions

T/H2 and Tp/Hg are respectively hyponormal and compact. If

s (T/Hg) / {0}» it would contain a non-zero number j3 such 

that JjT/Hgll a |p|. Again, as above, p is a proper value of 

T/Hg, This is contrary to the definition of H-j_, Hence 
s(T/Hg) a i.e. Hg ={©}. In other words, the proper 

subspaces of T are.total. Hence T is normal by lemma 2.5 

and compact by lemma 2.4 .

*t %S. K. Berberian proved that if T is hyponormal, 
then s(T ) = aCTn). Here we give g,n easy and direct proof of 

this result.

THEOREM 2,6^ If T hyponormal. then r(T*) * 0.
P'k'

PROOF: If possible, let < 6 r(T*). Then < G p(l). Since T

is hyponormal, this leads to the conclusion that °C 6 p(T ), 
a contradiction. Hence r(T*) = 0 .

This elementary result plays an important part 
in the proof of the main.theorem, of chapter V of the present 

thesis.

l) S. K. Berberian [3]


