1 Introduction	1
1.1 Fats and lipids	1
1.2 Fatty acids and their classification	2
1.2.1 Saturation Characteristics	2
1.2.2 cis and trans orientations	2 ·
1.2.3 Position of the double bonds	3
1.2.3.1 PUFAs with divinylmethane pattern	3
1.2.3.2 Conjugated fatty acids	5
1.2.4 Nutritional classification of fatty acids	5
1.2.4.1 Linoleic acid and α -linolenic acid as essential fatty acids	5
1.2.4.2 Linolenic acid (C18:2 n-6)	6
1.2.4.3 α-Linolenic Acid (C18:3 n-3)	6
1.3 Review of Literature	8
1.3.1 Biological importance of polyunsaturated fatty acids	8
1.3.2 Importance of balanced intake of n-3 and n-6 PUFAs	8
1.3.2.1 n-3 PUFAs and anti-inflammatory mediator production	8
1.3.2.2 n-3 PUFAs in fetal and infant early growth and development	9
1.3.2.3 n-3 PUFAs in preventing coronary heart disease	10
1.3.2.4 n-3 PUFAs and mental health	10
1.3.2.5 n-3 PUFAs and type 2 diabetes mellitus and obesity	11
1.3.2.6 n-3 PUFAs and cancer	11
1.3.3 Sources of essential fatty acids in our diet	12
1.3.3.1. Plant seed oils	13
1.3.3.2 Fishes and fish oil	13
1.3.3.3 Microorganisms as potential sources of n-3 PUFAs	14
1.3.4 Dietary requirements and recommendations	15
1.3.5 Functional food and nutraceuticals	16
1.3.6 Biosynthesis of PUFAs	17
1.3.6.1 Elongases	17
1.3.6.2 Fatty Acid Desaturases	18
1.3.7 Types of fatty acid desaturases	18
1.3.7.1 Front end desaturases	19
1.3.7.2 Methyl-end desaturases	19
1.3.8 Biochemistry of PUFAs biosynthesis	19
1.3.8.1 PUFAs biosynthesis in mammals	20
1.3.8.2 Biosynthesis of PUFAs in plants	22
1.3.8.3 PUFAs from yeast	23
1.3.9 Structure of fatty acid desaturases	24
1.3.10 Structural determinants for activity and regioselectivity of desaturases	26
1.3.10.1 Types of regioselectivity	26

Contents

/	
1.3.10.2 Cytochrome b5-like domain	26
1.3.10.3 Histidine motifs and active center	27
1.3.10.4 Substrate specificities and preferences	27
1.3.11 Evolutionary relationship of FADs	28
1.3.12 Present status of the research on microbial fad-3 genes	29
1.3.13 Regulation of fatty acid biosynthesis in yeast	. 30
1.3.13.1 Nutrient regulation of desaturase activity	31
1.3.13.2 Oxygen mediated regulation of desaturase activity	31
1.3.13.3 Temperature mediated regulation of desaturase activity	31
1.4 Present Investigation	33
1.4.1 Definition of the problem	33
1.4.2 In search of alternative sources of n-3 PUFAs	34
1.4.3 Objectives	34
1.4.4 This work	35
2. Materials and Methods	36
2.1 Microbial strains and plasmids	36
2.2 Media, chemicals, enzymes, biochemicals and kits	30
2.3 Media and Culture conditions	38
2.3.1 Media	38
2.3.1.1 Luria Broth	38
2.3.1.2 YPD broth and CSM broth	38
2.3.2 Culture conditions	39
2.4 Isolation of yeast from various sources	39
2.5 Primary Classification and Identification of yeast isolates	39
2.6 Molecular biology tools and techniques	40
2.6.1 Isolation of plasmid DNA	40
2.6.2 Yeast genomic DNA isolation and DNA quantification	40
2.6.3 Restriction enzyme digestion	41
2.6.4 Agarose gel electrophoresis	41
2.6.5 Elution of DNA from gels and purification	41
2.6.6 Ligation	42
2.6.7 Transformation of plasmid DNA in <i>E. coli</i>	42
2.6.8 Yeast transformation	42
2.6.9 PCRs	43
2.6.9.1 Primer designing	43
2.6.9.2 PCR Protocols	43
2.6.9.2.1 Screening of fad-3 positive yeast by PCR	43
2.6.9.2.2 rDNA amplification	44
2.6.10 DNA sequencing and identification	47
2.6.11 Total RNA isolation and Reverse Transcriptase-PCR	47
2.6.12 DNA - Hybridization studies	48
-	

ii ·

2.6.12.1 Probe labeling	48
2.6.12.2 Dot-blot analysis	48
2.6.12.3 Southern Hybridization	48
2.7 Sub-cloning and Heterologous expression of <i>fud-3</i> in <i>E. coli</i> BL21(DE3)	49
2.8 Biotransformation studies	49
2.8.1 In vivo transformation of standard fatty acids and edible oil	49
2.8.2 Induction of FAD-3 expression	50
2.8.3 Total Fatty acid extraction and their derivatization in methyl esters	51
2.8.4 Thin layer Chromatography (TLC)	51
2.8.5. Gas Chromatography	52
2.9 Protein expression and detection	52
2.9.1 Whole cell protein fraction	52
2.9.2 Culture supernatant protein fraction precipitation and dialysis	53
2.9.2.1 Ammonium sulphate precipitation	53
2.9.2.2 Acetone precipitation	53
2.9.3 Solubilization of membrane proteins	53
2.9.4. Purification of Ct-FAD-3 protein expressed in E. coli	54
2.9.5 Polyclonal anti-Ct-FAD-3 antibody generation and purification	54
2.9.6 Indirect ELISA	55
2.9.7 SDS Polyacrylamide gel electrophoresis (SDS-PAGE)	56
2.9.8 Western blot analysis	57
2.9.9 Isoelectric focusing (IEF) and 2-D SDS PAGE	57
2.10 Bioinformatics tools and websites	58

Results and Discussion

3. Isolation screening and characterization of n-3 polyunsaturated fatty		
acids producing yeasts	60	
3.1 Isolation of yeast from suitable sources	61	
3.2 Screening of yeast isolates for <i>fad</i> -3 gene and FAD-3 activity	66	
3.2.1 PCR screening for fad-3 gene	66	
3.2.1.1 Degenerate primer designing	66	
3.2.1.2 Primary PCR (~600 bp)	68	
3.2.1.3 Semi-nested PCR (~145 bp)	69	
3.2.2 Hybridization analysis	69	
3.2.3 Identification of selected yeast isolates	71	
3.2.4 Taxonomic analysis of identified yeast strains:	74	
3.2.5 Biotransformation of LA to ALA and analysis of fatty acids content	76	
3.2.6 Distribution of n-3 PUFA among yeasts and implications	84	
3.2.7 Importance of yeast having n-3 PUFAs producing ability	85	
4. Isolation, cloning and heterologous expression of Ct-fad-3 gene from		

4. Isolation, cloning and neterologous expression of Ct-Jaa-3 gene from Candida tropicalis PS-2

4.1 Development of *C. tropicalis* PS-2 as a potential n-3 PUFA producer

87 87

4.2 Isolation of <i>fad-3</i> gene from <i>C. tropicalis</i> PS-2	88
4.2.1 Strategy employed for amplification of <i>fad-</i> 3 gene sequence and	
expression vector construction	88
4.2.2 Cloning of Ct-fad-3	89
4.2.3 Sub-cloning of Ct-fad-3 in yeast expression vector pGAL-MF	90
4.3 Bioinformatics analysis of the derived Ct-fad-3 sequence	91
4.4 Heterologous expression and functional identification	94
4.4.1 Analysis of effect of <i>fad</i> -3 expression on growth of yeast cells	94
4.4.2 Analysis of Ct-fad-3 mRNA transcripts by reverse transcriptase PCR	95
4.4.3 Determination of desaturase activity of fad-3 gene on linoleic acid	96
4.5 Analysis of yeast protein expression	97
4.6 Solubilization and analysis of yeast membrane proteins	99
4.7 Heterologous expression of Ct-fad-3 in E. coli BL21(DE3)	102
4.7.1 Cloning of Ct-fad-3 in pET-28c(+)	102
4.7.2 Analysis of protein expression in E. coli by SDS-PAGE	102
4.7.3 Purification of FAD-3 protein from <i>E. coli</i> BL21(DE3) (pETSP28c)	104
4.8 Determination of pI of Ct-FAD-3	104
4.9 Generation and purification of polyclonal anti-FAD-3 antibody	105
4.10 Analysis of FAD-3 expression in yeast by indirect ELISA	106
4.11 Analysis of expression by Western blot	107
4.11.1 Analyzing specificity of generated anti-Ct-FAD-3 antibodies	107
4.11.2 Western blot analysis of Ct-FAD-3 expression in yeast	107
5. Functional characterization of recombinant Ct-FAD-3 in transgenic	
E. coli and S. cerevisiae	109
5.1 Functional analysis of FAD-3 protein expressed in E. coli	109
5.2 Confirmation of biotransformation product by GC-MS	110
5.3 Analysis of substrate specificity	113
5.4 Bio-transformation of edible vegetable oil	114
5.5 Time course of enzyme activity	115
Summary	v-viii
References	116
Appendix I	134
Appendix II	

;