
CHAPTER W

CARTESIAN BBGQMP0SITIQN QFA HYPQNORMAL 
OPERATOR AND SPECTRAL RELATIONS

Let T = A + iB, where A « 2 ^ , b = >

be the cartesian decomposition of a normal operator. With 
the help of the ’Spectral.Integral Theory1, it is very easy 
to obtain the following relations between the spectra of 
A , B and T s

s(A) = (Re°C 5 °C 0 s(T)} , s(B) « {Im°C 5 =C 6 s(T) j ....(4.1)

p(A) = {Re< ; °C 6 p(T) ) , p(B) = ^Im°C ; «C 6 p(T) } ....(4.2)

l)It was, indeed, proved.by S. l; Jamison 
that for °C 6 p(T), where °C = s + it , s and t being 

respectively the real, and imaginary parts of °C, 
s 6 p(A), t 6 p(B) and NT(<0 = NA(s) 3%(t). ....(4.3)

Recently, C. R. Putnam extended the result 
(4.1) to hyponormal operators. He proved again these relations 

with the help of the ’Spectral Integral Theory*. In the 

present chapter, we prove these relations without taking 
recourse to the*Spectral Integral Theory* and only by using

l) S. L. Jamison jjis) 2) C, R. Putnam [2lj
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elementary methods. Moreover, our proof is simpler and 
shorter than that of C. R. Putnam. Actually, we prove the 
following two theorems:

THEOREM 4.1. IfT=A+iBlga hyponormai operator, then

(i) s(A) a \Re°C ; «< 6 s(T)J j
s(B) = |lm°C ; =C 6 s(T) j- 
and in particular. .

Cii) p(A) = {Re°C $ «C 6 p(T) j ;
p(l) = {Im°C ; < 6 p(f)^ ;

(iii) Sj^(s) = R©Fj(«c) for all =C 6 p(T) and Re<=£ = s ;

Nr^) = W^Nj(oC) for all °C 6 p(T) and Im°C a t and

(iv) i£ °C 5 s + it 6 p(T), then s 6 p(A), t 6 p(B) 
and Ny(«0 a IA(S) 0 HB(t) .

THEOREM 4.2. If T = A + iB is an operator' such that 
S(T) ig a spectral.set for T, then

s(A) = {Re=C ? < Q s(T)} and!
s(B) a (inK 5 o£ e s(T)].

It is sufficient to.prove the results for A only 
as the proof of the corresponding results for B are similar 
in both of the theorems.
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PROOF OP THEOREM 4.1: Let <=C 6 p<T). and %(«) toe the

corresponding proper subspace. Then < 6 p(T ) and 
Nj(°C) ^.N^(°C). Hence

_ . • ■ # ......Ax = —|— x = x « Re®C.x for all x 6 %(<).
Thus

{Re°C ; °C e p(T)}^p(A) ............(4.a)

and ueirpC*) ciA(s) for all « 6 p(T) and RfK * s ,..(4.b)

Conversely, let t(real) G p(A) and !j^(t) be the 

corresponding proper subspace. Then
((T - tl) + (T - tl)*)x ** (S + C*)x = 0 

for all x 6 %(t), where' 0 =* T - tl is also hyponormal.
Since C C*x = C* Cx and [|Cx|| » ||C*x|j for every x G N^Ct), 

HA(t) reduces C and the restriction of C to %(t)
(i.e. e/iA(t) ) is normal. Hence there exists^ a complex 

number p 6 s(C/IA(t)) Cs(I - tl) such that ||c/NA(t)|| = |p[. 
But (C + C*)x = 0 for all x G %(t) implies that Rep = 0 and 

p 6 p(T - tl) i.e. t + p 6 p(T) and

HA(t) SE for << G p(T) and Re°C = t ....... ...(4.e)

Combining (4.c) with (4.a) and (4.b), we have 
p(A) = \Re°C 5 < G p(T)} and 

%Cs) - TJ$%(<0 for °C G p(T) and Re°C = s.
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Now, let °C © e(T). Then there exists a 

sequence of unit rectors such that

||(T* - ^Dxnl| < t|(T - ccDxall - 0.

Consequently,

II(A - Ee<<.l)xn|| - 0 i.e. Be°C G a(A) = s(A).

Thus, we hare prored that ^Re<< ; °C © a(T)^ cn s(A) .,..(4.d)

If < © r(T), then °C is an interior point of 
E(T). Let L he the line drawn through °C parallel to the 
axis of y. If , °C2 are the end-points of 2(1) n L, then 
°Ci , <2 are the boundary points of 2(T). Hence “Cq > <2 ® a(T) 
and consequently Re°C = Re°t^ = Re “Cg ® s(A) hy (4.d); Since 
s(T) = a(T) U r(T), we hare^Re°C ; °C S s(T)] cn s(A).

Now, if t(real) S s(A), then t 6 a(A). Since 

the hypomormality is preserved under ^-isomorphism, we may 
assure that t is a proper ralue of A[6). Then it follows 

from what we hare already,prored that there exists a 
complex number < 6 s(T) such that Re°C - t. This completes 
the prbofs of parts (i) , (ii) and (iii).

Since the proper subspaces corresponding to 
distinct proper-ralues of a hyponormal operator are 
orthogonal, the proof of (ir) follows from (ii) and (iii).
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The following interesting and important 
results can be derived as corollaries of this theorem:

COROLLARY 4.1. If T is hyponormal, then S(T) = Cl(W(T)).

PROOF: It is sufficient to prove that every extreme
point of C1(W(T)) belongs to a(T). Let Y be an extreme 
point of Cl(W(T)). Since °CT + pi is hyponormal,
Cl(W(°CT + pi)) « «C.Cl(W(T)) + p and °CY + p is an extreme 
point of Cl(W(°CT + pi)), there is no loss of generality 
in assuming that Y = 0 is an extreme point of C1(W(T)) and 
Re GlCW(T)) >0. If T = A + iB be the cartesian 
decomposition of T, then A > 0 by our assumption. The 
relation (Tx , x) « (Ax , x) + i(Bx , x) for all x S H 
implies that 0 is an extreme point of Cl(W(A)) i.e.
0 6 G1(W(A)) and as A >. 0, 0 6 a(A) by ^A. E. Taylor \3©V 
page 330 } . Since 0 is an extreme point of Cl(W(T)), this 
implies that 0 6 a(T) by (i) of theorem 4.1 . In case A = 0, 
then T = iB i.e. £(T) = iS(B) a i Cl(W(B)) = Cl(W(T)).'

This completes the proof of corollary 4.1 •

COROLLARY 4.2. If T is hvnonormal. then E(W(T)) Cp(T),

PROOF: Since p(°CT + p) = °Cp(T) + p, as in corollary 4.1 ,
there is no loss of generality in assuming that 0 is an 
extreme point of W(T) with Re W(T) >0. If T = A + iB, then 
again A > 0. Since © 6 W(T), there exists a unit vector x
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such that

<Tx , x) = 0 = (Ax , x) + i(Bx , x) 
i.e. (Ax , x) = 0 = (lx , x). This leads to the conclusion 
that Ax = 9 by [a. C. Zaanen \32) page 2163* Hence if 
A ^ 0, then 0 8 p(A) and as 0 is an extreme point of W(T), 
0 8 p(T) by (ii) of theorem 4,1 . If A = 0, then T = iB 
and 0 is an extreme point of W(B) ■with (Bx , x) = 0. Hence 
Bx = 0 i.e. Tx = iBx =0 or 06 p(T).

COROLLARY 4.3, Let T bg. hyponormal. then W(T) ig closed 
if and only if E(S(T)) c, p(T).

PROOF: Since Cl(W(T)) = S(T) by. corollary 4*1 and
p(T) CIW(T), the 'if1 part follows immediately from the' 
definitions.

How, if W(T) = C1(W(T)) = E(T), then 
S(£(T)) = E(W(T)). Hence, the 'only‘if* part follows from 
corollary 4.2 •

1)C. H. Meng proved the following theorem:

THEOREM 4.A. If I is a normal operator, then W(N) is
closed if and only if E(£(H)) ^ p(H).

Also G. R. MaceLUER2^ proved recently the 

following theorem:

THEOREM 4.B. For a normal operator H, E(W(N)) cp(s),

1) C. H. Meng [l6] 2) C. R. MacCLUER [l4j
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It will be observed that our corollaries

4.2 and 4.3 proved above are extensions of theorems.14.B
and 4.A respectively to hyponormal operators. It should be

1)mentioned that J. G. Stampfli has also proved 
corollary 4.2 .

To prove theorem 4.2 , we need the following 
known result which we state below in the form of a lemma.

LEMMA 4.1. For any operator T, if °C Q s(T) and [°c| = [jT||, 
then S a(T) arid the approximate proper vectors of T
belonging to °C are those of T belonging to °C .

PROOF OF THEOREM" ' 4.2: Let < 6 s(T). Since 2(T) is a
spectral set for T, we have

II(T - <<l)|j -c sup {|t - <\ ; t e S(T)} < ||(T - «CI)||

(Because E(T) -'< = 2(T - <I) ) for the rational function 
u(t) = t - °C. Since S(T) is the closed convex hull of s(T), 
there exists an element p 6 s(T) Q.2(T) such that 
||T - <=Cl|| 3 Ip - «C|. Also P - < 6 s(! - <I).

Bsing the spectrality of 2(T) again, this 
implies that ||(T - pl)|| = |°C - p| and °C - p 6 s(T - pi). 
Hence there exists a sequence {xn^ of unit vectors such that

1) J. G. Stampfli [28]
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|]( (T - pi) - (°C - p)l )xfiJj » 1(T - =Cl)x^l •* 0 and

||( (T ~ pi) - (< - ff)l )s^j| a |](T* - <1)35^11 -* 0 by lemma 4*1.

Consequently, ||(A - Ee=C l)3^|l ** © i.e* Re°C 6 s(A). Thus

{fie* ; < e g(T)\ ^ s(A) .

Conversely, let a(real) 6 s(A). Then 

a C S(A) = Cl(W(A)0. But the relation

(Tx f x) = (Ax , x) + i(Bx , x) for all x 6 H

implies that Be C1(W(T)) = Cl(W(A)) i.e. a 6 Be Gl(W(T)).

Since 2(T) = Cl(W(T)) ^24^, we can choose a real number b 

such that a + ib is a boundary point of E(T) i.e* 

a + ib 6 s(T). This completes the proof of the theorem.


