CHAPTER V

HYPONORMAL OPERATORS AND THEIR ADJOINTS

In the year 1956, W. A. Beck and C. R. Putnam¹⁾ proved the following theorem in a joint paper:

<u>THEOREM 5.A.</u> Let N be a normal operator. If $AN = N^*A$ for an arbitrary invertible operator A = UR, for which U is cramped, then $N = N^*$ i.e. N is self-adjoint.

The hypothesis in the above theorem does not only mean that the normal operator N is similar to its adjoint N^{*}, but imposes an additional condition on the operator A affecting this similarity in that U is cramped. As we known that a bilateral shift is unitary and is unitarily equivalent to its adjoint, without being self-adjoint, it follows that the restriction on A in the above theorem is optimal.

In the year 1962, S. K. Berberian²⁾ extended the above theorem of Beck and Putnam for any B^{*}-algebra as follows:

<u>THEOREM 5.B.</u> Let Z be an element of a B^{*}-algebra with unit I and U a unitary element of this algebra (i.e. $UU^* = U^*U = I$) with cramped spectrum. Then $UZU^* = Z^*$ implies that $Z = Z^*$ i.e. Z is self-adjoint.

1) W. A. Beck and (2) 2) S. K. Berberian [5] C. R. Putnam The fact that this result of Berberian is an extension of that of Beck and Putnam follows from the following theorem due to Putnam¹⁾:

<u>THEOREM</u> 5.C. Let N₁ and N₂ be two normal operators. If, for an invertible operator A = UR, N₂ = $AN_1 A^{-1}$, then N₂ = $UN_1 U^*$.

Recently, C. A. McCarthy²⁾ made a slight improvement in both these results in the following form: <u>THEOREM 5.D.</u> Let \emptyset be a linear transformation on an

algebra with involution such that

(i) if X is self-adjoint, then $\mathscr{O}(X)$ is also self-adjoint and

(ii)
$$-l \notin p(\emptyset)$$
, then
 $\emptyset(Z) = Z^*$ implies $Z = Z^*$.

In the present chapter, we extend to hyponormal operators the above result of Beck and Putnam on normal operators. Actually we prove the following theorem³⁾:

<u>THEOREM</u> 5.1. Let N be a hyponormal operator. If AN =N^{*}A for an arbitrary operator A, for which 0 & Cl(W(A)), then N = N^{*}

1) C. R. Putnam [19] 2) C. A. McCarthy [15] 3) I.H.Sheth [25]

Taking into consideration Berberian's result that an operator A is invertible with A = UR, where U is cramped provided that $0 \notin Cl(W(A))$, it follows that the condition $0 \notin Cl(W(A))$ in our result is stronger than the condition on A (via U is cramped) in Beck and Putnam's result.

We give below a list of lemmas which are needed in the proof of this result.

LEMMA 5.1. Let T be a hyponormal operator and let α_1 , α_2 6 a(T), $\alpha_1 \neq \alpha_2$. If $\{x_n\}$ and $\{y_n\}$ are sequences of unit vectors of H such that $\|(T - \alpha_1 I)x_n\| \to 0$ and $\|(T - \alpha_2 I)y_n\| \to 0$, then $(x_n, y_n) \to 0$.

PROOF: We have

$$(\alpha_1 - \alpha_2) (x_n, y_n) = (\alpha_1 x_n, y_n) - (x_n, \overline{\alpha}_2 y_n).$$

= $((\alpha_1 I - T) x_n, y_n) + (x_n, (T^* - \overline{\alpha}_2) y_n).$

Hence

 $|(\alpha_{1} - \alpha_{2}) (x_{n}, y_{n})| \leq ||(T - \alpha_{1}I)x_{n}|| ||y_{n}|| + ||(T^{*} - \overline{\alpha}_{2}I)y_{n}|| ||x_{n}||$ $\rightarrow 0 \text{ as } n \rightarrow \infty.$

i.e. $(x_n, y_n) \rightarrow 0$.

<u>LEMMA 5.2.</u> If T is hyponormal, then $s(T^*) = a(T^*)$.

This result has been proved in chapter II (as theorem 2.6).

<u>LEMMA 5.3.</u> [C. R. Putnam [21]]. If T is hyponormal such that s(T) is a set of real numbers, then T is self-adjoint.

LEMMA 5.4. If an operator A is similar to an operator B, then A is bounded below if and only if B is bounded below. In other words, if A and B are similar, then a(A) = a(B).

<u>PROOF</u>: Let $A = T^{-1}B T$ for an invertible operator T. Now if B is bounded below, then $B^*B \ge <I$ for some constant < > 0. Since T is invertible, there exist constants $\beta > 0$ and $\Upsilon > 0$ such that $T^*T \ge \beta I$ and $(T T^*)^{-1} = T^{*-1}T^{-1} \ge \Upsilon I$. Now $A^*A = T^*B^* T^{*-1} T^{-1} B T = (BT)^* T^{*-1} T^{-1} B T \ge (BT)^* \Upsilon I B T$ $= \Upsilon T^* B^* B T \ge \Upsilon T^* < I T = \Upsilon < T^* T \ge <\beta \Upsilon I$

i.e. A is bounded below. Since the above process is reversible, the stated result follows.

The relation a(A) = a(B) follows from the following two observations:

(i) if A is similar to B, then A - \ll I is similar to B - \ll I for all complex number \ll ;

(ii) $\not\triangleleft \not \in a(A)$ if and only if $A - \not \triangleleft I$ is bounded below.

<u>PROOF OF THEOREM 5.1:</u> Since $0 \notin Cl(W(A))$, A is invertible. Hence N = A⁻¹ N^{*}A and it follows from lemma 5.2 and 5.4 that $s(N) = s(N^*) = a(N^*) = a(N)$. In order to complete the proof of the theorem, it is sufficient, by virtue of lemma 5.3, to prove that s(N) is real. Assume on the contrary, that there exists an $\ll \in s(N)$ such that $\ll \neq \overline{\ll}$. Since $\ll \in s(N) = a(N)$, there exists a sequence $\{x_n\}$ of unit vectors such that

$$\|(\mathbb{N}^* - \overline{\mathfrak{A}} \mathbb{I})_{\mathbb{X}_n}\| \leq \|(\mathbb{N} - \mathfrak{A}\mathbb{I})_{\mathbb{X}_n}\| \to 0.$$

Since $0 \notin Cl(W(A))$, the relation

 $\|(\mathbf{N}_{n}^{*} - \overline{\mathbf{A}}\mathbf{I})\mathbf{x}_{n}\| = \|(\mathbf{A}\mathbf{N}\mathbf{A}^{-1} - \overline{\mathbf{A}}\mathbf{I})\mathbf{x}_{n}\| = \|\mathbf{A}(\mathbf{N} - \overline{\mathbf{A}}\mathbf{I})\mathbf{A}^{-1}\mathbf{x}_{n}\| \to 0$ implies that $\|(\mathbf{N} - \overline{\mathbf{A}}\mathbf{I})\mathbf{A}^{-1}\mathbf{x}_{n}\| \to 0$. Hence

$$(\mathbf{x}_n, \mathbf{A}^{-1}\mathbf{x}_n) = (\mathbf{A}\mathbf{A}^{-1}\mathbf{x}_n \stackrel{\text{if }}{\bullet} \mathbf{A}^{-1}\mathbf{x}_n) \rightarrow 0$$

by lemma 5.1. Putting $y_n = A^{-1}x_n / ||A^{-1}x_n||$, we have $||y_n|| = 1$ and $(Ay_n, y_n) \rightarrow 0$ i.e. $0 \in Cl(W(A))$ which contradicts the hypothesis that $0 \notin Cl(W(A))$. This completes the proof of the theorem.

We deduce, as a corollary, the following result:

COROLLARY 5.1. Let N be a semi-normal operator. If AN = N*A for an arbitrary operator A, for which O & Cl(W(A)), then N is self-adjoint.

<u>PROOF:</u> Let N^{*} be hyponormal. The proof of the main theorem shows that $0 \notin Cl(W(A))$ implies $0 \notin Cl(W(A^{-1}))$. Now the

relation AN = N^{*}A implies that $A^{-1}N^* = N A^{-1}$ i.e. BM = M^{*}B where M = N^{*} is hyponormal and O \notin Cl(W(B)) = Cl(W(A⁻¹)). Hence M = M^{*} by the main theorem i.e. N = N^{*}.