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6   Whole-genome sequencing of Streptomyces sp. S-9 and Transcriptome analysis of Pigeon 

pea under control and wilt condition 

6.1 Introduction 

Streptomyces is the source of the vast majority of the chemicals of microbial origin that have 

antibacterial, anticancer, or immunosuppressive properties that have been found to date (Braña, 

et al. 2015). It has been hypothesized that these bacteria could create a great deal more 

metabolites than those that have been uncovered to this point. In addition to their medical use, 

Streptomyces bacteria have important ecological and environmental implications (Sayed et al. 

2020). Because of their capacity to break down a wide variety of organic molecules, these 

bacteria are often regarded as being among the most important participants in the process of 

biomass breakdown. The rise of dangerous diseases that are resistant to several drugs is a 

problem that the world is now experiencing. It's important to find metabolically active species 

capable of providing novel secondary metabolites. The ecological and physiological effects 

offered by secondary metabolites produced by the bacteria are significant. Their contribution is 

especially important in severe environments, where bacteria have adapted to live and multiply 

(Makhalanyane et al. 2015; Lo Giudice et al. 2015). There is a possibility that many species 

living in harsh conditions might be new taxa. These bacteria could also be a useful resource for 

discovering new bioactive chemicals and enzymes with potential commercial uses. The genus 

Streptomyces, which accounts for fifty % of the entire population of soil actinobacteria, is the 

most prevalent of all actinobacterial species (Parte et al. 2020).  

It is widely recognized for generating a significant quantity of different bioactive metabolites. 

Streptomyces was responsible for the discovery of about 75% of all of the antibiotics that were 

reported (Olanrewaju and Babalola 2019). 

Numerous strains of Streptomyces are regarded to be biocontrol agents due to the fact that they 

efficiently colonize the rhizosphere of a wide variety of plant species, one of which is rice, 

generate a broad spectrum of antimicrobials, and are able to survive in harsh environments (Qin 

et al. 2011; Kinkel et al. 2012). This finding suggests that chromosomal linearity is likely 



widespread among streptomycetes (Huang et al. 1998). The majority of the Streptomyces 

chromosomal DNA molecules have a length of around 8 megabases, and the 5' end is thought to 

include terminal-inverted repeats as well as covalently associated terminal proteins. When 

compared to other well-known microorganisms like Escherichia coli and Bacillus subtilis, this 

size is enormous for a bacterium to have. The G + C concentration of streptomycetes is greater 

than that of almost every other kind of creature by more than 70 % age points. Therefore, the 

chromosome of Streptomyces is one of a kind, both in terms of its structure and its size. 

Here, we discuss the genome-wide study structure and sequencing features of Streptomyces 

species. The aim of the study is to see the novel genes study using Genome annotation and 

assembly of those genes which are related to secondary metabolism. We place great emphasis on 

the description of this microorganism's secondary metabolite production. In addition, whole-

genome sequencing and bioinformatics tools were used to analyze the genomic DNA and protein 

sequences of Streptomyces strain from Pigeon pea. 

Multilocus sequence typing (MLST) is an unambiguous procedure for characterizing isolates of 

bacterial species using the sequence of internal fragments of sixhousekeeping genes. 

In a number of crop species, genomic approaches have been effective at overcoming production 

barriers (Varshney et al., 2013; Kole et al., 2015). Given the draught genome sequence for 

pigeon pea (Varshney et al., 2012) and a variety of genomic resources, it is now possible to 

conduct genomics-assisted breeding (GAB). The genome sequence, molecular markers, genetic 

maps, quantitative trait loci (QTLs), and transcriptome assembly are among these genomic 

resources (Pazhamala et al., 2015). Additionally, in pigeon pea, expression studies have been 

carried out using transcriptome sequencing and quantitative real-time PCR to understand the 

plant's response to biotic stresses (fusarium wilt and sterility mosaic disease; Singh et al., 2016) 

as well as abiotic stresses (drought and salinity); Sinha et al., 2015) (Pazhamala et al., 2016). 

The transcriptome is the whole complement of ribonucleic acid (RNA) transcripts in a cell, 

which includes both coding (1–4 % - messenger) and non-coding (>95 percent -ribosomal, 

transfer, small nuclear, small interfering, micro, and long-non-coding) RNAs (Berg et al., 2007; 

Mattick & Makunin, 2006). Transcriptomics consists of comprehensive transcript cataloguing, 



dynamic transcript profiling, and study of gene expression regulatory networks. It is possible to 

analyse the transcriptome using a variety of methods, including cDNA-AFLP, sequence tag-

based technologies such as Expression Sequence Tags (EST), Serial Analysis of Gene 

Expression (SAGE), Massively Parallel Signature Sequencing (MPSS), Open Reading Frame 

EST, and digital expression analysis with next-generation sequencer (RNAseq). Plant genome 

assemblies housed at the National Center for Biotechnology Information (NCBI) are in the 

hundreds (Bolger et al., 2017). The genome of the tomato contains 296,963 ESTs and 18,346 

unigenes, while the genome of the potato contains 237,320 and 18,825, respectively. RNA 

sequencing is an efficient next-generation sequencing technique (Wang et al., 2009). 

RNA sequencing also allows for gene expression investigation without prior information (de 

novo) of the transcriptome. qPCR and microarrays, on the other hand, rely on past knowledge 

and cannot uncover unique information on a wide scale. RNA-Seq provides a unique mix of 

coverage of the whole transcriptome, sensitivity, and discovery potential. RNA-Seq can be 

utilised to investigate functional pathways, isoforms, and resistance. Gene RNA polymerase 

activity is controlled by transcription factors. Gene expression is a very dynamic process that 

permits a tissue or organism to develop stress resistance by expressing specific genes. The 

transcripts correspond to the gene in a complimentary manner. The transcription factors govern 

the activity of RNA polymerase. mRNA is translated into proteins, and the differential 

expression of genes is recorded. PCR is used to quantify gene expression in real-time (RT-PCR). 

RT-PCR identifies the intensity and pattern of an illness. Multiplex RT-PCR employs 

fluorochromes for gene identification, whereas transcriptome analysis begins with RNase- and 

temperature-sensitive RNA extraction. The KEGG (Kyoto Encyclopedia of Genes and Genomes) 

is a reference database for gene-related information and biological pathways (Kanehisa et al., 

2019). 

The database enhances knowledge about conserved genes, evolved genes, and genomes in many 

species. KO (KEGGOrthology) represents biological processes with conserved characteristics. 

Since the publication of KEGG in 1995, databases pertaining to biological pathways, genes, 

chemicals, and enzymes have been improved. KEGG now maintains 18 databases, including 

KEGGBRITE, MODULE, GLYCAN, and REACTION, among others. 



MicroRNAs (miRNAs) are a family of 20-24 nucleotide-long non-coding RNAs generated from 

single-stranded RNA precursors that can form stem-loop structures. They regulate gene 

expression post-transcriptionally through translational repression or target degradation, resulting 

in gene silencing (Jones-Rhoades et al., 2006). The status of target mRNA is determined by the 

degree of complementarity between the miRNA and target mRNA (Bentwich, 2005). MiRNAs 

were first identified in the soil nematode Caenorhabditis elegans in 1993, and they were also 

found in plants in 2002 (Reinhart et al., 2002). According to current knowledge, miRNAs are 

engaged in several cellular, biochemical, and metabolic processes, such as defining cell fate and 

differentiation, organ development, phase change regulation, disease and environmental stress 

response, auxin signalling, and reproductive development (Sun, 2012). 

In 2012, the genome of Pigeonpea was sequenced to expedite the application of genomics to crop 

enhancement, which resulted in a massive data explosion (Varshney et al., 2012). As many 

biological processes depend on the temporal and spatial control of genes present in every 

organism, the transcriptome data obtained from pigeonpea led to high-throughput gene 

expression research (Dubey et al., 2011; Kudapa et al., 2012). 

The present study focuses on identifying and characterizing Pigeonpea miRNAs using 

bioinformatics approaches and understanding their role in wilt tolerance. The conserved miRNA 

genes were identified from the draft whole-genome sequence of Pigeon pea hosted at NCBI 

(http://www.ncbi.nlm.nih.gov/genome/?term=cajanus+cajan) using bioinformatics approaches. 

Moreover, we attempted to establish the role of candidate miRNAs in wilt stress tolerance by 

analysing various physiological parameters and gene expression analysis of miRNAs and 

corresponding target transcripts. 

6.2 Materials and methods 

6.2.1 Genomic DNA (gDNA) extraction 

A total of 50 millilitres (mL) of liquid culture medium was inoculated with streptomycetes and 

then cultured in an orbital shaker at a temperature of thirty degrees Celsius. After harvesting 25 

mL of cultured cells while they were in the exponential growth phase, the cells were washed 

twice with 10 mM EDTA, and then they were subjected to a 45-minute lysozyme treatment at 37 



degrees Celsius. gDNA was isolated by employing QiAmp, which is the DNA Purification Kit 

offered by Qiagen (USA). Electrophoresis on an agarose gel containing 1 % and a Nanodrop 

1000 instrument were used to analyse gDNA samples (Thermo Scientific, USA). As a method of 

measuring DNA purity, OD260/OD280 nm and OD260/OD230 (>2.0) were utilised. 

6.2.2 Whole-genome sequencing of S-9 

Streptomyces genome was sequenced using Illumina Hiseq. Nextera XT sample preparation kit 

(Illumina, San Diego, CA, USA) was used to prepare Illumina sequencing library from genomic 

DNA. After fragmented DNA samples were cleaned and end-repaired, adaptor ligation and bead-

based size selection were performed. The library size was evaluated using an Agilent 2200 

Bioanalyzer. Illumina's library was sequenced using paired-end sequencing kits on their in-house 

Illumina Hiseq. The base calling software trimmed Illumina adapters. 

6.2.3 Quality control and assembly of the S-9 genome 

FASTQ files must undergo quality control and preprocess in order to provide clean data for 

subsequent analysis. We utilized fastp, a very quick FASTQ preprocessor with practical quality 

control and data-filtering capabilities (Chen et al. 2018). With just one scan of the FASTQ data, 

it can complete processes like quality control, adapter cutting, quality filtering, per-read quality 

pruning, and many more. This utility was created in C++ and supports many threads. A sequence 

assembler's objective is to create lengthy contiguous sequences (contigs) from these reads. 

Contigs may then be arranged and positioned in respect to one another to create scaffolds. Using 

the SPAdes (Bankevich et al. 2012) assembler with the default parameters, the high-quality 

(HQ), filtered reads from each of the seven samples were individually assembled. 

Using the FastQ C (v. 0 11.5) tool, the quality of each raw file produced after sequencing was 

examined. Using the FASTX toolkit, (accessible at http://hannonlab.cshl.edu/fastx_toolkit/), 

ambiguous bases and low-quality readings were diverted. High-quality readings were assembled 

from scratch using the SPAdes (v. 3.11.1) program. Utilizing the QUAST (v. 5.0.2) tool, the 

constructed sequence's quality was evaluated. For the gene annotation, the Prokka tool (version 

1.13.30, accessible at: https://github.com/tseemann/prokka) was utilized. The Centre for 

Genomic Epidemiology (CGE) toolbox's MLST (v.2.0.4, accessible at: 



https://cge.cbs.dtu.dk/services/MLST/) was used to calculate multilocus sequence typing 

(MLST) for an isolate based on six housekeeping genes. 

6.2.4 Genome Annotation and Assembly 

Prokka 1.11 was used for genome annotation (https://github.com/tseemann/prokka) (Seemann, 

2014) and RAST Rapid Annotation using Subsystem Technology (https://rast.nmpdr.org/) (Aziz 

et al., 2008). The RAST server classified the bacterial genome's subsystem characteristics, which 

mostly concerned amino acids, cofactors, vitamins, prosthetic groups, etc. Unassigned proteins 

were sent to the nr database for information on their alleged functions. The MEGA7 performed 

the phylogenetic analysis using a 1000 bootstrap value. The EggNOG orthologous database used 

HMMER profiling to analyze Gene Ontology and KEGG pathways. The genome's secondary 

metabolites gene clusters were identified using the AntiSMASH platform. 

6.2.5 Antibiotic Resistance 

ResFinder and CARD were used to find the antibiotic-resistant gene in the genome. Open 

Reading Frame (ORF) prediction uses Prodigal, homolog discovery uses DIAMOND, and 

resistance profiling uses CARD-curated bitscore cut-offs. Screening the assembled genome's 

predicted protein sequence for antibiotic resistance genes using RGI 5.1.1 and CARD 3.1.0. 

6.2.6 COG Analysis 

For the purpose of clusters of orthologous groups (COG) annotation, functional categories of 

coding sequences (CDSs) were identified using WebMGA by utilizing the RPSBLAST software 

(with an applied threshold of 1e5). 

6.2.7 Secondary Metabolite 

Bacterial secondary metabolism produces bioactive molecules with medicinal potential. It 

contains biosynthetic pathways of antibiotics, cholesterol-lowering medicines, and anti-tumor 

medications. These chemicals could be drugs. The genes that code for the secondary metabolite 

biosynthesis pathway are often grouped on the chromosome. Many species have a "secondary 

metabolite biosynthesis gene cluster." These 24 genomic architecturesmake it easy to locate 

https://github.com/tseemann/prokka
https://rast.nmpdr.org/


secondary metabolite manufacturing routes by identifying gene clusters. antiSMASH screens 

secondary metabolites. AntiSMASH accurately identifies gene clusters that code for secondary 

metabolites of all known chemical groups because it uses profile hidden Markov models of genes 

(Blin et al. 2017). These models target certain gene clusters. 

6.2.8 Transcriptome analysis and miRNA study 

6.2.9 Plant material used 

The Pigeon pea (BDN 2) seeds were obtained from Model Farm, AAU, Vadodara. These seeds 

were germinated on Petri dish followed by sowing in pots, and were kept in a greenhouse. After 

four weeks of sowing, pots were divided into three groups and subjected to different levels of 

fungal stress to standardize wilt imposition. 

6.2.10 RNA Extraction and quality check 

Extracted RNA quantity was checked on Qubit 4.0 fluorometer (Thermofisher #Q33238) using 

RNA HS assay kit (Thermofisher #Q32851) following manufacturer’s protocol. To measure the 

purity of the extraction, we also measured the concentration of RNA on Nanodrop 1000. The 

quality of the quantified RNA was confirmed on 1.5 % agarose gel. In brief, 30 ng of the RNA 

was mixed with 2 ul of 6x Loading dye (Invitrogen) and subjected to electrophoresis at 120 volts 

for 30 mins. 

6.2.11 cDNA preparation  

To prepare the cDNA, we evaluated the concentration of the RNA using a qubit fluorometer. The 

obtained results were provided in the following table. We used 50ng of the total RNA to convert 

the RNA into cDNA. Conversion of the RNA to cDNA was performed using superscript III 

Reverse transcriptase (ThermoFisher #18080093) by following the manufacturer’s 

protocol.Primers were ordered through Sigma, and the provided sequence for the primers is 

presented in Table 6.1 

 

 



Table 6.1:  Primer Sequence 

Primer serial 

number 

Primer name Primer Sequences 

1 Cajanus-GR466360-FW ACCTGTTTTGTTCGCCTTGT 

2 Cajanus-GR466360-Rev CGGGATCGTAGTGAAAATGGT 

3 Fusarium-GR464381-Fw CCAAGGGAAAAACTTGGTGGC 

4 Fusarium-GR464381-Rev AAGGAAAAACCCTCTCCCCG 

5 Fusarium-GR4652931-Fw GCGCAAAACGGACACAATCC 

6 Fusarium-GR465293-Rev AAAGATGAGCCGGAGAACGG 

6.2.12 qRT-PCR 

qRTPCR was performed using Cobas480 (Roche) using Sybergreen dye (KCQS00). The 

reaction setup was done as manufacturer’s protocol. The optimum Tm was identified at 60C. The 

final obtained Ct values are provided in the below table. The result cannot be analyzed as the 

internal control genes are not amplified. 

6.2.13 Novel Gene Prediction  

Mapping information from all samples is combined and placed as input into the regular Cufflinks 

assembler. The assembled transfrags are then compared to the reference transcripts to determine 

if they are sufficiently different to be considered novel. In brief, in this process we can (1) 

identify novel genes, (2) identify novel exons of known genes, and (3) optimize the start and end 

information of known transcripts. The outputs are provided as GTF files; more information about 

GTF format is available at (http://mblab.wustl.edu/GTF22.html). 

6.2.14Functional Analysis 

Through the enrichment analysis of the differential expressed genes, we can find out which 

biological functions or pathways are significantly associated with differential expressed genes. 

The clusterProfiler (Yu G, 2012) software was used for enrichment analysis, including GO 

Enrichment, DO Enrichment, KEGG and Reactome database Enrichment.  

http://mblab.wustl.edu/GTF22.html


6.2.15 GO Enrichment Analysis 

GO is the abbreviation of Gene Ontology (http://www.geneontology.org/), which is a major 

bioinformatics classification system to unify the presentation of gene properties across all 

species. It includes three main branches: cellular component, molecular function and biological 

process. GO terms with padj< 0.05 are significant enrichment. 

6.2.16 KEGG Enrichment Analysis 

The interactions of multiple genes may be involved in certain biological functions. KEGG 

(Kyoto Encyclopedia of Genes and Genomes, http://www.kegg.jp/) is a collection of manually 

curated databases containing resources on genomic, biological-pathway and disease information 

(Kanehisa,2008). Pathway enrichment analysis identifies significantly enriched metabolic 

pathways or signal transduction pathways associated with differentially expressed genes, 

comparing the whole genome background. KEGG terms with padj< 0.05 are significant 

enrichment 

6.3 Results 

6.3.1 Whole genome sequencing 

6.3.2 Phylogenetic analysis and General Genome features of S-9 

The anticipated 16S rRNA sequence was matched with the 16S rRNA database at the NCBI, and 

the top 50 aligned hits were selected to create a tree. Multiple alignments were carried out using 

conserved regions after concatenating all the sequences. Phylogeny was created using MAFFT 

version 7's online tool (Fig. 2). MEGA7 built the tree based on the Genera+l Time Reversible 

model and the Maximum Likelihood approach. The S-9 strain was grouped with other members 

of the Streptomyces genus. Table 6.2 provides a list of S-9's general characteristics. Using the 

Illumina Hiseq technology, the entire genomes of S-9 were sequenced, and Busco verified the 

gene completeness (Seppey et al. 2019). The GC content of the genome, which has a total size of 

0.97 Mb, is 72.60 %. A 1total of 214 genes are expected to make up S-9's genome, with 77 

rRNA and 9 tRNA genes, respectively, making up the full set (Fig 3). The whole genome of 

Streptomyces sp. S-9 was submitted to NCBI with a Bioproject ID PRJNA695540 and 

Biosample ID SAMN17616131. 



 

Fig 6.1:  Phylogenetic analysis 16S rRNA sequence proclaimed that S-9 belonged to the genus 

Streptomyces and species pseudogriseolus. Scale bar shows 0.05 substitutions per site for 

bootstrap values. 

 

6.3.3 Genome Annotation 

Prokka version 1.11 was used to annotate the S-9 genome, finding 6872 protein-coding genes 

(CDSs), 77 tRNA, and 9 rRNA genes shown in Table 6.1. Plasmids weren't discovered. The 

closest relatives based on the highest similarity rate to the Streptomyces species were identified 

using the BlastN run of the entire S-9 genome. Streptomyces pseudogriseolus 100 %, which had 

a 99 % identity to S-9, was the closest strain.The house keeping genes of Streptomyces sp. (atpD, 

gyrB, recA, rpoB, trpB) were used for determining the MLST of Streptomyces sp. (S-9) that is 

ST93. However the housekeeping genes in MLST profile with Streptomyces sp. match with ST 

93 shown in Figure 6.2. 

Table 6.2: General genome features of Streptomyces sp. S-9 

Genome size (base pairs)  142393 

GC content(%)  72.60% 

tRNA genes  77 

rRNA genes  09 



Total genes 6872 

 

Figure 6.2: PubMLST ST Number 

6.3.4 Average nucleotide identity (ANI)  

ANI was calculated using the nearest reference genome for the sample’s assembled genome 

using ChunLab's online Average Nucleotide Identity (ANI) calculator 

(https://www.ezbiocloud.net/tools/ani). ANI is used to compare prokaryotic genome sequences 

when classifying and identifying bacteria. An ANI above 95% indicates two genomes are the 

same species. The ANI and BlastN results were used to strengthen taxonomy identification, 

resulting in an ANI match of over 83%. Sample S-9 uses Streptomyces azureus ATCC 14921 

because Streptomyces pseudogriseolus assembly is unavailable. That is the reason for such a low 

OrthoANIu value (89%). 

6.3.5 Average Amino-acid Identity (AAI) 

Average Amino-acid Identity (AAI) was carried out for the S-9 species in order to achieve a 

better resolution in illuminating taxonomic structure beyond the species rank (Fig 6.3). Since 

DNA-DNA reassociation values, which are the traditional method for identifying species in 

prokaryotes, and the rate of genome mutation exhibit a strong correlation, average amino-acid 

identity (AAI) represents a very reliable indicator of the genetic and evolutionary relatedness 



between two strains. The outcome amply demonstrated the S-9's resemblance to Streptomyces 

species (Fig 6.3). 

 

Fig 6.3: Dot plot showed the similarity index of S-9 species 

Genomic map comparison (Fig 6.4) using CGViewer webserver clearly indicates Circular 

genome of Streptomyces sp. S-9. The outer circle indicates the nucleotide base positions, the next 

inner circle represents the forward cds, the pink circle represents the reverse cds, the blue lines, 

and green lines indicate the tRNA and rRNA positions respectively, and the second circle from 

the inside represents the GC skew and the innermost circle represents the GC plot. 

 



 

 

Fig.6.4:  Genomic map of Streptomyces sp. S-9 as a reference sequence blasted with circular 

genome 

6.3.6 Subsystem features of S-9 

On the S-9 genome, subsystem feature analyses were carried out. Utilizing the RAST annotation 

server (Rapid Annotation using Subsystem Technology, http://rast.nmpdr.org/), the Draft 

genome was submitted to gene prediction and annotation. Annotation parameters used included 

Genetic code = 11, E Value cut-off for selection of opinneMetricdCDSs = 1e-20. Complete or 

almost complete bacterial and archaeal genomes can be annotated using the completely 

automated service known as RAST (Rapid Annotation using Subsystem Technology). The entire 

phylogenetic tree's worth of these genomes' high-quality genomic annotations are 

provided.Subsystem features revealed the distribution of genes that play essential roles in a 

variety of metabolic pathways as well as salt stress resistance. The functions of the genes were 

cataloged into different functional classes (Fig. 6.5). According to the findings, the highest 

numbers of genes (310) were involved in the metabolism of carbohydrates, while the lowest 



numbers of genes (07) were involved in secondary metabolism. There were no genes discovered 

that play a part in the process of photosynthesis. On the other hand, the genome of S-9 displayed 

genes that are responsible for the stress response (66) as well as dormancy and sporulation (17). 

In addition, the S-9 genome accounted for genes associated with the promotion of plant growth, 

such as those involved in the metabolism of nitrogen (N), phosphorus (P), and potassium (K), as 

well as iron acquisition and metabolism (Fig.6.5). 

  

 

Fig. 6.5:  Distribution of the genes of S-9 under various subsystem features of RAST 

6.3.7 Antibiotic Resistance Gene Prediction Analysis 

The Comprehensive Antibiotic Resistance Database (CARD; http://arpcard.mcmaster.ca/) was 

used to identify the antibiotic resistance gene in the assembled genome. S-9 species contains the 

macrolide antibiotic resistance gene with gimA family macrolide glucosyltransferase AMR gene 

family Table 6.3. 

 

 

http://arpcard.mcmaster.ca/


 

Table 6.3: Antibiotic Resistance Gene Prediction Analysis in S-9. 

Sample  Drug Class Resistance 

Mechanism 

AMR Gene Family 

S-9 Macrolide 

antibiotic 

Antibiotic 

inactivation 

gimA Family macrolide 

glycosyltransferases 

6.3.8 Cluster of orthologous groups (COG) annotation 

For the purpose of clusters of orthologous groups (COG) annotation, functional categories of 

coding sequences (CDSs) were identified using WebMGA by utilising the RPSBLAST software 

(with an applied threshold of 1e5). According to the findings of the COG analysis, the greatest 

proportion of genes does not have an assigned function (1978 genes). Fig. 6.6 shows that the 

number of genes involved in transcription (K), carbohydrate transport and metabolism (G), and 

amino acid transport and metabolism (E) is greater than that of the genes involved in any other 

function-related processes. 

 



Fig 6.6: Cluster of Orthologous Groups (COG) database annotation of S-9 and relative 

abundance of proteins (%) in the two genomes  

 

6.3.9 Secondary Metabolite Profiling and biosynthetic gene clusters 

AntiSMASH 4.1.0 and BAGEL4 were used to check S-9 genomes for BGCs (Van Heel et al., 

2018). AntiSMASH 4.1.0 identifies bacterial gene clusters using HMM and rules-based 

identification (BGCs). These BGCs encode polyketides, non-ribosomal peptides, terpenes, 

aminoglycosides, and RiPPs from bacterial genomes. BAGEL4 uses HMM to find RiPP-

encoding genes. It's not dependent on the genome's ORF calls, thus it can more correctly detect 

the small precursor peptides in clusters of RiPP-expressing genes. 

AntiSMASH predicted S-9 contained 5 metabolite clusters (Table 6.4). Most of these results 

were terpene BGCs, which resembled natural compounds (less than 92 %). These routes may 

encode new natural compounds or those without BGCs. S-9 strains share Lanthipeptide's non-

ribosomal peptide synthesis pathway. Terpene, lanthipeptide-class-iii, T3 PKS, SapB, and 

Ectoine BGCs in S-9 isolates had a high degree of similarity (>90). Streptomyces strains have 

Terpene, lanthipeptide-class-iii, T3 PKS, and Ectoine gene clusters (Reinert et al. 2004; Juttner 

& Watson, 2007). Ectoine is a flexible nutrient that protects against osmotic stress (Schulz et al. 

2017), and Lanthipeptid has antifungal, antibacterial, and antiviral bioactivities (Lagedroste et 

al., 2020).  

Table 6.4: Biosynthetic gene cluster for secondary metabolites 

 Secondary Metabolites Class Cluster %age (%) 

Terpene Terpene Hopene 92 

lanthipeptide-class-iii RiPP: Lanthipeptide SapB 100 

T3 PKS Polyketide alkylresorcinol 100 

Terpene Terpene albaflavenone 100 

Ectoine Others Ectoine 100 



 

6.3.10 RNA Extraction and Quality Check 

The obtained result is presented in Table 6.6. Finally, RNA was checked on the Tapestation 

using HS RNA screentape (Agilent) to obtain RIN values. Observed results are given in Table 

6.5.The final obtained cDNA is utilized for the qRT-PCR (Table 6.5) 

Table 6.5: Quantification of isolated RNA samples on NanoDrop and Agilent Tape Station 

SR. no NanoDrop Readings (ng/μl) RIN Value NanoDrop OD A260/280 

1 Control 436.9 7.2 2.15 

2 Plant with Fusarium 

udum 

829.5 6.5 2.27 

6.3.11 RNA Quality check 

Total RNA of Control and Fusarium infected plant shown in Fig.6.7 

 

Figure 6.7: QC of isolated RNA samples on 1% denatured agarose gel 

6.3.12 Result of miRNA 

Finally, to obtain RIN values RNA was checked on the Tapestation using HS RNA screentape 

(Agilent). Observed results are given below in Table 6.6. Also, the final obtained cDNA utilized 

for qRT-PCR are presented in Table 6.7 and Fig. 6.8. 



 

 

 

 

Table 6.6:  RIN value of RNA 

SR. no Sample Name RINe 28S/18S (Area) Conc. [pg/μl] 

1 Fusarium udum 6.7 0.8 8240 

2 Control Pigeon pea 7.6 1.8 3840 

Table 6.7:  cDNA value for qRT-PCR 

Sr.No Sample name ng/ul 

1 Fusarium udum infected 

plant 

184.2 

2 Control  Pigeon pea   182.3 

   F           L        P         2PF       L         

 

Figure 6.8: Total RNA quality Check 



F = Fusarium slant (fresh submission_13032021); L = Ladder; 2P = Control Plant; 2PF= Treated 

Plant (Plant+fusarium) 

6.3.13 qRT-PCR 

The final obtained Ct values are provided in the below Table 6.8. Analysis of the result cannot be 

done as the internal control genes are not amplified as shown in Fig. 6.9. 

Table 6.8:  Ct value of qRT-PCR 

Sr.no Sample 

Name 

(Primer 

pair) 

well 1 2 3 

1 C (7-8) A 45 45 45 

2  T (7-8) B 23.2 23.4 22.9 

3 C (9-10) C 38 37 38.3 

4 T (9-10) D 38.6 38.4 37.4 

  well 4 5 6 

5  C (11-12) A 45 45 45 

6  T (11-12) B 45 45 45 

  A1     A2    A3       L        B1      B2    B3 

 

Figure 6.9: qRT-PCR gel  



Starting from Left to right, well-1 =A1, well-2 = A2, well-3 = A3; Well-4 = Ladder, 

Well-5 = B1, Well-6 = B2& Well-7=B3. 

A=Control Pigeon pea; B= Pigeon pea infected Fusarium udum 

6.3.14 Transcriptome analysis 

The nucleotide sequence of the predicted novel genes was extracted from NCBI from the whole 

shotgun sequence of Cajanus cajan. Further, nucleotide BLAST was performed, which shows 

that one predicted novel gene translates to some known protein while the other three relate to 

some hypothetical proteins, which could be further analyzed by protein modelling. 

6.3.15 Correlation Analysis 

The correlation analysis shows no significant correlation between control and Fusarium infected 

plants. This may be attributed to the fact that genes from fusarium infected plants might deviate 

from their normal expression mechanism. For a significant result, the value between the two 

samples must be closer to 1. The closer the value to 1, more significant the expression 

correlation. It can be concluded here that fusarium attack leads to drastic change in expression 

pattern of some genes. 

6.3.16 Differential Expression Analysis 

The differential expression analysis of genes revealed a significant change in the expression 

pattern of control and Fusarium infected plant samples. The fold change between the samples 

indicates a higher or lower expression with respect to control. The number of upregulated and 

downregulated genes based on the cut-off (padjust<0.005 &log2foldchage>1) were 583 and 754, 

respectively. The maximum number of downregulated genes in the infected plant sample 

indicates its susceptibility to Fusarium infection and which can lead to head blight. 

6.3.17   Novel gene 

The “novel.1189” differentially expressed gene shows 10-fold change (approx.) increase in 

expression with respect to control. The sequence is similar to known ABD1 small subunit 



ribosomal RNA gene of fusarium (MT640287.1).ABD1 gene translates to a protein named 

mRNA cap guanine-N7 methyltransferase. It catalyzes the transfer of a methyl group from S-

adenosylmethionine to the GpppN terminus of capped mRNA. Being a nuclear protein it 

relocalizes to the cytosol in response to hypoxia. The following network shows the interaction 

between ABD1 gene and significant association with other partner genes. The higher the 

incomisong edges, the stronger and more vital position of that particular gene shown in Fig. 6.10. 

 

Figure 6.10:  Network shows the interaction between ABD1 gene and other genes 

6.3.18 Network Statistics 

Number of nodes:11 

Number of edges:53 

Average node degree:9.64 

Average local clustering coefficient:0.968  

Expected number of edges:15 

PPI enrichment p-value: 4.77e-14 



6.3.19 Enrichment Analysis 

GO Scatter plot suggests the maximum number of genes corresponding to enzyme inhibitor 

activity and ubiquitin transferase activity. The KEGG pathway shows that a large set of genes 

correspond to Aminoacyl-tRNA biosynthesis. 

6.3.20 Coexpression Venn Diagram 

The coexpression Venn diagram presents the number of genes uniquely expressed within each 

group/sample, with the overlapping regions showing the number of co-expressed genes in two or 

more groups/samples (Figure 6.11).  

 

Figure 6.11: CoexpressionVenn diagram 

6.3.21 Differential Expression Analysis 

Readcount obtained from Gene Expression Analysis is used for differential expression analysis. 

For samples with biological replicates, differential expression analysis of two conditions/groups 

was performed using the DESeq2 R package (Anders et al., 2010). It provides statistical routines 

for determining differential expression in digital gene expression data using a model based on the 

negative binomial distribution. Therefore, if the readcount of the i-th gene in j-th sample is Kij, 

there is: Kij～NB(μij,σij2) And the resulting P values were adjusted using the Benjamini and 



Hochberg’s approach for controlling the false discovery rate.  All clean reads were deposited in 

the NCBI Short Road Archive (SRA) database and can be accessed with accession numbers- 

SRR15059311 and SRR15059312. The raw reads for all the Illumina sequenced transcriptome 

used for the analysis have been deposited to NCBI with the BioProject ID PRJNA743724. All 

raw data from the DGE library sequencing has been deposited in SRA (NCBI BioSample 

Accessions Number: SAMN20060467 and SAMN20060468) 

Kij～NB(μij,σij2)  

For the samples without biological replicates, the readcount was adjusted by TMM, then 

differential expression analysis was performed by using the EdgeR R package. The result of 

differential expression analysis is shown in Table 6.9  

Table 6.9:  Result of differential expression analysis 
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6.3.22 DEGs in Response to Fusarium infection in Cajanus cajan 

The genes with a false discovery rate (FDR) ˂0.005 and an estimated absolute log2foldchange 

(log2FC) ˃1 in sequence counts between libraries were considered significantly differentially 

expressed (Figure 6.12).Volcano plots are used to infer the overall distribution of differentially 



expressed genes. The horizontal axis for the fold change of genes in different samples. The 

vertical axis for a statistically significant degree of changes in gene expression levels, the smaller 

the corrected p-value, the bigger -log10(corrected p-value), and the more significant the 

difference. In the pair of infected and control plants, 754 genes were down-regulated and 583 

genes were up-regulated after the Fusarium infection shown in Fig. 6.12. 

 

Fig. 6.12: DEGs Count in Control vs Fusarium infected plant 

 

 

 



 

Figure 6.13: Volcano plot for DEGs between Fusarium-infected and healthy C. cajan Plants 

Up-regulated genes are shoun in red, down-regulated genes are shown in gree, the genes without 

significant expression change are shown in blue in Figure 6.13. 

6.3.23 Cluster Analysis 

Cluster analysis on differential expression indicates genes with similar expression patterns under 

various experimental conditions. By clustering genes with similar expression patterns, it is 

possible to predict unknown functions of previously characterized genes or unknown genes. 

Hierarchical clustering analysis is carried out of log2 (FPKM+1) of union differential expression 

genes, within all comparison groups. Genes within the same cluster show the same trends in 

expression levels under different conditions.Expressipon pattern clusterin heat map analysis shon 

in Fig. 6.14. 



 

Figure 6.14: Hierarchical Clustering Heatmap between Control and Infected plant 

The overall results of FPKM cluster analysis, clustered using the log2 (FPKM+1) value. Red 

color indicates genes with high expression levels, and blue color indicates genes with low 

expression levels. The color ranging from red to blue indicates that log2 (FPKM+1) values 

where from large to small. 

6.3.24 GO Enrichment Analysis 

Top 20 significantly enriched terms in the GO enrichment analysis are displayed below. If the 

enriched pathway is less than 20, all the terms will be displayed in Fig.6.15.In the scatter plot 

shown in Fig. 6.16, the horizontal axis is customized as GeneRatio and the Vertical axis is 

customized as the Term’s Description. The size of every dot represents the number of the 

differential expression genes and the color of every dot represents the range of Qvalue.  

"Cell wall organization (GO: 0071555)," "polysaccharide metabolic process (GO: 0005976)," 

and "glucosyl transferase activity cell periphery (GO: 0046527)" were dominant within each sub-



ontology. The terms "Endopeptidase complex (GO: 1905369)" and "Enzyme inhibitor activity O: 

0004857)" were most prevalent in BP, MF, and CC, respectively. Similar to up regulated genes, 

down regulated genes have dominating keywords related to the proteasome core complex (GO: 

0019773). 

 

Figure 6.15: GO Enrichment Histogram 

 



 

Figure 6.16: GO Enrichment Scatter Plot 

6.3.25 KEGG Enrichment Analysis 

Top 20 significantly enriched terms in the KEGG enrichment analysis were displayed in 

 



Figure 6.17: KEGG Enrichment Histogram      

 

Figure 6.18: KEGG Enrichment Scatter Plots 

The differentially expressed genes have been labeled in the pathway map. Some of the pathway 

maps across different sample groups are displayed below. In the Figure 6.18, the green box 

indicates the species-specific gene or Enzyme. 

The maximum number of DEGs within the metabolism category were associated to "Protein 

processing in endoplasmic reticulum," followed by "Aminoacyl t- RNA biosynthesis Metabolic 

pathways," and then "Amino sugar and nucleotide sugar metabolism," according to KEGG 

pathway enrichment analysis of the DEGs shown in Fig. 6.19. 



.  

Fig. 6.19:  Differential expression gene using KEGG 

6.4 Discussion 

The genus Streptomyces, which is the most common type of actinobacteria, is responsible for 

fifty % of the entire population of soil actinobacteria (Parte et al. 2020). Because of their 

capacity to produce biologically active chemicals as well as secondary metabolites, Streptomyces 

strains are of critical value to the commercial sector. A relatively small number of actinobacterial 

genera that are important to agriculture have been investigated at the entire genome level in order 

to look for novel genes related with the generation of secondary metabolites.Here we sequence 

Streptomyces species S-9, isolated form Pigeon pea (Cajanus cajan) plant. The examination of 

the genome provides in-depth knowledge of genes that play significant roles in a variety of key 

physiological, biochemical, and molecular processes that facilitates secondary metabolite 

production in plants.In a previous investigation, it was demonstrated that these bacteria had the 

capacity to create antifungal chemicals as well as a large number of hydrolytic enzymes (Zitouni 

et al. 2007). Because of their activity profiles, which include antibacterial, antifungal, and 



enzymatic activities (Dave & Ingle, 2021), the strains S-9 were chosen for further study. S-9 was 

found to have a genetic similarity of 99 % to Streptomyces which had been isolated from the 

Pigeon pea plant (a tropical climate with temperatures that average 33-37°C). This allowed us to 

designate S-9 as a species of Streptomyces.The phylogenetic analysis examines the evolutionary 

development of a species, group of organisms, or organism trait. A considerably more accurate 

perspective of the species and strain phylogeny in Streptomyces has been demonstrated as a 

result of the phylogenetic analysis that was carried out as part of the current study. This view 

takes into account many components of the genome.  

Most genome databases employ Illumina short-read. Streptomyces genomes are large, repetitive, 

and heavy in G+C, making them difficult to fully assemble from short reads. As a result, 90% of 

the known genomes are only in draft form; hundreds of contigs with an average N50 of 

thousands of nucleotides. We assembled high-quality genome sequences with PacBio and 

Illumina data, where the >8 Mb chromosome assembled as a single contig in one strain.An 

examination of the gene annotations shared by all of the Streptomyces strains revealed a large 

number of apparent lineage-specific gene families. It is possible that these gene families 

originated in the Streptomyces clade's last common ancestor. The species were found to match its 

most closely strains of Streptomyces pseudogriseolus sharing 99 % of their genetic material. 

We evaluated the ANI values of the S-9 species with their related species in order to precisely 

recognise and comprehend them. Following the analysis of the genomic data, the genes 

responsible for primary and secondary metabolism were assigned annotations.To perform a 

better resolution in elucidating taxonomic structure beyond the species rank Average Amino-acid 

Identity (AAI) was performed for the S-9 species and found the similarity of S-9 species was 

with the Streptomyces species with highest similarity index of other species. Moreover, the 

genetic foundation for the production of antibacterial and plant growth-promoting compounds by 

these species as PGPR was also predicted. Comparisons of chromosomal maps conclusively 

identify the species as Streptomyces. 

The subsystem analysis of S-9 species genes is majorly associated with nitrogen (N), phosphorus 

(P), and potassium (K), as well as iron acquisition and metabolism which clearly showed their 

association with secondary metabolite or plant growth-promoting activities. The production of 

Lanthipeptidesmeansits capacity to improve the absorption of iron by plants and also repress the 

phytopathogens.  



The antibiotic gene annotation of S-9 species revealed that it is associated with macrolide 

antibiotic resistance following the previous results (Fyfe al. 2016; Dinos, 2017). 

Streptomyces possesses a wide variety of stress-specific sigma factors, and the majority of the 

possible combinations of these sigma factors are what are responsible for the stress responses, 

adaptation to energy limitation, and development of the organism (Bentley, et al. 2002). The 

potential of Streptomyces to withstand high levels of stress is demonstrated by the presence of 31 

stress-specific sigma factors, a complete ectoines biosynthesis pathway, and two related 

heterocyclic amino acids (Sadeghi et al. 2014). These stress-specific sigma factors are 

responsible for osmotic, heat, cold, draught, and pH stresses (Van-Thuoc et al. 2013). 

Another significant discovery was made when researchers sequenced the entire genome of the 

Streptomyces S-9 species and then mined the genome for information on its biological and 

biotechnological possibilities. It was demonstrated that gene clusters for lanthipeptide, 

ribosomallyand non-ribosomally produced peptides, ectoine, and xenobiotic degradation 

pathways as well as heavy metal resistance were present in the organism. 

In general, having knowledge on a genome scale about the potential for secondary metabolism in 

Streptomyces sp. will make the further characterization of bioactive molecules with a wide 

variety of actions much simpler. In addition, the genome that has been sequenced helps us gain a 

better understanding of this organism in terms of the production of antibiotics and other 

characteristics that are important to biotechnology. These characteristics include the 

bioremediation potential of this strain, as well as the production of new secondary metabolites. 

 

Wilt is a biotic stress that severely affects various plant growth stages to different extents by 

targeting several physiological and biological processes related to the respective growth 

stage.Genes involved in “Oxidative phosphorylation” showed suppressed expression. Earlier, 

several DEGs enriched in “Oxidative phosphorylation” were obtained based on transcriptome 

sequencing. The “novel.1189” differentially expressed gene shows 10-fold change (approx.) 

increase in expression with respect to control. The sequence is similar to known ABD1 small 

subunit ribosomal RNA gene of Fusarium (MT640287.1).ABD1 gene translates to a protein 

named mRNA cap guanine-N7 methyltransferase. 
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