CHAPTER IV

CARTESTAN DECOMPOSITION OF A HYPONORMAT

OPERATOR AND SPECTRAL RELATIONS

- . *
T+ 7T ot
Let T = A + iB, where A = —5— , B= L=Il-,

be the cartesian decompogitien of a normal operator. With
“the help of the 'Spectral Integral Theory', it is very easy
to obtaln the following relations between the spectra of

A,Band T:

s(a) = {Bex 5 x 6 s(M Y}, s(B) = {me 5 x € s(M] ...ia1)

e
-

<€ p(T)], p(B) = {Imx 5 < & p(T)] ...0(4.2)

~-e

p(a) = {Re<

It was, indeed, proved by Se L JamiSOnl)

that for « € p(T), where X = g + it , s and t being -
respectively the real and imaginary parts of «, ’

s € p(a), t € p(B) and NT(X) = N,(s) 0 Np($). eeee(4.3)

Recently, C. R Putnamz) exténded the result
ké.l) to hyponormal operators. He proved again these relatiens
with the help ef the 'Spectral Integral Theory'. In the
present chapter, we prove these relations without taking

recourse to the'Spectral Integral Theory'! and only by using

1) 8. L. Jemisen (13) 2) C. R. Putnam (21}
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elementary methods. Moreover, our proof is simpler and
shorter than that of C, R. Putnam. Actually; we prove the

following two theorems:

P

THEOREM 4,1, If T = A + iB is 2 hyponormal operator, then

——

A d

(1) s(a) = {Rext 5 < ¢ s(1)}
s(B) = {Imq ; <€ s(T)}

14

.

and in particular, .

(11)  p(a) ={Rex 5 < & p(T)} 4
p(B) ={Imx 5 < ¢ p(T)g 3
(idi) Np(s) = UQNp(<) for all « & p(T) and ReX = s :
Ng(t) = U@Np(«x) for a1l « € p(T) and Imx = t and
(iv) if « = s+ it € p(T), then s € p(A), t & p(B)

a d NT("() = NA(S) fa NB(t) .

THEOREM 2,2. If T = A + 1B is an operator such thak

2(T) is & spectral Set for T, then

<6 s(m)) azng
< € s(T).

~

s(4) =V{Re<
s(B) = {Em(

e

It is sufficient to prove the results for A only
as the proof of the corresponding results for B are similar

in both of the theorems,
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PROOF OF THEOREM 4,1t Let < € p(T) and Np(«) be the

- *
corresponding proper subspace. Then < € p(T ) and

Nq () ENT*(&-) . Hence

AT R —
Ax = Z ; I'x= < ; X x = Re<.x for all x € Np (),
Thus ‘
{Rex ; xep(T)}gp(A) .".!O.l“l'(4'a)

and U®Nq () c,::NA(s) for all < € p(T) and Rex = § ,..(4.b)

Conversely, let t(real) € p(4) and N,(t) be the

corresponding proper subspace. Then

(- ¢1) + (T - tDx = (€ + cHx = 0
for all x € Ny(t), where' C = T - tI is also hyponormal.
Since C C'x = Gf Cx and [czll = ﬂCfxﬂ for every x € N,(t),
N,(t) reduces C and the restriction of C to Np(t)
(i.e. ¢/N,(%) ) is normal. Hence there exists a complex
number B €& s(C/Ny(t)) < s(T - tI) such that [IC/N,(t)]| = [p].
But (C + C™)x = 0 for all x € Np(t) implies that Reg = O and
B € p(T - ¢I) i.es t + 8 € p(T) and

NA(t)S:_U@NT(ocf for « € p(T) and RexX = & .sveveenes.(4.c)

Combining (4.e) with (4.a) and (4.b), we have
p(A) = {Re% $ < 6 p(T)} and
Hpls) = UPNp(X) for « € p(T) and ReX = s.
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Now, let < & ¢(T). Then there exists a

sequence {x,} of unit vgqtors such that

ler* - &Dx )l < Iee - <Dyl - o,
Consequently,

(4 = Ret. DIxpll = 0 i.es Rex € a(h) = s(A).
Thus, we have preved that &Reec s € a(‘l‘)‘; = s(A)H cevo(4.d)

If « 6 r(T), then « is an interior point of
2(T). Let L be the line drawn through < parallel to the
axis of y. If < , «, are the end-points of X(T) A L, then
€, 3 %5 are the boundary points of Z(T). Hence %y , % € a(%)
and consequently BeX = Rex; = Re %y € s(A) by (4.4). Since
s(T) = a(T) U r(T), we haVe[\Ree( $ <€ s(T)} = s(4).

Now, if t(real) € s(A), then t € a(4). Since
the hypomormality is preservgd under *-isomorphism, we may
assure that t is a proper value of A[é]. Then it follows
from what we have already proved that there exists a
complex number < € s(T) such-that ReX = t, This completes .
the proofs of parts (i) , (ii) and (iii).

8ince the proper subspaces corresponding to
distinct proper-values of a hyponormal operator are

orthogonal, the proof of (iv) follows from (ii) and (iii).



The following interesting and important

results can be derived as corollaries of this theorem:

COROLLARY 4.,1. If T is hyponormal, then-I(T) = C1(W(T)).

—— T ——

PROOF: It is sufficiené to prove that every extreme
point of CL(W(T)) belongs to a(T). Let ¥ be an extreme
point of CL(W(T)). Since «T + BI is hypenormal, .

CL(W(XT + BI)) = «,CL(W(T)) + B and XY + B is an extreme
point of CL(W(«T + BI)), there is no loss of genmerality
in assuming that ¥ = O is an extreme point of Cl(W(T)) and
Re C1(W(T)) > 0. If T = A + iB be the cartesian
decomposition of T, then A > 0 by our assumption. The
relation (Tx , x) = (Ax , %) + 1(Bx , x) for all x € H
implies that O is an extreme point of C;(W(A)) ieee

0 € CL(W(A)) and as A > 0, 0 € a(4) by KA.E.Taylor\goy'
page 330 | . Since 0 is an extreme point of CL(W(T)), this
implies that 0 € a(T) by (i) of theorem 4.1 . In case A = 0,
then T = 4B i.es Z(T) = i(B) = i CL(W(B)) = CL(W(T)).

This completes the proof of corollary 4.1 .

COROLIARY 4.2. If T is hyponormal, then E(W(T)) < p(T).

PROOF:  Since p(«T + g) = «p(T) + B, as in corollary 4.1 ,
there is no loss of generality in assuming that 0 is an
extreme point of W(T) with Re W(T) > 0. If T = A + iB, then

again A > O. Since 0 €& W(T), there exists a unit vector x
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such that
(rx , x) =0=(Ax , x) + i(Bx , x)

iees (Ax 4, x) = 0 = (Bx , x). This leads to the conmclusion
that Ax = 8 by LA. C. Zaanen 182} page 216). Hence if

A # 0, then 0 € p(A) and as O is an extreme point of W(T),
0 & p(?) by (ii) of theorem 4,1 . If A = 0, then T = iB
and 0 is an extreme point of W(B) with (Bx , x) = 0. Hence

Bx = 0 i.c. Tx =iBx =6 or O ¢ p(T).

COROLLARY 4.3. Let T be hyponormal, then W(T) is closed
if and only if E(2(T)) & p(T).

PROOF: Since CL(W(T)) = EZ(T) by corollary 4.1 and
p(T) © W(T), the 'if' part follows immediately from the

definitions.

Now, if W(T) = CL(W(T)) = =(T), then

E(2(T)) = B(W(T)). Hence, the 'only'if' part follows from
corollary 4.2 .

C. H, Mengl) proved the following theorem:

THEOREM 4.A. If N is a normal operator, them W(N) is

closed if and only if E(z(W)) = p(W).
‘Also €. He Mac@LUEBg) proved recently the

following theorem:

THEOREM 4,B. For a pormal operator N, E(W(N)) = p(N).

—— D S e Yo I B e s P Tt S

1) C. H. Meng [16] 2) C. Re MacCLUER [14)
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It will be observed that our corellaries
4.2 and 4.3 proved above are extensions of theorems 4.B
and 4.A respectivel& to hyponormal operators. It should be
mentioned fhat Je Ge Stampflil) has also proved
corollarf 4,2 o

" To prove theorem 4.2 4 we need the following

known result which we state below in the form of a lemma.

L0 4., For say gberator T, if < € s(T) and |«| = [z,

then « € a(T) and the approximate proper vectors of T
belonging to « are those of T@ belonging o X .

Paod?”@F“TﬁﬁdéEM"é;Q? Let < & s(T). Since £(T) is a

spectral set for T, we have
iz - <D € sup {1t - «l b e (M} & I - <D

(Because Z(T) -« = Z(T - «I) ) for the rational function
u(t) = t - «. Since Z(T) is the closed convex hull of s(T),
there exists an element B € s(T) € 2(T) such that

It - <1l = |p - «]. Also B -~ ¢ € s(T - «I),

Using the spectrality of Z(T) again, this
implies that [|(T - gI)|] = |« - B8] and « - B € s(T - BI),

Hence there exists a sequence {xBX of unit veetors such that

1) J. 6. Stampfli [28)
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HC (2 = D) = (< - )T Ix [l = H(T - ocbxnn ~ 0 and
e e - 51) - (; - %)I )x |l = fer* - ?I)xnﬂ - 0 by lemma 4.1.
Consequently, [(A - Rext I)x,fl = 0 i.e. Réx € s(4), Thus

{Rex 5 « & s(T)} = s(a).

Conversely, let a{real) € s(A). Then
a € £(A) = C1(W(A)). But the relation

(Px 4 %) = (Ax , x) + i(Bx , X) for all x € H

implies that Re CL(W(T)) = €1(W(4)) i.e. a € Re C1(W(T)).
Since Z(T) = ¢1(W(T)) [24}, we can choose a real number b
such that a + ib is a boundary point of Z(T) i.e.

a + ib € s(T). This completes the proof of the theorem.



