CHAPTER VI

HYPONORMAL OPERATORS AND POINT SPECTRUM

It is known that a hyponormal operator T with a pure point spectrum is normal, whether the Hilbert space under consideration is separable or not. The question naturally arises as to whether the condition that T has a pure point spectrum can be replaced by a weaker condition such as s(T) = p(T), in the above result. Thus we may pose the question:

If T is hyponormal with s(T) = p(T), is T normal?

The present chapter is devoted to the study of this question. In fact, our investigation show that for a separable Hilbert space, the answer to the above question is in the affirmative. If, however, the underlying Hilbert space is non-separable, then, in general, the answer to the above question is in the negative, as we show by means of an example. Indeed, we prove the following theorems:

THEOREM 6.1. Let T be a hyponormal operator with s(T) = p(T).

Then T is normal if the Hilbert space under consideration
is separable.

THEOREM 6.2. If H is non-separable, then there exists a non-normal hyponormal operator with s(T) = p(T).

We state below some known results in the form of lemmas which will be needed in the proof of theorem 6.1.

LEMMA 6.1. Let T be hyponormal and suppose that s(T) = p(T), then $s(T + T^*) = p(T + T^*)$. If also H is separable, then $s(T + T^*)$ is a countable set on the real-axis and consequently measure of $s(T + T^*) = 0$.

This result has been proved in chapter IV (as theorem 4.1).

LEMMA 6.2. [C. R. Putnam [20]]. If C = AB - BA is a commutator of two operators A and B, then 0 belongs to the interior of Cl(W(C)), provided that A (or B) is self-adjoint with spectrum of measure 0.

LEMMA 6.3. [C. R. Putnam [20]]. If $C = AA^* - A^*A$ is semi-definite, then either (i) C = 0 or (ii) fdE(x) < I

for every set Z of measure zero on the real-axis, where $\int \text{d}E(\alpha)$ is the spectral resolution of A + A*.

PROOF OF THEOREM 6.1:

<u>lst PROOF:</u> Let $C = T^*T - TT^* = (T + T^*)T - T(T + T^*) \ge 0$. By hypothesis, $s(T + T^*) = p(T + T^*)$ and measure of $s(T + T^*)$ is zero by lemma 6.1. Hence 0 is an interior point of Cl(W(C)) by lemma 6.2. Since C is positive-definite, this implies that $Cl(W(C)) = \{0\}$ i.e. C = 0. In other words, T is normal.

2nd PROOF: The operator $C = T^*T - T$ T^* is positive-definite and $s(T + T^*) = p(T + T^*)$ by lemma 6.1. Now if $T + T^*$ has the spectral resolution $\int dE(x)$, then $\int dE(x) = I$ and $\int dE(x) = I$ and $\int dE(x) = I$ is zero. Hence C = 0 by lemma 6.3. i.e. T is normal.

The following corollaries can be derived from theorem 6.1:

COROLLARY 6.1. If H is finite-dimensional, then every hyponormal operator is normal.

<u>PROOF:</u> Since s(T) = p(T) in this case, the corollary follows immediately from the theorem.

COROLLARY 6.2. If T is quasi-normal (or sub-normal) with s(T) = p(T), then T is normal provided H is separable.

PROOF: The corollary follows from the inclusion relation between quasi-normal (or sub-normal) and hyponormal operators given in the introduction.

1000

PROOF OF THEOREM 6.2: We prove this theorem by showing the existence, in a constructive way, of a non-normal hyponormal operator with a point spectrum.

We denote by \mathcal{B} , the space of all sequences $s=\{y_n\}$, where $y_n\in H$ and $\|y_n\|$ is bounded for $n=1,\,2,\ldots$ We define a positive symmetric bilinear function on \mathcal{B} as follows:

For the elements $s = \{y_n\}$, $t = \{z_n\}$ of \mathcal{J} , \emptyset (s,t) = glim (y_n, z_n), where glim denotes the Banach limit of bounded sequence of complex numbers. Let $N = \{s : \emptyset (s,s) = 0\}$ and let Hilbert space K be the completion of the quotient vector space $\widehat{\mathcal{J}} = \widehat{\mathcal{J}}/N$. Let T^0 be the operator on K corresponding to the operator T on H as defined in [6]. The mapping $T \to T^0$ of $\mathcal{L}(H)$ into $\mathcal{L}(K)$ has the following properties:

$$(S + T)^{\circ} = S^{\circ} + T^{\circ}$$
, $(ST)^{\circ} = S^{\circ}T^{\circ}$, $(T^{*})^{\circ} = (T^{\circ})^{*}$, $I^{\circ} = I$, $||T^{\circ}|| = ||T||$ and $T \ge 0$ if and only if $T^{\circ} \ge 0$.

The main theorem of [6] is.

THEOREM 6.A. For every operator T on H, $a(T) = a(T^0) = p(T^0)$.

Let $\{x_n\}$ be an orthonormal basis of H. Let $S=\alpha$; $|\alpha|\leq 1$ be the closed unit disc in the complex plane and $\alpha_n\in S$ be the sequence such that every $\alpha\in S$ is

the limit of a subsequence of on . We define a mapping A of H into H as follows:

If $x = \Sigma \beta_n x_n \in H$, then $Ax = \Sigma \beta_n x_n x_n$, in short, $Ax_n = x_n x_n$ for $n = 1, 2, \ldots$. Then we have

- (i) A is a mormal operator;
- (ii) Every < € S is an approximate proper value of A;
- (iii) s(A) = a(A) = S;
- (iv) If A^{O} is the corresponding operator on K, then A^{O} is normal, and $s(A^{O}) = a(A^{O}) = a(A) = S = p(A^{O})$ by theorem 6.A.

Let B be the one-sided shift operator on H i.e. $Bx_n = x_{n+1}$ for $n = 1, 2, \dots$ Then we have

- (i') B is hyponormal;
- (ii') $s(B) = S \text{ and } a(B) = S \{0\};$
- (iii') If B° is the corresponding operator on K, then B° is hyponormal, $s(B^0) = S$ and $a(B^0) = p(B^0) = a(B) = S \{0\}$

Now we consider the tensor product $T = A^0 \oplus B^0$ of A^0 and B^0 on the product space $K \oplus K$.

Since

$$T^{*}T - T T^{*} = (A^{\circ} \oplus B^{\circ})^{*}(A^{\circ} \oplus B^{\circ}) - (A^{\circ} \oplus B^{\circ}) (A^{\circ} \oplus B^{\circ})^{*},$$

$$= ((A^{*})^{\circ} \oplus (B^{*})^{\circ}) (A^{\circ} \oplus B^{\circ}) - (A^{\circ} \oplus B^{\circ})((A^{*})^{\circ} \oplus (B^{*})^{\circ}),$$

$$= ((A^{*})^{\circ} A^{\circ} - A^{\circ}(A^{*})^{\circ}) \oplus (B^{*})^{\circ} B^{\circ} +$$

$$A^{\circ}(A^{*})^{\circ} \oplus ((B^{*})^{\circ} B^{\circ} - B^{\circ}(B^{*})^{\circ}),$$

 ≥ 0 .

i.e. T is hyponormal.

Also, we have s(T) = p(T) = S. Because, if $x = re^{i\theta}$, $0 < r \le 1$ and $0 \le \theta < 2\pi$, then $r \in p(A^0)$ and $e^{i\theta} \in p(B^0)$ by (iv) and (iii'). Hence there exist unit vectors x and y of x such that x = rx and x = rx

$$(A^{\circ} \oplus B^{\circ}) (x \oplus y) = (A^{\circ}x) \oplus (B^{\circ}y),$$

$$= rx \oplus e^{i\theta}y,$$

$$= (re^{i\theta}) (x \oplus y)$$

i.e. $\mathbb{E} \operatorname{re}^{i\theta} \in p(T)$.

Thus T is a non-normal hyponormal operator with a point spectrum.