CHAPTER III

THE ASSOCIATION OF METEREOLOGICAL VARIABLES AND POLLUTANTS WITH INCIDENCE OF RESPIRATORY ILLNESS IN RELATION WITH THE MEDICAL SALE IN VADODARA CITY

3.1 INTRODUCTION

Global warming has given birth to a variety of effects, namely, rising sea levels, altered patterns of agriculture, increased extreme weather events, and the expansion of the range of tropical diseases (Krosnick et al., 2000). From ancient times weather forecast has been major source for a layman to understand the atmospheric conditions. Based on these forecasts, one used to schedule his day-to-day activities and work accordingly. Earlier these forecasts were based solely upon the observations of sky. Today, meteorologists rely heavily on computer models (numerical weather prediction), it is still relatively common to use techniques and conceptual models that were developed before computers were powerful enough to make predictions accurately or efficiently (Hardin, 2003 and Bronnimann et al., 2005). Meteorological parameters like pressure system, wind speed and direction, humidity, temperature and precipitation, ultimately results from the variable relationships of heat, pressure, wind and moisture which is mainly the result of interactions between each of them with change in time. Respiratory illness is the term for diseases of the respiratory system which includes diseases of the lung, pleural cavity, bronchial tubes, trachea, and upper respiratory tract and of the nerves and muscles of breathing. Respiratory diseases range from mild and self-limiting such as the common cold to lifethreatening such as asthma. India is predicted to become the world's most populous nation by the year 2050. Industrialization and urban growth are now occurring at an unprecedented rate in this previously agrarian society (Chowgule et al., 1998). Both prevalence and mortality from asthma appear to have increased in many parts of the world during a time when better asthma medications have been available to more patients suffering from asthma (Alderson, 1987).

The economic burden of asthma is estimated to rank as one of the highest among chronic diseases due to the significant healthcare utilization associated with this condition. Varied studies

99

have been carried out for evaluation of the economic burden of asthma on society and individuals, wherein the efficient review of the financial impact of asthma to know the trend of the disease has not yet been carried out (Gergen, 2001; Woolcock *et al.*, 2001 and Morgan and Khan, 2003).

It is generally thought that some people are born with a genetic predisposition toward developing asthma, but environmental (and potentially societal) factors play a role in the actual development of the disease (Roemer *et al.*, 2000). It is this knowledge that allows scientists to determine ways in which asthma attacks can be prevented or limited. Human biometeorology refers to the relationship of human beings with the natural climatic conditions prevailing in the atmosphere. It studies influence of various meteorological parameters on man in health and disease, his adaptability to alteration in atmospheric environment and role that these changes play in triggering the onset of respiratory illness. Such studies are important because it directs us to implement policies that can improve air quality and help in understanding climatic changes which further facilitates us in humanizing the overall health condition and prevent respiratory illness in future by forming a proper management plan (Mount Sinai Medical Center, 2009).

A study of the burden of a disease is most needed by any health planner who is responsible for making specific plans to combat, contain and eliminate the disease in the population/community. As most planners are economists who prefer to optimize resource allocations based on the financial implications of the problem for the nation and the quantum of expenditure incurred by the population, this chapter documents the current prevalence of asthma in India and the amount of money presently spent by people for treatment, either to get cured or ameliorate suffering.

Demir *et al.*, (2001) in their studies with prevalence of asthma in Turkey have also reported the similar trend. Clinical studies by Klot *et al.*, (2002) have also proved increased asthma medication associated with pollution. Vijaykumar *et al.*, (2009) in their studies have proved Environmental pollution, in discriminate smoking and congested habitat without proper sanitation are the major reasons for the occurrence of asthma among urban populations. In Vadodara city, precise studies are not available to estimate respiratory health related disease burden. Reliable data on mortality and morbidity are scarce in general; they are almost

nonexistent.. Paucity of this adequate data makes the understanding of the public health situation more complex, but one can use indirect evidence for analysis that may reveal the sickness load. But the data from death registration sources are neither reliable nor complete; good percent of cases will go unregistered out of which only 10% of deaths are medically certified. Globally, the economic costs associated with Asthma exceed those of tuberculosis and HIV/AIDS combined (www.who.int/mediacentre/fact sheets, Fact sheet N°307 2001). The economic cost of Asthma is considerable both in terms of direct medical costs (such as hospital admissions and cost of pharmaceuticals) and indirect medical costs (Masoli *et al.*, 2004). Sources like ORG data can also help us indirectly by finding the facts about the economic burden of the diseases by knowing the medical sale.

Keeping the above points in view, the present study is a step forward to understand the relationship between the medical sales of the respiratory diseases in Vadodara city. The present study aimed to verify the results observed by trend analysis by SPSS which proved a strong correlation between meteorological factors and pollutants city and to extend the number of analyzed pollutants and health endpoints. The role of these factors on the increase of medication use was specifically studied. It was hypothesized that increase in pollution level is associated with increase in respiratory illness medication use prevalence. In particular, it was hypothesized that the increasing pollution level may affect on demand medication.

3.2 MATERIALS AND METHOD

3.2.1 Study parameters:

Along with 8 meteorological parameters and 3 Pollutants (as discussed in Chapter 2), sale of 7 Respiratory medicines were considered in this study, the data was obtained from ORG department for year 2005 to 2007. These 18 parameters were then applied on SPSS 12.0, software termed as Statistical Package for Social Sciences version 12.0 (SPSS 12.0). It was through this package that factor analysis study is performed and the extent of interdependence among these 18 parameters and the trend of interdependence for last three years were analyzed. The sale of 325 respiratory medicines categorized under 7 groups :

- 1. B. Inhalant Preparations
- 2. B. Inhalers
- 3. Inhaler Devices
- 4. B. Liquids
- 5. B. Injecta
- 6. B. Solids
- 7. B. Others

. •

Sr. No.	Name Of Drug
Broncho	dil.Inhalant Prep.
1	Seroflo
2	Asthalin
3	Duolin
4	Foracort
5	Aerocort
6	Budecort
7	Tiova
8	Beclate
9	Asthalin Hfa
10	Simplyone
11	Budamate
12	Formonide
13	Esiflo
14	Combihale-Ff
15	Budate
16	Ipravent
17	Duonase
18	Salbair-I
19	Seretide
20	Metaspray
21	Duova
22	Combihale-Fb
23	Forair
24	Combinist
25	Tiate
26	Pulmicort
27	Vent-Sf
28	Combitide
29	Ventorlin
30	Fullform
31	Levolin
32	Salbair
33	Salbair-B
34	Vent-Fb
35	Maxiflo
36	Tiomate
37	Ciclospray

Table 3.1: The list of medicines Considered in The Study

Sr. No.Name Of Drug38Derinide39Flohale40Triohale41Serobid42Duomate43Inhalex44Momenta45Formoflo46Budesal47Vent Bec48M-Spray49Ipneb50Derisone51Aquamet52Azeflo53Bekform54Fomtide55Metatop56Derihaler57Ciclohale58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotide	
39Flohale40Triohale41Serobid42Duomate43Inhalex44Momenta45Formoflo46Budesal47Vent Bec48M-Spray49Ipneb50Derisone51Aquamet52Azeflo53Bekform54Fomtide55Metatop56Derihaler57Ciclohale58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
40Triohale41Serobid42Duomate43Inhalex44Momenta45Formoflo46Budesal47Vent Bec48M-Spray49Ipneb50Derisone51Aquamet52Azeflo53Bekform54Fomtide55Metatop56Derihaler57Ciclohale58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
41Serobid42Duomate43Inhalex44Momenta45Formoflo46Budesal47Vent Bec48M-Spray49Ipneb50Derisone51Aquamet52Azeflo53Bekform54Fomtide55Metatop56Derihaler57Ciclohale58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
42Duomate43Inhalex44Momenta45Formoflo46Budesal47Vent Bec48M-Spray49Ipneb50Derisone51Aquamet52Azeflo53Bekform54Fomtide55Metatop56Derihaler57Ciclohale58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
43Inhalex44Momenta45Formoflo46Budesal47Vent Bec48M-Spray49Ipneb50Derisone51Aquamet52Azeflo53Bekform54Fomtide55Metatop56Derihaler57Ciclohale58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
44Momenta45Formoflo46Budesal47Vent Bec48M-Spray49Ipneb50Derisone51Aquamet52Azeflo53Bekform54Fomtide55Metatop56Derihaler57Ciclohale58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
45Formoflo46Budesal47Vent Bec48M-Spray49Ipneb50Derisone51Aquamet52Azeflo53Bekform54Fomtide55Metatop56Derihaler57Ciclohale58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
46Budesal47Vent Bec48M-Spray49Ipneb50Derisone51Aquamet52Azeflo53Bekform54Fomtide55Metatop56Derihaler57Ciclohale58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
47Vent Bec48M-Spray49Ipneb50Derisone51Aquamet52Azeflo53Bekform54Fomtide55Metatop56Derihaler57Ciclohale58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
48M-Spray49Ipneb50Derisone51Aquamet52Azeflo53Bekform54Fomtide55Metatop56Derihaler57Ciclohale58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
49Ipneb50Derisone51Aquamet52Azeflo53Bekform54Fomtide55Metatop56Derihaler57Ciclohale58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
50Derisone51Aquamet52Azeflo53Bekform54Fomtide55Metatop56Derihaler57Ciclohale58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
51Aquamet52Azeflo53Bekform54Fomtide55Metatop56Derihaler57Ciclohale58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
52Azeflo53Bekform54Fomtide55Metatop56Derihaler57Ciclohale58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
53Bekform54Fomtide55Metatop56Derihaler57Ciclohale58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
54Fomtide55Metatop56Derihaler57Ciclohale58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
55Metatop56Derihaler57Ciclohale58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
56Derihaler57Ciclohale58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
57Ciclohale58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
58Momeflo59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
59Combolin60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
60Nasicure61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
61Foratec62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
62Tiotrop63Aerovent64Budez65Duoset66Azenate67Aerotaz	
63Aerovent64Budez65Duoset66Azenate67Aerotaz	
64Budez65Duoset66Azenate67Aerotaz	
65Duoset66Azenate67Aerotaz	
66Azenate67Aerotaz	
67 Aerotaz	
68 Aprotida	
69 Aerovent Dp	
70 Asthalin-Ax	
71 Asthavent	
72 Asthavent Dp	
73 Autohaler	
74 Avessa	
75 Becoride	

Impact Of Meteorology On The Spatial Distribution Of Asthma Exacerbations In Vadodara City.

Sr. No.	Name Of Drug					
76	Bricanyl					
77	Budavent					
78	Budvent					
79	Ciclez					
80	Combinase-Aq					
81	Cromal					
82	Deriform					
83	Durasal					
84	Fomtaz					
85	Fomtrop					
86	Formosone					
87	Ipramist					
88	Levair					
89	Levair-B					
90	Levair-I					
91	Megaspray					
92	Nezalast					
93	Osonide					
94	Rheoran-F					
95	Rheoran-Sf					
96	Rheolin					
97	Salmeter					
98	Salvent					
99	Symbicort					
100	Symbiva					
101	Tioform Novocarts					
102	Tiomist Novocarts					
103	Tioform					
104	Tiomist					
105	Vent					
106	Vent Plus					
107	Ventiflo					
108	Ventoride					
109	Ventipra					
Broncho	dilators Solids					
110	Unicontin-E					
111	Montair					
112	Deriphyllin					
113	Doxobid					

Sr. No.	Name Of Drug
114	Montair Plus
115	Asthalin
116	Doxolin
117	Bricanyl
118	Theo Asthalin
119	Zordox
120	Doxiflo
121	Phyllocontin
122	Mucomix
123	Romilast
124	Betaday
125	Theobid D
126	Bambudil
127	Od Phyllin
128	Synasma
129	Telekast
130	Ab Phylline
131	Freefil
132	Eto-Salbetol
133	Telekast-L
134	Alupent
135	Telekast-Plus
136	Doxoril
137	Duralyn
138	Romilast-B
139	Broxine
140	Levolin
141	Theobric Plus
142	Ketasma
143	Ventorlin
144	Doxophyl
145	Butabrom
146	Doxovent
147	Doxoril Plus
148	Montek
149	Codofyline
150	Montus-Bl
151	Salbetol
152	Freeway

Impact Of Meteorology On The Spatial Distribution Of Asthma Exacerbations In Vadodara City.

Sr. No.	Name Of Drug
153	Unicontin
154	Vent
155	Bromhexine
156	Montek Plus
157	Grilinctus-Bm
158	Asmatide Br
159	Marax
160	Tsr
161	Ventiphylline
162	Asthakind
163	Salbusun-T
164	Tedral-Sa
165	Durasalyn-Drcm
166	Montus
167	Duralyn-Drcm
168	Sal Mucolite
169	Asthafen
170	Durasal
171	Pulmoza
172	Alergin
173	Doxomax
174	Phylin-1
175	Asmapax
176	Doxfree
177	Montemac
178	Erdozet
179	Mucolinc
180	Tritofen
181	Albutamol
182	Lungfyl
183	Abel
184	Airomol
185	Asthafree
186	Astham
187	Astharid
188	Astharid Plus
189	Asthavil
190	Azofen-T
191	Befree

	-
Sr. No.	Name Of Drug
192	Bronkoplus
193	Bronkotab
194	Dericip
195	Derivent
196	Derivent E
197	Emlucast
198	Etosal
199	Etoxin-B
200	Flohale
201	Ketotif
202	M-Kast
203	Monti
204	Montelast
205	Mucodyne
206	Odimont
207	Odimont-Plus
208	Ozaflo
209	Phylobid
210	Privent
211	Respidac
212	Tedral
213	Terphylin
214	Theobid
215	Theobric
216	Theoday
217	Theoresp
218	Theoresp Plus
219	Theostan-Cr
220	T.R. Phyllin
221	Ventair
222	Vent-T
223	Vent Et
224	Xputum
225	Zomont-Theo
	dilators Liquids
226	Grilinctus-Bm
227	Ambrodil S
228	Ventorlin
229	Respira-Old

Impact Of Meteorology On The Spatial Distribution Of Asthma Exacerbations In Vadodara City.

Sr. No.	Name Of Drug
230	Khadiradi Gutika
231	Vent-Pd
232	Asthalin
233	Spasma
234	Sal Mucolite
235	Levolin
236	Asmotone Plus
_237	Albutamol
238	Tuspel Px
239	Ventiphylline
240	Theo Asthalin
241	Eto-Salbetol
242	Airomol
243	Vasavaleha
244	Efelin-Pd
245	Durasalyn
246	Doxoril
247	Ventryl
248	Doxomax
249	Cadiphylate
250	Bromhexine
251	Bricanyl
252	Doxobid
253	Deriphyllin
254	Theoped
255	Bambudil
256	Euphomin
257	Doxolin
258	Salphyllin-Old
259	Topex-Br-Old
260	Freefil
261	Doxfree
262	Synasma
263	Asthafen
264	Asthafree
265	Broncordil
266	Broncordil-P
267	Broncordil Plus
268	Bronkoplus

Sr. No.	Name Of Drug
269	Bronko
270	Bronko-Ex
271	Bronkotus
272	Derivent
273	Doxiflo
274	Doxovent
275	Epixyl
276	Etoxin-B
277	Filistin
278	Ketotif
279	Mucodyne
280	Respidac
281	Servil
282	Sudex-Br
283	Tritofen
284	Vasavaleha
285	Vasavaleha
286	Vent
287	Vifex
288	Xputum P
Broncho	dilators Injecta.
289	Budecort
290	Mucomix
291	Epitrate
292	Deriphyllin
293	Levolin
294	Bricanyl
295	Efipres
296	Doxovent
297	Doxoril
298	Doxolin
299	Aerovent
300	Delin
301	Theofin
302	Vasocon
Inhaler]	Device
303	Rotahaler Transpar
304	Lupihaler
305	Revolizer

Impact Of Meteorology On The Spatial Distribution Of Asthma Exacerbations In Vadodara City.

Sr. No.	Name Of Drug
306	Zerostat-V
307	Baby Mask
308	Zerostat
309	Spacer
310	Zerostat-Vt Spacer
311	Vent Mate
312	Aerolife
313	Aerotaz
314	Aerotide
315	Easehaler
316	Novolizer

Sr. No.	Name Of Drug
317	Peak Flow Master
318	Respihaler
319	Rheohaler
320	Sunhaler
321	Transpacer
322	Volumatic
Broncho	dilators,Others
323	Asthakind
324	Haleezy
325	Caropram

3.3 **RESULTS:**

The analysis of 8 of the meteorological parameters for Vadodara city over a period of 3 years, viz. Height of Lowest layer, cloud cover, Maximum temperature, Minimum Temperature, Wind speed, Rainfall, Relative humidity and Vapor pressure, pollutants like SO_2 , NO_X and RSPM, with the sale of 7 respiratory medicines categorized under group bronchodilators like inhaler preparations, Inhalers, Liquids, Injecta, Solids, Bronchodilator others and Anti-asthmatics reveals interesting facts. Annual and seasonal variance, component matrix with respective scree plots are represented in **Table 3.2** to **3.39**. There was a distinct difference in the component matrix analysis. On annual basis the meteorological and the pollutants showed a strong corelation. The analysis has been carried out on seasonal and annual basis. It discloses interdependence of certain parameters for both seasonal and annual observations. The observations for the study were made in terms of total variance and the total number of components extracted, which gives the percentage of interdependence among each of the study parameter considered. Total variance and component matrix tables for 2005, 2006 and 2007 annual as well as seasonal observations explain the interdependence of meteorological parameters in a significant manner.

	Component			
	1	2	3	4
wndspđ	790	286	.487	057
MxT	278	772	262	140
MnT	904	244	148	096
RF	837	.365	.188	.063
RH	578	.804	.095	011
VP	873	.414	034	077
CC	755	.419	.153	.155
LL	.968	404	134	115
SO ₂	.677	192	.683	.089
NOx	.982	.010	.357	.260
RSPM	.934	252	.119	.045
B.InhlPrep	.938	.203	236	.149
B.Solids	.900	.359	.142	050
B.Liquids	.963	.479	137	.268
B.Injecta	.999	.408	005	265
Inhaler.Device	.980	.278	437	.123
B.others	.497	.089	.684	407
Anti.Others	348	345	.231	.761

Table 3.2: Component Matrix For 2005

Table 3.3: Component Matrix For 2006

	Component			
	1	2	3	4
wndspd	.854	364	.033	.018
MxT	126	763	.409	.006
MnT	.885	173	.310	.075
RF	.697	.438	.003	204
RH	.839	.636	011	094
VP	.833	.237	.209	.061
CC	.892	.424	021	016
LL	914	339	144	.057
SO2	589	.211	.688	.035
NOx	606	.114	.612	237
RSPM	.669	.334	.093	.577
B.InhlPrep	498	.656	052	.136
B.Solids	409	.218	238	.584
B.Liquids	654	.645	.047	437
B.Injecta	653	.625	.143	.198
Inhaler.Device	514	.673	173	.148
B.others	.000	204	.620	.504
Anti.Others	285	574	471	.120

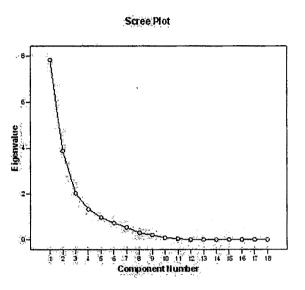


Fig. no. 3.1: Scree Plot For 2005



Fig. no. 3.2: Scree Plot For 2006

			Compo	ment	
	1	2	3	4	5
wndspd	799	320	.305	.186	.052
MxT	114	678	.023	.496	.301
MnT	848	051	075	.437	.080.
RF	745	.488	.211	187	035
RH	646	.876	.179	261	071
VP	879	.360	.191	.164	.059
CC	784	.537	.184	136	058
LL	.852	463	159	.083	023
SO ₂	.481	210	.668	.119	460
NOx	.347	255	.622	.201	247
RSPM	.401	214	.663	473	.386
B.InhlPrep	.507	.804	.050	.193	.156
B.Solids	.830	.445	.342	159	.139
B.Liquids	.521	.822	228	136	.127
B.Injecta	.371	.460	.459	.448	.329
Inhaler.Device	.421	.825	172	.281	.160
B.others	.408	.577	292	.431	489
Anti.Others	.062	494	327	335	.374

Table 3.4: Component Matrix For 2007

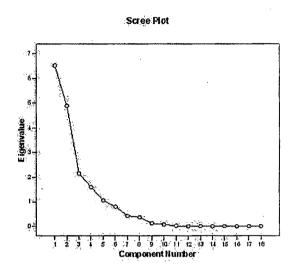


Fig. no. 3.3: Scree Plot For 2007

Table	3.5:	Component	matrix	for 2008	Annual.
	-				

	Component				
	1	2	3	4	
wndspd	064	851	165	082	
MxT	608	478	.486	.357	
MnT	.213	820	.365	.312	
RF	.884	341	.096	166	
RH	.829	275	.103	.116	
VP	.828	276	.103	.121	
CC	.387	668	.226	082	
LL	935	.203	051	121	
SO ₂	515	101	.223	.726	
NOx	824	014	.307	.365	
RSPM	206	.894	046	.292	
B.Inhaler	.814	.539	.015	.323	
B.Solids	263	.295	.731	534	
B.Liquids	.698	.544	.263	078	
B.Injecta	270	.194	.776	519	
Inhaler.Devices	.450	.467	.487	.407	
B.Others	.504	.892	.049	.128	
Anti.Others	225	.143	522	089	

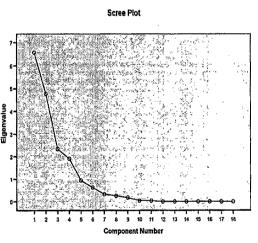


Fig. no. 3.4: Scree Plot For 2008

Table 3.6: Component matrix for 2009 Annual.

1			Compo	onent	
	1	2	3	4	5
wndspd	.195	.772	.004	.139	.323
MxT	.807	.314	336	.281	.035
MnT	.338	.790	288	.320	035
RF	.148	.689	.254	446	211
RH	270	.763	.323	406	001
VP	.123	.964	148	096	.109
СС	268	.679	366	070	.394
LL	050	781	.084	.463	.064
SO ₂	.690	.251	.532	.283	.183
NO _X	.842	.214	.441	.094	.090
RSPM	.620	.484	.275	.398	078
InhlPrep	873	.076	.352	.143	.263
solids	.824	221	093	208	140
liquids	922	.144	.170	.161	.208
Injecta	300	.348	736	.176	192
Inhaler	548	.436	.128	.325	581
B.other	919	.231	.050	.162	.185
AntiOther	.484	486	251	135	.392

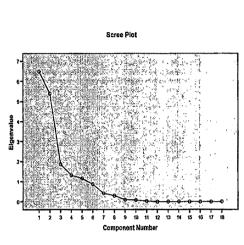


Fig. no. 3.5: Scree Plot For 2009

Table 3.7: Component matrix for 2010 Ann
--

	0	omponent	+
	1	2	. 3
wndspd	.382	.606	.466
MxT	.046	.508	.821
MnT	.579	.605	.148
RF	.819	.454	418
RH	.829	087	512
VP	.856	.483	005
сс	.899	.337	234
LL	835	495	.165
SO_2	.024	911	.064
NOx	674	.057	401
RSPM	042	.199	.663
InhlPrep	.862	627	.099
solids	747	.619	214
liquids	.883	599	.117
Injecta	.587	769	.152
Inhaler	.595	026	.340
B.other	.899	541	.140
AntiOther	.882	.445	253

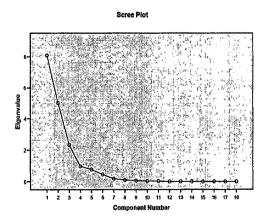


Fig. no. 3.6: Scree Plot For 2010

0		
Co	nponent	
1	2	3
998	057	.028
263	923	.281
891	452	.033
759	.305	.510
874	.356	.167
980	.184	.082
674	.352	.550
.829	390	400
.820	.386	066
.842	.320	.099
.881	145	.129
.874	.091	208
.832	.322	.287
.857	.499	.131
.869	189	.158
.841	338	.580
.448	694	.563
.873	.388	.393
	1 998 263 891 759 874 980 674 .829 .820 .842 .881 .874 .832 .857 .869 .841 .448	998 057 263 923 891 452 759 .305 874 .356 980 .184 674 .352 .829 390 .820 .386 .842 .320 .881 145 .874 .091 .832 .322 .857 .499 .869 189 .841 338 .448 694

Table 3.8: Component Matrix For 2005 Summer

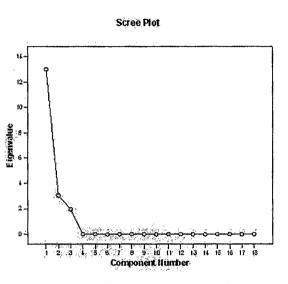


Fig. no. 3.7: Scree Plot For 2005 Summer

Table 3.9: C	omponent	Matrix]	For 2	2006 \$	Summer
---------------------	----------	----------	-------	---------	--------

•	•		
,		Compone	nt
/	1	2	3
wndspd	.889	069	.130
MxT	449	630	.634
MnT	.891	381	.247
RF	.883	.495	182
RH	.879	.463	.117
VP	.879	.121	.166
CC	.854	.253	.160
LL	892	269	364
SO ₂	954	291	.074
NOx	912	.399	.093
RSPM	.886	166	.028
B.InhlPrep	736	.213	.643
B.Solids	.287	.943	167
B.Liquids	875	.485	001
B.Injecta	910	.120	.397
Inhaler.Device	781	.488	213
B.others	.560	826	060
Anti.Others	343	707	618

Scree Plot

Fig. no.3.8: Scree Plot For 2006 Summer

	-		
		Compone	nt
	1	2	3
wndspd	928	364	075
MxT	.517	153	.842
MnT	812	580	072
RF	753	.338	.664
RH	946	.250	.205
VP	977	110	.181
CC	860	.231	.654
LL	.906	239	350
SO ₂	.355	669	.654
NOx	449	511	733
RSPM	.569	465	.679
B.InhlPrep	.938	002	.348
B.Solids	.686	.825	066
B.Liquids	.945	.519	130
B.Injecta	.606	487	629
Inhaler.Device	.973	086	.214
B.others	475	.879	040
Anti.Others	.209	.872	113

Table 3.10: Component Matrix For 2007 Summer

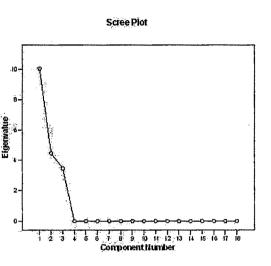
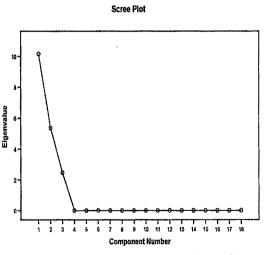
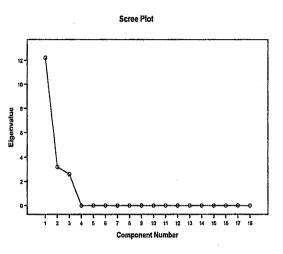



Fig. no. 3.9: Scree Plot For 2007 Summer

Table 3.11:	Component matrix	for 2008 Summer.
-------------	-------------------------	------------------


	C	omponent	
	1	2	3
wndspd	908	.203	.366
MxT	.611	.773	.170
MnT	867	.479	.138
RF	880	316	354
RH	941	307	.143
VP	943	300	.144
CC	083	.100	991
LL	.817	.351	190
SO ₂	.224	.727	.516
NOx	.839	.543	047
RSPM	.824	661	.198
B.Inhaler	.653	.791	.310
B.Solids	.620	779	.093
B.Liquids	.858	259	126
B.Injecta	.642	763	.078
Inhaler.Devices	.840	399	.542
B.Others	.841	487	236
Anti.Others	.378	.732	567

	Component			
	1	2	3	
wndspd	.912	175	.371	
MxT	197	.965	.173	
MnT	.970	.125	.208	
RF	.778	110	619	
RH	.871	446	.205	
VP	.960	229	162	
CC	.594	.135	.593	
LL	823	.169	.542	
SO ₂	.178	.947	269	
NO _X	.187	.499	846	
RSPM	.989	139	.046	
InhlPrep	.994	.045	095	
solids	978	202	039	
liquids	.981	.022	191	
Injecta	.995	100	029	
Inhaler	.691	.626	.361	
B.other	.983	173	059	
AntiOther	832	517	202	

Table 3.12: Component matrix for 2009 Summer.

Table 3.13: Component matrix for 2010 Summer.

	Component		
	1	2	
wndspd	.969	147	
MxT	.363	795	
MnT	.849	389	
RF	.873	.468	
RH	.907	.415	
VP	.997	029	
CC	.990	.105	
LL	950	097	
SO ₂	.017	.998	
NOx	172	.930	
RSPM	.787	.615	
InhlPrep	.993	053	
solids	907	.299	
liquids	.988	054	
Injecta	.962	126	
Inhaler	.994	059	
B.other	.989	124	
AntiOther	.977	.152	

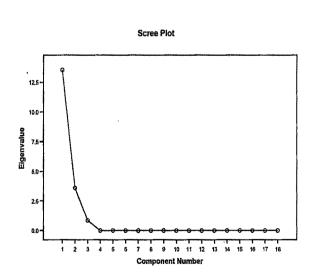


Fig. no. 3.12: Scree Plot For 2010 Summer

Impact Of Meteorology On The Spatial Distribution Of Asthma Exacerbations In Vadodara City.

Table 3.14: Component Matrix For 2006 Monsoon

		Componen	nt
	1	2	3
wndspd	923	.381	053
MxT	.926	~.084	683
MnT	919	385	.083
RF	824	.382	.418
RH	963	047	.264
VP	978	184	.099
CC	985	.089	.150
LL	.978	057	203
SO ₂	.922	.388	005
NOX	.961	.277	003
RSPM	.962	616	.199
B.InhlPrep	.910	260	.426
B.Solids	.461	.775	.146
B.Liquids	.936	505	.215
B.Injecta	.866	.576	.473
Inhaler.Device	.921	556	.129
B.others	.652	.756	.059
Anti.Others	309	.173	935

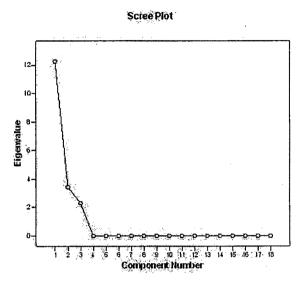


Fig. no. 3.13: Scree Plot For 2006 Monsoon

Table 3.15: Component Matrix For 2007 Monsoon

		Compone	nt
	1	2	3
wndspd	.966	045	253
MxT	799	.563	210
MnT	.935	110	.337
RF	.940	.257	.224
RH	.935	284	.213
VP	.941	218	.261
CC	.951	271	.148
LL	931	.273	240
SO ₂	.755	.591	.283
NOx	.435	.583	.444
RSPM	.925	.365	.104
B.InhlPrep	840	018	.342
B.Solids	959	283	022
B.Liquids	931	.255	.261
B.Injecta	560	211	.801
Inhaler.Device	952	007	.306
B.others	934	.059	.353
Anti.Others	096	983	.159

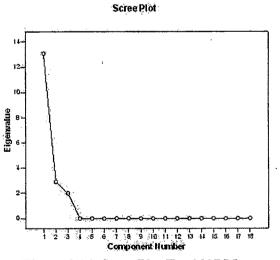
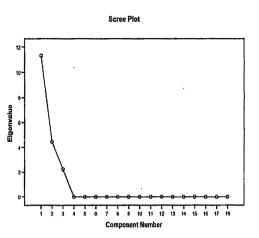



Fig.no. 3.14: Scree Plot For 2007 Monsoon

Impact Of Meteorology On The Spatial Distribution Of Asthma Exacerbations In Vadodara City.

	Component			
	1	2	3	
wndspd	994	023	106	
MxT	.913	406	041	
MnT	989	145	001	
RF	938	.308	161	
RH	923	.248	.295	
VP	919	.243	.309	
CC	862	426	275	
LL	.929	262	262	
SO ₂	.923	688	059	
NOx	.973	118	198	
RSPM	.994	.050	.096	
B.Inhaler	.245	.910	335	
B.Solids	.968	.310	.389	
B.Liquids	228	.967	.116	
B.Injecta	.663	.590	.460	
Inhaler.Devices	.544	.375	.751	
B.Others	.417	.684	598	
Anti.Others	331	700	.633	

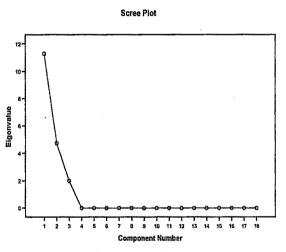


Table 3.17: Component matrix for 2009 Monsoon.

	Component			
	1	2	3	
wndspd	.308	.951	.018	
MxT	222	.955	198	
MnT	.535	.732	422	
RF	.922	369	.115	
RH	.965	.070	251	
VP	.901	.572	176	
CC	587	.684	433	
LĹ	539	.233	,809	
SO ₂	.669	.317	.672	
NOX	.971	.324	.369	
RSPM	.697	.570	.436	
InhlPrep	998	.027	.056	
solids	.993	.032	110	
liquids	999	026	.047	
Injecta	998	.066	020	
Inhaler	.721	680	133	
B.other	998	.016	.053	
AntiOther	.771	624	128	

115

.

		······
	Compo	
	1	2
wndspd	.774	.144
MxT	612	732
MnT	175	983
RF	.903	429
RH	977	.163
VP	.997	.062
CC	.980	175
LL	983	.129
SO_2	797	.467
NOx	877	.414
RSPM	980	140
InhlPrep	.904	.403
solids	.910	370
liquids	.904	.367
Injecta	.982	099
Inhaler	.650	.748
B.other	.540	.842
AntiOther	.937	.348

Table 3.18: Component matrix for 2010 Monsoon.

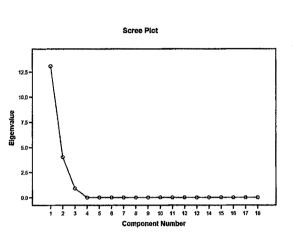


Fig.no. 3.17: Scree Plot For 2010 Monsoon

Table	3.19:	Component	Matrix	For	2007	Winter

		Compone	nt
	1	2	3
wndspd	222	.916	.334
MxT	.935	.676	.062
MnT	.917	428	387
RF	.954	.279	110
RH	.136	.985	.105
VP	.940	.224	.494
CC	181	.923	341
LL	.595	628	501
SO ₂	.982	.181	057
NOx	.968	.251	011
RSPM	.990	059	.127
B.InhlPrep	.401	905	.139
B.Solids	.163	.365	917
B.Liquids	.994	078	.442
B.Injecta	.556	197	807
Inhaler.Device	.332	.909	.422
B.others	233	862	.450
Anti.Others	.436	704	.461

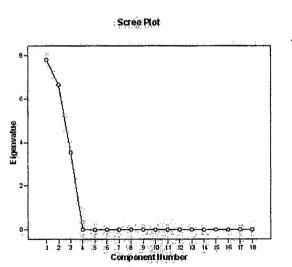


Fig. no. 3.18: Scree Plot For 2007 Winter

Table 3.2	0: Component	matrix for	2008 Winter.
-----------	--------------	------------	--------------

	Component		
	1	2	
wndspd	.989	.458	
MxT	.996	.094	
MnT	.684	730	
RF	.974	.228	
RH	.987	162	
VP	.982	189	
CC	.104	.995	
LL	.228	974	
SO ₂	235	.972	
NO _X	.987	462	
RSPM	.263	965	
B.Inhaler	998	.058	
B.Solids	.978	.479	
B.Liquids	917	.398	
B.Injecta	998	068	
Inhaler.Devices	.980	.199	
B.Others	.914	.900	
Anti.Others	.913	.408	

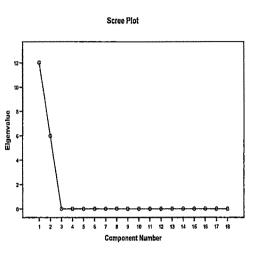


Fig. no. 3.19: Scree Plot For 2008 Winter

.

Table 3.21:	Component	matrix f	for 2009	Winter.
A SUMAN WINAL	COMPONENCE			

	С	omponent	t
	1	2	3
wndspd	.111	963	.243
MxT	185	399	.898
MnT	934	.343	101
RF	590	.521	.617
RH	904	348	247
VP	587	.529	.613
CC	846	.532	.030
LL	.938	058	.341
SO ₂	.951	.138	.275
NOX	.890	315	.329
RSPM	.907	.384	.174
InhlPrep	.917	.373	142
solids	952	.264	153
liquids	.935	.318	157
Injecta	.912	.390	131
Inhaler	358	933	030
B.other	.927	299	225
AntiOther	987	163	.013

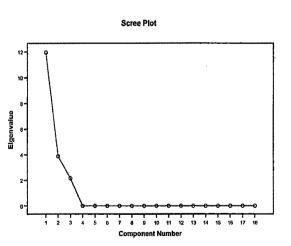
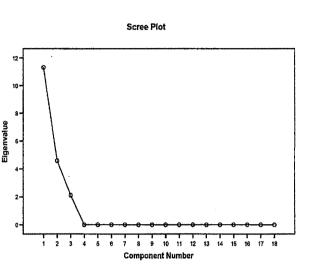



Fig. no. 3.19: Scree Plot For 2009 Winter

	C	omponent	
	1	2	3
wndspd	.345	114	.932
MxT	.705	.513	.490
MnT	061	.983	174
RF	.427	.902	055
RH	.975	.098	.198
VP	.959	.257	122
CC	.996	.059	071
LL	753	589	294
SO ₂	.959	278	056
NOx	783	139	.607
RSPM	.626	.775	082
InhlPrep	.972	207	111
solids	958	.282	.055
liquids	.973	208	095
Injecta	.979	167	113
Inhaler	· .526	680	.510
B.other	.959	280	044
AntiOther	.433	819	377

Table 3.22: Component matrix for 2010 Winter.

	С	omponer	nt		С	omponen	t
	1	2	3		1	2	3
wndspd	.986	.146	077	Wndspd	.981	.138	134
MxT	.225	.896	.383	MxT	.218	.959	.17
МnТ	.851	.525	002	MnT	.842	.523	13
RF	.846	399	.355	RF	.861	305	.40
RH	.920	391	003	RH	.927	372	.054
/P	.993	101	058	VP	.993	099	06
CC	.775	373	.509	CC	.794	248	.55
.L	900	.362	241	LL	912	.292	28
O ₂	889	457	017	SO ₂	881	461	.10
IO _X	895	417	.157	NO _X	884	386	.26
RSPM	965	.034	.260	RSPM	959	.076	.274
						the second s	
Inhaler	685	.185	. <u>505</u>	B.other	418	<mark>.996</mark>	
Inhaler	C	omponen	it	B.other	C	omponen	t
	C-1	omponen	it 2		C- 1	omponen	t 2
wndspd	C. 1	omponen 993 -	it 2 .096	wndspd	C- 1	omponen 985	t 2 146
wndspd MxT	C. 1	omponen 993 - 291 -	it 2 .096 .771	wndspd MxT	C1	omponen 985 241	t 2 146 860
wndspd MxT MnT	C. 1	omponen 993 - 291 - 885 -	t 2 .096 .771 .457	wndspd MxT MnT		omponen 985 241 855	t 2 146 860 518
wndspd MxT	C 1	omponen 993 - 291 - 885 - 821	tt 2 .096 .771 .457 .421	wndspd MxT		omponen 985 241 855 851 .	t 2 146 860 518 431
wndspd MxT MnT RF	C 1	omponer 993 - 291 - 885 - 821 891	tt 2 .096 .771 .457 .421 .438	wndspd MxT MnT RF		omponen 985 241 855 851 . 917 .	t 2 146 860 518 431 395
wndspd MxT MnT RF RH	C 1	omponer 993 - 291 - 885 - 821 891 983	it 2 .096 .771 .457 .421 .438 .148	wndspd MxT MnT RF RH VP	C(1)	omponen 985 241 855 851 . 917 . 991 .	t 2 146 860 518 431 395 101
wndspd MxT MnT RF RH VP	C 1	omponer 993 - 291 - 885 - 821 891 983 755	it 2 .096 .771 .457 .421 .438 .148 .526	wndspd MxT MnT RF RH	C(1	omponen 985 241 855 851 . 917 . 991 .	2 .146 .860 .518 .431 .395 .101 .519
wndspd MxT MnT RF RH VP CC LL	C 1	omponer 993 - 291 - 885 - 821 891 983 755 877 -	tt 2 .096 .771 .457 .421 .438 .148 .526 .463	wndspd MxT MnT RF RH VP CC LL		omponen 985 241 855 851 . 9917 . 991 . 785 .	t 2 146 860 518 431 395 101 519 386
wndspd MxT MnT RF RH VP CC LL SO ₂	C 1	omponer 993 - 291 - 885 - 821 891 983 755 877 - 919	tt 2 .096 .771 .457 .421 .438 .148 .526 .463 .384	wndspd MxT MnT RF RH VP CC LL SO ₂	C 1 1	omponen 985 241 855 851 . 917 . 991 . 785 . 903 893 .	t 2 146 860 518 431 395 101 519 386 449
wndspd MxT MnT RF RH VP CC LL	C 1	omponer 993 - 291 - 885 - 821 891 983 755 877 - 919 919	tt 2 .096 .771 .457 .421 .438 .148 .526 .463	wndspd MxT MnT RF RH VP CC LL	C 1	omponen 985 241 855 851 . 917 . 991 . 785 . 903 893 .	t 2 146 860 518 431 395 101 519 386

Table 3.23: Component Matrix of 2005 Summer For Specific Medicines.

	Compo	nent		С	omponen	t
	1	2		1	2	3
ndspd	.985	.170	Wndspd	.967	.254	.011
хT	467	.728	MxT	497	.513	.614
nT	.866	.493	MnT	.824	.556	.106
	.821	563	RF	.859	468	208
ł	.921	357	RH	.956	287	.063
0	.993	006	VP	.995	.071	.066
2	.980	137	CC	.995	063	.079
L	931	.108	LL	956	.065	286
O ₂	970	.230	SO ₂	980	.128	.151
O _X	867	430	NO _X	811	537	.234
SPM	.967	.239	RSPM	.937	.336	099
B.other	.480	.727	AntiOther	523	.558	644

Table 3.24: Component Matrix of 2006 Summer For Specific Medicines.

Table 3.25: Component Matrix of 2007 Summer For Specific Medicines.

	С	omponen	t		С	omponent	t
	1	2	3		1	2	3
wndspd	.801	021	.433	Wndspd	.751	010	.525
MxT	567	818	.094	MxT	543	.839	031
MnT	.768	020	.640	MnT	.699	.012	.515
RF	.748	.594	295	RF	.796	.546	263
RH	.851	.247	184	RH	.773	.204	104
VP	.856	.232	.177	VP	.741	.219	.256
CC	.852	.492	178	CC	.883	.451	127
LL	.903	390	.180	LL	930	348	.116
SO_2	435	648	.625	SO_2	472	.710	.723
NO _X	.445	699	.560	NO _X	.360	663	.657
RSPM	634	.659	.405	RSPM	647	.708	.283
Inhaler	.986	.667	.009	B.other	.821	119	.775

			and RS	SPM (In Grey)			
	С	omponen	t		С	omponen	t
	1	2	3		1	2	3
wndspd	764	.633	120	Wndspd	.832	.846	.330
MxT	.649	.516	.113	MxT	760	.650	.017
MnT	638	.744	.199	MnT	.747	.663	.055
RF	949	135	.287	RF	.941	189	281
RH	982	.121	144	RH	.975	078	.207
VP	982	.128	141	VP	.976	070	.207
CC	083	344	.935	CC	.109	066	992
LL	.973	098	.208	LL	958	.117	261
SO_2	.519	.846	121	SO_2	407	.843	.350
NO_X	.473	.152	.175	NO_X	926	.343	155
RSPM	.954	693	559	RSPM	587	748	.311
InhlPrep	.965	.498	053	Inhaler	671	.836	.600

Table 3.26: Component Matrix of 2008 Summer For Specific Medicines.

Table 3.27: Component Matrix of 2009 Summer For Specific Medicines.

	С	omponen	t		С	omponen	t
	1	2	3		1	2	3
wndspd	.619	306	.249	Wndspd	.611	321	.25
MxT	357	.501	.788	MxT	363	.491	.79
MnT	.931	.021	.365	MnT	.625	.003	.37
RF	.501	.454	392	RF	.512	.451	37
RH	.627	369	064	RH	.624	379	05
VP	.988	.055	144	VP	.991	.046	12
CC	.544	438	.715	CC	.528	457	.71
LL	853	362	.376	LL	863	358	.35
SO_2	.027	.849	.527	SO_2	.029	.839	.54
NO_X	.124	.975	185	NO _X	.138	.976	16
RSPM	.997	036	.066	RSPM	.996	049	.08
InhlPrep	.976	.192	.105	Liquids	.971	.235	.04

b.)

	С	omponen	t				С	omponen	t
	1	2	3				1	2	3
wndspd	.725	285	.251		Wnds	pd	.923	282	.262
MxT	380	.468	.797		MxT		394	.460	.796
MnT	.726	.038	.376		MnT		.720	.040	.389
RF	.491	.488	370		RF		.693	.495	355
RH	.738	339	064		RH		.941	334	053
VP	.987	.089	131		VP		.989	.095	116
CC	.549	441	.709		CC		.542	444	.714
LL	846	397	.356		LL		848	404	.341
SO_2	004	.835	.551		SO_2		016	.830	.557
NO _X	.096	.983	157		NO_X		.093	.985	148
RSPM	.997	008	.077		RSPN	1	.996	003	.090
Injecta	.996	.075	.057		B.oth	er	.998	.055	004
				C	omponent				
				1	2	3			
		wnds	nd	.740	166	.297			
		MxT	pu	296	.845	.447			
		MnT		.758	.174	.228			
		RF		.759	.164	630			
		RH		.723	380	.060			
		VP		.723	058	229			
		CC		.908	029	.794			

.739

-.029

.573

.095

.800

.933

-.667

-.004

.522

 NO_X

RSPM

Inhaler

			ith RF (<mark>In Pir</mark> <mark>(ellow</mark>), RH (
	Compo			Compo			Compo	nent
	l Compo	2		1	2		l l	2
wndspd	.751	249	wndspd	.950	249	wndspd	.951	23
MxT	.286	829	MxT	.283	828	MxT	.288	81
MnT	.796	477	MnT	.798	478	MnT	.609	47
RF	.916	.373	RF	.716	.373	RF	.713	.38
RH	.945	.317	RH	.946	.316	RH	.942	.32
VP	.989	135	VP	.989	135	VP	.990	12
CC	.997	001	CC	.997	001	CC	.996	.01
LL	960	.005	LL	959	.004	LL	955	01
SO_2	.124	.990	SO ₂	.124	.990	SO ₂	.109	.99
NO _X	067	.943	NO _X	068	.944	NO _X	085	.94
RSPM	.646	.528	RSPM	.847	.528	RSPM	.940	.53
InhlPrep	.979	158	liquids	.974	159	Injecta	.945	21
	Compo	nent		Compo	nent		Compo	nent
	1	2		1	2		1	2
wndspd	.952	248	wndspd	.955	235	wndspd	.945	29
MxT	.288	829	MxT	.300	825	MxT	.266	84
MnT	.796	476	MnT	.802	466	MnT	.761	50
RF	.715	.374	RF	.909	.387	RF	.925	.33
RH	.945	.318	RH	.940	.331	RH	.955	.27
VP	.990	134	VP	.991	120	VP	.984	17
CC	.998	.000	CC	.998	.014	CC	.998	04
T T	961	.004	LL	961	010	LL	968	.04
LL	.123	.990	SO ₂	.109	.992	SO ₂	.169	.98
SO ₂	.125		110		0.12	NO _X	014	.94
	067	.943	NO _X	079	.942	NOX	014	.94
SO_2		.943 .529	NO _X RSPM	079 . 938	.942	RSPM	.966	.94

Table 3.28: Component Matrix of 2010 Summer For Specific Medicines.

Table 3.29: Component Matrix of 2005 Monsoon For Specific Medicines

Correlation With LL (In Blue)

	Compo	nent
	1	2
wndspd	.998	.045
MxT	817	576
MnT	.977	190
RF	.902	423
RH	.965	115
VP	.954	.232
CC	.919	.326
LL	646	.663
SO_2	988	152
NO_X	899	351
RSPM	972	152
InhlPrep	782	.612

Table 3.30: Component Matrix For 2006 Monsoon For Specific Medicines

	Compo	onent		Compor	nent		Compor	nent
	1	2		1	2		1	2
wndspd	.891	.374	wndspd	.899	.287	wndspd	.887	.392
MxT	819	198	MxT	804	353	MxT	818	188
MnT	.933	360	MnT	.932	339	MnT	.937	350
RF	.866	.449	RF	.861	.499	RF	.862	.451
RH	.993	.002	RH	.990	.042	RH	.994	.009
VP	.987	160	VP	.987	154	VP	.988	148
CC	.993	.117	CC	.993	.112	CC	.992	.128
LL	995	095	LL	994	107	LL	994	104
SO_2	923	.377	SO_2	924	.377	SO_2	927	.364
NO _X	958	.267	NO _X	960	.279	NO_X	961	.252
RSPM	703	580	RSPM	715	438	RSPM	696	602
B. Solids	461	.484	Injecta	615	.448	B.other	666	.443

a. Correlation With RF (In Pink)

	Compo	nent		Co	omponer	nt
	1	2		1		2
wndspd	.925	378	wndspd	.9	930 -	.355
MxT	801	256	MxT	8	815 -	.099
MnT	.907	.351	MnT		896	.421
RF	.880	136	RF		895 -	.249
RH	.984	.152	RH	.9	985	.137
VP	.975	.185	VP	.9		.231
CC	.998	023	CC			.020
LL	996	029	LL			.021
SO_2	901	314	SO_2			.406
NO _X	944	217	NO _X			.299
RSPM	758	.550	RSPM			.522
InhiDean			l'aut da			.516
InhlPrep	755	.510	liquids			
InniFrep	Сотро	nent		Co	omponer	nt
wndspd	Сотро	nent	Wndspd	Co	omponer	nt 3
wndspd MxT	Compo 1	nent		Cc 1	omponer 2	nt 3 28
wndspd MxT MnT	Compo 1 .930	nent 2 345	Wndspd	Co 1 .913	omponer 2 .292	nt 3 28 .24
wndspd MxT MnT	Compo 1 .930 820	nent 2 345 066	Wndspd MxT	Co 1 .913 820	omponer 2 .292 .519	nt 28 .24 .39
wndspd MxT MnT RF	Compo 1 .930 820 .894	nent 2 345 066 .432	Wndspd MxT MnT	Co 1 .913 820 .914	omponer 2 .292 .519 078	nt
wndspd MxT	Compo 1 .930 820 .894 .899	345 066 .432 268	Wndspd MxT MnT RF	Co 1 .913 820 .914 .884	omponer 2 .292 .519 078 164	nt 28 .24 .39 42 .02
wndspd MxT MnT RF RH	Compo 1 .930 820 .894 .899 .986	nent 2 345 066 .432 268 .133	Wndspd MxT MnT RF RH	Co 1 .913 .820 .914 .884 .990	2 292 .292 .519 078 164 136	nt 28 24 43 43 43
wndspd MxT MnT RF RH VP	Compo 1 .930 .820 .894 .899 .986 .967	nent 2 345 066 .432 268 .133 .240	Wndspd MxT MnT RF RH VP	Co 1 .913 820 .914 .884 .990 .978	2 .292 .519 078 164 136 021	nt 28 .24 .39 43
wndspd MxT MnT RF RH VP CC	Compo 1 .930 820 .894 .899 .986 .967 1.000	nent 2 345 066 .432 268 .133 .240 018	Wndspd MxT MnT RF RH VP CC	Co 1 .913 820 .914 .884 .990 .978 .998	2 292 519 078 164 136 021 .016	nt 3 28 .24 .39 41 .02 .20 00 .03
wndspd MxT MnT RF RH VP CC LL	Compo 1 .930 820 .894 .899 .986 .967 1.000 998	nent 2 345 066 .432 268 .133 .240 018 020	Wndspd MxT MnT RF RH VP CC LL	Co 1 .913 820 .914 .884 .990 .978 .998 998	2 292 519 078 164 136 021 .016 .041	nt 3 28 .24 .39 43 .02 .20 00
wndspd MxT MnT RF RH VP CC LL SO ₂	Compo 1 .930 820 .894 .899 .986 .967 1.000 998 885	nent 2 345 066 .432 268 .133 .240 018 020 422	Wndspd MxT MnT RF RH VP CC LL SO ₂	Co 1 .913 820 .914 .884 .990 .978 .998 998 998	2 .292 .519 078 164 136 021 .016 .041 .005	nt 3 28 .24 .39 41 .20 00 .00 .00 42

b) Correlation With RSPM and MxT.

	Compo	nent	
	1	2	
wndspd	.911	111	
MxT	850	.482	
MnT	.903	011	
RF	.981	.310	
RH	.970	213	
VP	.901	136	
CC	.915	218	
LL	911	.195	
SO_2	.762	.648	
NO_X	.463	.876	
RSPM	.910	.382	
liquids	.986	815	

Table 3.31: Component Matrix For 2007 Monsoon For Specific Medicine

Table 3.32: Compone	nt Matrix For 2008 M	lonsoon For Specific Medicine
---------------------	----------------------	-------------------------------

	Compo	nent		Compo	nent
	1	2		1	2
wndspd	.871	.168	wndspd	.979	.201
MxT	964	.265	MxT	961	.222
MnT	.755	.289	MnT	.760	.220
RF	.761	168	RF	.768	012
RH	.766	104	RH	.753	274
VP	.763	100	VP	.750	280
CC	.771	.545	CC	.790	.595
LL	.972	.118	LL	961	.262
SO_2	820	.572	SO_2	.912	.463
NO_X	990	030	NO _X	984	.108
RSPM	.968	195	RSPM	976	214
InhlPrep	.927	940	Inhaler	.974	839

			and	d RSPM	(In Gre	ey)			
	Сс	mponent					Со	mponent	
	1	2	3				1	2	3
wndspd	.629	.768	.121		Wndsp	d	.594	.804	.039
MxT	.124	.992	033		MxT		.077	.989	125
MnT	.738	.564	369		MnT		.705	.561	433
RF	.734	678	043		RF		.764	645	.004
RH	.912	224	345		RH		.716	213	340
VP	.942	.282	180		VP		.725	.307	223
CC	326	.909	262		CC		.972	.865	337
LL	376	.260	.890		LL		.974	.323	.869
SO_2	.773	055	.632		SO_2		.784	.039	.620
NO_X	.948	065	.313		NO_X		954	.007	.299
RSPM	.777	.210	.433		RSPM		.772	.288	.395
solids	932	294	214		Inhaler		.956	857	239
				Co	mponent				
				1	2	3			
		wndspo	d	.917	.778	.117			
		MxT		.108	.994	031			
		MnT		.726	.577	375			
		RF		.744	666	052			
		RH		.912	208	354			
		VP		.736	.298	188			
		CC		343	.904	256			
		LL		371	.252	.894			
		SO_2		.780	044	.624			
		NO_X		.752	051	.303			
		RSPM		.678	.223	.425			
		B.other	-	.926	.334	.176			

Table 3.33: Component Matrix For 2009 Monsoon For Specific Medicine

	Compo	nent		Compo	nent
	1	2		1	2
wndspd	.714	208	wndspd	.715	177
MxT	554	.795	MxT	635	.721
MnT	080	.996	MnT	178	.980
RF	.941	.337	RF	.902	.423
RH	.963	261	RH	.985	162
VP	.981	159	VP	.989	070
CC	.997	.075	CC	.985	.173
LL	997	029	LL	991	129
SO_2	863	379	SO_2	829	480
NO_X	928	321	NO_X	896	420
RSPM	968	.239	RSPM	988	.139
solids	.928	.282	AntiOther	.936	351

Table 3.34: Component Matrix For 2010 Monsoon For Specific Medicine

Table 3.35: Component Matrix For 2006 Winter For Specific Medicine

	С	omponen	t		С	omponen	t
	1	2	3		1	2	3
wndspd	.924	.319	213	Wndspd	903	.391	177
MxT	629	.205	750	MxT	.639	.237	732
MnT	727	656	.203	MnT	.687	714	.137
RH	.049	.464	.884	RH	021	.383	.924
VP	988	.051	.148	VP	.989	021	.147
CC	730	.606	.316	CC	.765	.531	.366
LL	.872	241	.427	LL	884	228	.408
SO_2	.998	.056	022	SO_2	993	.116	011
NO_X	.882	.382	276	NO _X	858	.457	234
RSPM	427	.976	224	RSPM	.478	.966	145
InhlPrep	.019	.988	.153	Injecta	.214	.969	.126

Correla	ation With	RSPM	(In G
	С	omponen	t
	1	2	3
wndspd	.913	.347	214
MxT	632	.172	756
MnT	704	678	.211
RH	.029	.480	.877
VP	989	.020	.144
CC	752	.586	.303
LL	.877	204	.434
SO_2	.996	.090	019
NO _X	.870	.408	278
RSPM	456	.957	240
solids	117	.980	.158

Table 3.36: Component Matrix For 2007 Winter For Specific Medicine

		(Correlation	With CC (<mark>In Yello</mark>	<mark>)w</mark>)		
	С	omponen	t		С	omponen	t
	1	2	3		1	2	3
wndspd	210	.978	012	Wndspd	081	.983	164
MxT	.758	.651	.048	MxT	.835	.550	021
MnT	.832	538	.131	MnT	.753	613	.240
RF	.974	.217	.063	RF	.993	.100	.066
RH	.176	.968	.178	RH	.298	.954	.039
VP	.786	.351	510	VP	.833	.168	527
CC	089	.778	.622	CC	.003	.868	.996
LL	.616	760	.208	LL	.508	791	.341
SO_2	.990	.140	020	SO_2	1.000	.009	004
NO_X	.974	.221	041	NO _X	.995	.088	037
RSPM	.963	033	267	RSPM	.955	194	223
Injecta	.637	442	.631	Solids	.280	.173	.944

	C	omponen	t		С	omponen	t
	1	2	3		1	2	3
wndspd	697	.509	.505	Wndspd	.954	.560	.344
MxT	688	429	.585	MxT	.607	278	.744
MnT	887	.025	460	MnT	.690	254	378
RF	838	.398	.373	RF	.679	.393	.268
RH	.600	.723	.343	RH	495	.868	.027
VP	950	.224	216	VP	.677	.008	215
CC	225	.967	116	CC	.365	.826	430
LL	.911	285	.297	LL	948	041	.314
SO_2	.749	.312	.427	SO_2	.903	.550	.231
NO_X	.738	072	.340	NO _X	945	.174	.278
RSPM	.994	.165	417	RSPM	852	.120	509
InhlPrep	.992	.412	451	Inhaler	.974	.177	.093

Table 3.37: Component Matrix For 2008 Winter For Specific Medicine

Table 3.38: Component Matrix For 2009 Winter For Specific Medicine	Table 3.38: Compone	ent Matrix For 200	Winter For S	Specific Medicine
--	---------------------	--------------------	---------------------	-------------------

	Component				Component		
	1	2	3		1	2	3
wndspd	.244	884	.398	Wndspd	.250	871	.423
MxT	080	246	.966	MxT	080	220	.972
MnT	974	.212	083	MnT	975	.203	091
RF	612	.256	.563	RF	618	.567	.545
RH	867	486	109	RH	863	495	097
VP	.911	.563	.557	VP	.916	.574	.540
CC	903	.331	.004	CC	906	.424	010
LL	.757	.110	.269	LL	.655	.125	.268
SO_2	.742	.291	.169	SO_2	.639	.303	.163
NO_X	.741	148	.306	NO_X	.641	132	.312
RSPM	.961	.508	.030	RSPM	.957	.515	.018
InhlPrep	.953	.541	279	Liquids	.975	.384	294

,

b.)

	C	omponen	t		C	Componen	t
	1	2	3		1	2	3
wndspd	.243	886	.396	Wndspd	.939	608	.718
MxT	079	248	.966	MxT	054	.173	.983
MnT	973	.215	081	MnT	991	.059	121
RF	610	.356	.565	RF	671	.675	.308
RH	869	483	108	RH	.908	572	.141
VP	.908	.564	.559	VP	.970	.679	.299
CC	902	.333	.007	CC	945	.300	135
LL	.758	.108	.268	LL	.738	.309	.156
SO_2	.743	.289	.168	SO_2	.603	.429	009
NO _X	.741	151	.304	NO_X	.650	.089	.298
RSPM	.962	.506	.030	RSPM	.900	.558	221
Injecta	.947	.557	271	B.other	.962	214	168
				omponent			

.030

.984

.611

.850

.610

.918

.962

-.935

-.958

-.840

.994

.268

-.173

-.519

.519

-.526

-.392

-.145

-.327

.114

-.543

-.969

.963

-.040

.598

-.084

.593

.050

.233

.137

.265

.006

.152

MxT

MnT

RF

RH

VP

CC

LL

 SO_2

NO_X

RSPM

Inhaler

131

1 2 3 wndspd .312 310 .898 MxT .851 .197 .487 MnT .272 .958 092 RF .007 .707 009 RF .707 .707 RH .056 255 .147 RH .056 255 VP .085 070 158 VP .985 070 271 295 LL 916 271 295 LL 917 277 SO2 .805 578 134 SO2 .805 572 NOx 766 .076 .639 NOx 764 .070 RSPM .850 .524 057 RSPM .850 .522 InhlPrep .940 .510 184 Mather .510 184 Math .955 260 .146 RH .951 .312 Math .955 260 .146 RH .951 <th< th=""><th></th><th>omponent</th><th>C</th><th></th><th>t</th><th></th></th<>		omponent	C		t			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7 .895	317	.914	Wndspd	.898	310	.312	wndspd
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.48	.194	.852	MxT	.487	.197	.851	MxT
RH 956 255 $.147$ RH 956 255 VP 985 070 158 VP 985 069 CC 954 273 125 CC 954 277 LL 916 271 295 LL 917 270 SO2 $.805$ 578 134 SO2 $.805$ 576 NOx 766 $.076$ $.639$ NOx 764 $.070$ RSPM $.850$ $.524$ 057 RSPM $.850$ $.522$ InhlPrep $.940$ 510 184 Liquids $.941$ 512 wndspd 910 318 $.896$ MrT $.381$ 018 MnT $.276$ $.957$ 085 MnT $.307$ 933 RF $.710$ $.704$ $.003$ RF $.735$ 658 RH 955 260 $.146$ RH 950 $.312$ VP	080	.959	.271	MnT	092	.958	.272	MnT
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	00	.708	.707	RF	009	.707	.907	RF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.14	255	.956	RH	.147	255	.956	RH
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	160	069	.985	VP	158	070	.985	VP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	129	271	.954	CC	125	273	.954	CC
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.29	270	917	LL	295	271	916	LL
RSPM .850 .524 057 RSPM .850 .52: InhlPrep .940 510 184 Liquids .941 512 Component 1 2 3 1 2 1 2 wndspd 910 318 .896 Wndspd 941 .576 MxT .801 .191 .489 MxT .381 018 MnT .276 .957 085 MnT .307 933 RF .710 .704 003 RF .735 658 RH 955 260 .146 RH 950 .312 VP 985 073 158 VP 973 .044 CC .953 .276 .126 CC .934 .244 LL 917 .266 .297 LL 940 .144	5140	576	.805	SO_2	134	578	.805	SO_2
InhlPrep .940 510 184 Liquids .941 512 Liquids .941 512	.64	.070	764	NO_X	.639	.076	766	NO _X
Component Component 1 2 3 wndspd 910 318 .896 MxT .801 .191 .489 MnT .276 .957 085 RF .710 .704 003 RF .710 .704 .003 RF .735 658 RH 955 260 .146 VP 985 073 158 CC .953 276 126 CC .953 276 297 LL 940 .143	05	.525	.850	RSPM	057	.524	.850	RSPM
1 2 3 wndspd 910 318 .896 MxT .801 .191 .489 MnT .276 .957 085 RF .710 .704 003 RH 955 260 .146 VP 985 073 158 CC .953 276 126 LL 917 266 297	174	512	.941	Liquids	184	510	.940	InhlPrep
wndspd 910 318 .896 Wndspd 941 .576 MxT .801 .191 .489 MxT .381 018 MnT .276 .957 085 MnT .307 932 RF .710 .704 003 RF .735 658 RH 955 260 .146 RH 950 .312 VP 985 073 158 VP 973 .044 CC .953 276 126 CC .934 .241 LL 917 266 297 LL 940 .144	Component 1 2 3					-		
MxT .801 .191 .489 MxT .381 018 MnT .276 .957 085 MnT .307 932 RF .710 .704 003 RF .735 658 RH 955 260 .146 RH 950 .312 VP 985 073 158 VP 973 .044 CC .953 276 126 CC .934 .24* LL 917 266 297 LL 940 .14*				Windend				wndend
MnT .276 .957 085 MnT .307 933 RF .710 .704 003 RF .735 658 RH .955 260 .146 RH .950 .312 VP .985 073 158 VP .973 .044 CC .953 276 126 CC .934 .24* LL 917 266 297 LL 940 .144								
RF .710 .704 003 RF .735 658 RH 955 260 .146 RH 950 .312 VP 985 073 158 VP 973 .044 CC .953 276 126 CC .934 .242 LL 917 266 297 LL 940 .145								
RH 955 260 .146 RH 950 .312 VP 985 073 158 VP 973 .044 CC .953 276 126 CC .934 .24' LL 917 266 297 LL 940 .145								
VP 985 073 158 VP 973 .044 CC .953 276 126 CC .934 .24' LL 917 266 297 LL 940 .143								
CC .953 276 126 CC .934 .24' LL 917 266 297 LL 940 .14'		.044						
LL917266297 LL940 .143		.247						
		.145						
		.530						
NO _X 766 .074 .639 NO _X 730 .103		.103		-				-
RSPM .952 .521053 RSPM .968494								

Table 3.39: Component Matrix For 2010 Winter For Specific Medicine

b.)

	C	omponen	t		Component			
	1 2 3				1	2	3	
wndspd	.923	326	.888	Wndspd	.906	.132	.943	
MxT	.854	.194	.483	MxT	.876	223	.427	
MnT	.263	.962	075	MnT	.351	886	303	
RF	.701	.713	.000	RF	.765	622	168	
RH	.959	250	.133	RH	.934	.300	.195	
VP	.984	059	168	VP	.971	.191	143	
CC	.955	263	139	CC	.924	.377	066	
LL	917	272	292	LL	943	.247	223	
SO_2	.809	568	153	SO_2	.749	.662	007	
NO _X	760	.056	.647	NO _X	741	282	.610	
RSPM	.945	.532	054	RSPM	.990	420	176	
B.other	.908	572	142	AntiOther	.931	.965	260	

Table: 3.40 Representation of Seasonal Medicinal sale with the Triggering factors

Parameters	Seasons								
rarameters		Summ	er	Monsoon			Winter		
Wndspd - ↓	◙, ♦, ●, ◘, ◙, ♦,			◙, ♦			♦, ◙, ♦, ●, ◘, ◙, ♦,		
MxT.		♦, ♦,		,●,◎					
MnT.									
Rain Fall				▲, □. ♦,	●,■, ▲,				
Relative Humidity		♦, ■, ●, ◘,	◙, ♦,	▲, ♦.	, ▲, □		♦, ∎, ●,	◘, ◙, ♦,	
Vapour Pressure	■,	●, ◘, ♦, ∎, ●	, ◘, ◙, ♦,	▲,	▲,।।		■, ●, ◘, ♦,	∎, ●, ◘, ◙, ♦,	
Cloud Cover	◙, ♦,	◘, ∣,♦, ◙, ■	, ●, ◘, ◙, ♦,	0,	▲,		▲ , ◘, ◙, ■	,●, ◘, ◙, ♦,	
H. Lowest Layer	0, ,, 0		0	. , . , 0			. , 0		
SO ₂		♦, ◙			O				
NO _X				●,●	D, 🔺				
RSPM	Ø,	■, ■, ●, ◘, ♦	, ◘, ◙, ♦,	∎,●, 0	, •,0, 🔳		▲ .□. ■, ■,	●, ◘, ♦, ◘, ◙, ♦, □	
Key:- Med	icine	B. inha. preparation	B. B Dilator Dila Solids Liqu	tor B.	Inhalor Devices	B. others	Anti. Others		
20	05				O	•			
20	06		A •		O	•			
20	07		A •		O	•			
20	- 80		•		O	•			
20	- 09	-	•		0	•			
20	- 10		▲ •		O	•			

3.4 DISCUSSION

Changes in certain environmental risk factors and exposures contribute to increased trends in the respiratory diseases, but little information is available relating specific risk factors to longitudinal trends, geographic variability, or high-risk populations (Evalyn *et al.*, 1999). At the national level, there is good evidence that over the last decade, increased sales of respiratory illness drugs were associated with a decline in rates of hospital admission for the disease. The level of drug sales and their trends will reflect not only the burden of respiratory illness but also the proportion of patients being treated (Gupta *et al.*, 2006). Several hypotheses have been proposed to account for the increase, but there is still controversy, and the issue remains unresolved. The present work is an attempt to find the co-relation between the meteorological factors and the respiratory illness medical sale for Vadodara city, an indirect evidence for the prevalence of respiratory illness burden in Vadodara city.

When observed on annual basis in SPSS with all the meteorological factors, pollutants and total respiratory illness medical sale all the three pollutants had strong participatory role and showed a direct correlation with the altered medical sale. Individual meteorological factors also played an important participatory role.

In the treatment of respiratory illness, inhaled medications are generally preferred, which act directly on the airway surface and airway muscles. Moreover, absorption of inhaled medications into the rest of the body is minimal. Bronchodilators open up the air passages making breathing easier. Narrowing of the air passages causes wheezing, commonly seen in people with asthma and chronic obstructive pulmonary disease. Inhaled bronchodilator medications can more quickly open narrowed air passages since they are inhaled directly into the lungs (Nelson *et al.*, 1998; Wallin *et al.*, 1999; Li *et al.*, 1999 and Kips and Pauwels, 2001). The direct costs of treating respiratory illness and indirect costs are substantial (Schramm *et al.*, 2003; Reed *et al.*, 2004 and Thomas *et al.*, 2005).

Annual ccomponent matrix analysis was carried out for the individual medical sale as one group and the meteorological parameters and pollutants as another group; it exposed thee fact that in 2005 (**Table 3.2**) increase in **RH** was associated with increase sale of B. Solids and B. Liquids. However, the principal component analysis when carried out for individual medical sale as one group and the rest of the factors as another group for 2006 (**Table 3.3**), it was established that **RH** was responsible for increasing sale of inhaler devices, B. Liquids and B. Inhalant preparations. At the same time the increasing concentration of **SO**₂ was responsible for the increasing sale of B. Injecta, and that the increasing **MxT**. was responsible for the increasing sale of B. others. Principal component analysis when carried out for the year 2007 (**Table 3.4**), it was found that increase in **RH** was responsible increasing sale of B. Solids and that the increasing concentration of **SO**₂ was responsible for the increasing sale of B. Others. Patankar *et al.*, (2011) in their investigation have proved the link between air pollution and health impacts for Mumbai, and estimate the monetary burden of these impacts.

When annual component matrix analysis was carried out for the individual medical sale as one group and the meteorological parameters and pollutants as another group; it exposed the fact that in **2008** (Table 3.5), it was observed that SO2 and sale of B. Inhalant preparations, inhaler devices and B. Others, CC and B. Solids as well as B. Injecta and RSPM are positively correlated; wherein the increase in concentration in any of the meteorological factor as well as the pollutant is increasing the sale of the respective medicine.

Principal component analysis for 2009 (Table 3.6) with individual medicine sale revealed that RH and CC was positively correlated with the sale of B. Inhalant preparations, B. Liquids and B. others. Also, increase in concentration of NOx was responsible for the increasing sale of B. Solids and that increasing MxT for the increasing sale of B. Injecta. Similarly in 2010 (Table 3.7), it was observed that increasing concentration of SO_2 was responsible for the increasing sale of B. Others. Similarly there was a positive correlation between NOx and B. Solids; CC and Anti- asthmatics others; VP and Anti asthmatics others

In the present study also the increase in the medical sale is dependent on distinct meteorological factors as well as pollutants and that each factor acts as trigger for the increase in the specific medical sale and thus proves the direct link between the triggering factors and respiratory illness.

To have better understanding whether there is any seasonal variation in the triggering factors for the medical sale seasonal extraction was also carried out. 2005 (Table 3.8 and 3.23) summer component matrix analysis revealed that there was a positive correlation with the sale of inhaler devices, B. Others, B. Injecta and anti – asthmatics others and CC. At the same time increasing MxT. was responsible for the increasing sale of B. Others. 2006 (Table 3.9 and 3.24) summer on the other hand revealed that when MxT. was increasing sale of B. Others and Anti – asthmatics others was also increasing. And 2007 summer (Table 3.10 and 3.25), disclosed the fact that sale of Inhalers devices was increasing with the increase in LL and RSPM level in the atmosphere. Also, the sale of B. Others were increasing with the increase in CC and SO₂ level in the atmosphere. In 2008, as observed in Table 3.11 and 3.26, sale of B. Inhalant preparation was increasing with the increasing level of LL and RSPM in the atmosphere. Similarly, sale of inhaler devices was increasing with the increasing wndspd and SO₂. In 2009 (Table 3.12 and 3.27), it revealed that increasing VP and RSPM was responsible for the sale of B. Inhalant preparation, B. Liquids, B. Injecta and B. Others. At the same time, sale of inhaler devices was increasing due to increasing level of CC and LL and that of B. Others was increasing due to increasing RH and wndspd. For 2010 (Table 3.13 and 3.28), increasing concentration of RF, **RH**, **VP** and **CC** was responsible for the increasing sale of B. Inhalant preparations. On the other hand the sale of B. Liquids was increasing due to increasing concentration of VP, CC, Wndspd and RH. At the same time the increasing concentration of wndspd, RH, VP, CC and RSPM was increasing the sale of B. Inecta, Inhaler devices, B.others and Anti-asthmatics others.

Component matrix analysis was also carried out for the individual medical sale as one group and the meteorological parameters and pollutants as another group for monsoon season. In 2005 monsoon (**Table no. 3.29**), it make known that sale of B. Inhalant preparations was increasing

with the increasing level of LL in the atmosphere. During monsoon 2006 (Table 3.14 and 3.30) in RF was increasing the sale of B. Solids, B. Injecta and B. Others. At the same time increase in RSPM concentration was responsible for the increasing sale of B. Inhalant preparation, B. Liquids and inhaler devices. Increase in max. Temp was increasing the sale of Anti – asthmatics others. Data analysis for 2007 (Table 3.15 and 3.31) monsoon revealed that increase in NOx, RSPM and MxT and RF was responsible for the increase in sale of B. Liquids. Increase in NO_x and RSPM in combination was also increasing the sale of inhaler devices. Increase in SO_2 and RSPM was increasing the sale of B. Others. Rising min temp was increasing the sale of B. Injecta. Hence, it gave a positive correlation between the meteorological parameters, pollution and medication sale. In 2008 (Table 3.16 and 3.32), sale of B. Inhalant preparation was increasing with the increasing level of LL and RSPM in the atmosphere. Similarly, sale of inhaler devices was increasing with the increasing wndspd and SO2. For 2009 (Table 3.17 and 3.33), increasing RH, VP and NOx was responsible for the sale of B. Solids. At the same time, sale of inhaler devices was increasing due to increasing level of CC and LL and that of B. Others was increasing due to increasing RH and wndspd. In 2010 (Table 3.18 and 3.34), it was found that sale of B. Solids and Anti - asthmatic others was increasing due to increasing concentration of RF, RH, VP and CC.

Winter season again showed a very different analysis and when component matrix analysis was carried out for the individual medical sale as one group and the meteorological parameters and pollutants as another group, it revealed that for 2005, decrease in wndspd was increasing the sale of B. Others. During 2006 (Table 3.35) winter increase in sale of B. Inhalant preparations, B. Injecta and B. Solids was due to the increasing level of RSPM in the atmosphere to give a positive correlation. At the same time sale of inhaler devices was decreasing to give a negative correlation. When component matrix analysis was carried out for the individual medical sale as one group and the meteorological parameters and pollutants as another group for 2007 (Table 3.19 and 3.36), it revealed that increase in CC level was increasing the sale of B. Solids and B. Injecta. In 2008 (Table 3.20 and 3.37), sale of B. Inhalant preparation was increasing with the increasing level of LL and RSPM in the atmosphere. Similarly, sale of inhaler devices was increasing with the increasing wndspd and SO₂. Analysis for 2009 (Table 3.21 and 3.38)

137

revealed that increasing VP and RSPM was responsible for the sale of B. Inhalant preparation, B. Liquids, B. Injecta and B. Others. At the same time, sale of inhaler devices was increasing due to increasing level of CC and LL and that of B. Others was increasing due to increasing RH and wndspd. Whereas in 2010 (Table 3.22 and 3.39), it was found that sale of B. Inhalant preparations was increasing due to increasing concentration of RF, RH, VP and CC. Similarly the sale of B. Liquids was increasing due to increasing concentration of VP, CC, Wndspd and RH. At the same time the increasing concentration of wndspd, RH, VP, CC and RSPM was increasing the sale of B. Inecta, Inhaler devices, B.others and Anti-asthmatics others.

Our results are in agreement with the recent work of Schwela (2000), Chauhan and Johnston (2003) and Watts (2006) on the human health effects of current air pollution trends in urban areas are reviewed and summarized that the association of the SO_2 exposure increases the mortality and morbidity. van der Zee *et al.*, (1999) in their studies have reported that proper use of the medication prevents the exacerbations of the respiratory illness.

In the present study the pollutants as well as the meteorological factors were found to be directly showing the co-relation with the medical sale for respiratory illness. The results of this study confirm those of some earlier studies (Roemer *et al.*, 2000), and suggest that aggravation of respiratory illness is related to daily variations in air quality. The increase in medication use with altered meteorological factors and pollution concentration thus can prove to be a marker for increasing respiratory illness. Given the increased prevalence of these diseases, effective predictions would benefit a large segment of the population. As the link between triggering factors in the form of meteorology as well as the pollutants thus is an indirect evidence to prove the prevailing condition of the illness and also indicate that it may be appropriate to examine severe respiratory illness symptoms separately.

3.5 CONCLUSION:

The aim of the present study was to find the correlation and interdenpendence between the meteorological factors and pollution level concentration I the city with the sale of respiratory illness medicines in the city. In total 18 parameters (8 meteorological + 3 polutants + 7 medicines sales) were applied on SPSS 12.0 to find the correlation between each of them. It was found that pollutants as well as the meteorological factors were found to be directly showing the co-relation with the medical sale for respiratory illness. Also, it was observed that as and how the years were passing by the role of meteorological parameters in the sale of medicines was increasing. Hence, our next aim was find the correlation between the asthma exacerbations and the environmental factors in the vadodara city to identify the season in particular affecting the asthma exacerbations as well as the role of gender and age in the exacerbations trend.