CHAPTER VI

HYPONORMAL OPERATORS AND POINT SPECTRUM

It is xnown that a hyponormal operator T with
a pure point speetrum is normal, whether the Hilbert
space under consideration is separable or not. The question
naturally arises as to whether the condition that T has
a pure.point speetrum can be replaced by a weaker condition
such as s(T) = p(T), in the above result. Thus we may

pose the question:
If T is hyponormal with s(T) = p(T), is T normal ?

The present chapter is devoted to the study of
this question. In fact, our investigation show that for a
separable Hilbert space, the answer to the above question is
in the affirmative., If, however, the underlying Hilbert
space is non-separable;4then, in gemeral; the answer to the
above questioﬁ'is in the negative; as we show by means of

an example, Indeed, we prove the Tollowing theorems:

THEOREM 6,1. Let T be & hyponormal operator with s(T) = p(T).

Then T is normal if thée Hilbert space under consideration

is geparable.
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THEOREM 6.2, If H is rnon-separable, then there exists

a pon-normal hyponormal ¢perator with s(T) = p(T).

We gtate below some known results in the form

of lemmas which will be needed in the proof of theorem 6.1.

LEMMA 6,1. Let' T be hyponormal and suppose that s(T) = p(T),

then s(T + T%) = p(T + T%), If also H is separable, then

measure of s(T + T¥) = 0,

This result has been proved in chapter IV (as
theorem 4,1). '

LEMMA 6,2. (C. R. Putnam [20)). If C = AB - BA is &
commutator of two operators A and B, then @ belongs to the

interior of C1(W(C)), provided that A (or B) is self-adjoint

with spectrum of measure 0O,

If ¢ = an* - A% ig

LEMMA 6.3, -[C. R. Putnam [20}). it
0 or (ii) :JZ"dE‘(@() <I

gemi-definite, then gither (i) C

it

for every set 2 of measure gero on the real-axis, where

J«dE(«) ¥s the spectral resolution of A + AF,

PROOF OF THEOREM 6.1%

, C ok *
Ist PROOF: Let € =T T -T T = (T +T)T - T(T + T%) > o,
By hypothesis, s(T + Tf) = p(T + Tf) and measure of s(T + T%)
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is zero by lemma 6.1  Hence 0 is an interier point of
C1(W(C)) by lemma 6.2. Since C is positive-definite, this

implies that CL(W(C)) = {0} i.es C = 0. In other words,

T is normal,

ond PROOF: The operator C = T'T - T T is positive~definite
and s(T + T%) = p(T + T*) by lemma 6.1. Now if T + T* has

the spectral resolution I%dE(Q)} then ( I g?(%) = I and .
s{T+T

measure of s(T + T%) is zero. Hence C = 0 by lemma 6.3.

jeee T is mormal.

The following corollaries can be derived from

theorem 6.1:

COROLLARY 6,1. If H is finite-dimensional, then every

hyponormal operator is normal. -

PROOF: Since s{(T) = p(T) in this case, the corollary
follews immediately from the theorem.

COROLLARY 6,23 If T is quasi-normal (or sub-normal) With

s(T) = p(T), then T is normal provided H is separable.

PROOF: The corollary follows from the inclusien relation
between quasi-normal (or sub-normal) and hyponormal operators

given in the introduction.
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PROOF OF THEOREM 6.2¢ We prove this theorem by showing

the existence, in a constructive way, of a non~normal

hyponormal eperator with a point spectrum.

We denote by 33; the space of all sequences
s = {yn}, vhere y, € H and [ly,ll is bounded for n = 1, 24,44
We define a positive symmetrie bilinear funetion en B

as follows:

For the elements s = {yn}, t = {zp} of )2,
B (s,t) = glim (yp » zn)',’ where glim denotes the Basnach
limit of bounded sequence of complex numbers. Let
N = {s s D (s,8) = 0 } and let Hilbert space K be the
completion of the quotient vector space )9 = jB/Iir. Let T°
be the operator on K corresponding to the operator T on H
as defined in [6) . The mapping T =~ T° of L(H) into L£H(K)
has the following préperties:

(5 +1° =5 +1°75 (s1)° = §%°, (z%)° = (2°)%,
I°=1, [7°) = T and T ¥ 0 if and only ir T° > o.

The main theorem of [6) is.

THEOREM ' 6.8, For every operator T on H, a(T) = a(?®) = p(1°).

Let {xn} be an orthenormal basgis of H., Let
8= «3 [«] €1 be the closed unit disc in the complex
- plane and % € S be the sequence such that every € S is



1e

the 1limit of a subsequence of G o We definJQ%ZQapp}ﬂ
&N

\

. W ‘:-45' "
A of H into H as follows: AT L

If x = I8, x, € H, then Ax = 2B, < x, ,
~in short; Axn =4y X, for n = 1, 2y sese o Then we have

(1) A is a-mormal operator

(ii) Every « € S is an approximate proper value of A j

(ii1)  s(A) = a(a) = 8 |

(iv) If A® is the corresponding operator on K, then A°
is normal, and s(A®) = a(4®) = a(A) = § = p(4®)
by theorem 6.A. |

Let B be the one-sided shift operator on H
i-e; B = for n = l, 2, sese ¢ Then V;e have
Zn = X4 .

(1" B is hyponormal ; .
(1i") s(B) = S and a(B) =5 -~ {0} ;
(111')  Ir B° is the corresponding operator on K, then B°
is hyponormal, s(B°) = S and a(B%) = p(8®) = a(B)=s-{o0}

Now we consider the tensor product T = A°@®B°

of A% and B° on the product space K®K,
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Since
(2°0 39 *(1°@1°) - (L°®E°) (2@,

H

*r - 7 ¥

H

((a%)°® (8%1°) (2% %) - (4%0 ) (4" (3)°),
= ((4%)98° - 1°¢4™)°) ®(8*)°8° +
2%a%)%@ ((87)%8° - B0(8%)°),

2 0.

i.ee T is hyponormal.

Also, we have s(T).= p(T) = S. Because, if

~°C=reie, @<r<land0<e6 < 2m, thenrep(Ao) and

el® ¢ p(B°) by (iv) and (iii'). Hence there exist unit vectors

x and ¥y of K such that 2% = rX and Boy = eiey. Consequently;
(L°®38%) (xoy) = (4°2)® (%),
= rx @ei(?y;

]

(reX®) (x dy)
i.e. = retf g p(T), »

Also, if « = 0, then « = 0.8, where B # 0 € S. Now
0 ¢ p(a®) and g © p(BQ). Hence by an argument similar to the
one given above, £ = 0.8 € p(T). In other words,
8 ©p(T) =s(T). Since T is hyponormal and [IT]| & [1A°). [B®}l=1.1=1,
we have s(T) = p(T) = 8.

. Thus T is a non-normal hyponermal operator with

a point spectrum.



