
Chapter 1

Introduction

———————————————————————————————————–
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1.1 Introduction

Cancer is a disease in which some of the body’s cells grow uncontrollably and spread

to other parts of the body. Cancer can start almost anywhere in the human body,

which is made up of trillions of cells. Normally, human cell grow and multiply

(through a process called cell division) to form new cells as the body needs them.

When cells grow old or become damaged, they die and new cells take their place.

Sometimes this orderly process breaks down, and abnormal or damaged cells grow

and multiply when they shouldn’t. These cells may form tumors, which are lumps

of tissues. Tumors can be cancerous (Malignant) or non-cancerous (Benign). Can-

cerous tumors spread into; or invade nearby tissues and can travel to distant places

in the body to form new tumors and it is called malignant tumors. Benign tumors

don’t spread into, or invade; nearby tissues. When removed, benign tumors usually

don’t grow back, whereas cancerous tumors sometimes do. There are different types

of cancer like skin cancer , breast cancer , lung cancer, prostate cancer, kidney (re-

nal) cancer. The most prevalent and serious cancer that affect women is the breast

cancer. A large number of women succumb to breast cancer each year. Recently

after skin cancer, breast cancer is the second most hazardous cancer diagnosed in

women worldwide and becomes the reason for death. Breast Cancer is a cancer

that develops from breast tissues. The first symptom of breast cancer is usually

an area of thickened tissue in the breast or as lump in the breast or an armpit or

breast pain does not change with the monthly cycle, pitting like the surface of an

orange or color changes such as redness in the skin of the breast, a rash around or an

one nipple, discharge from a nipple which may contain blood, a sunken or inverted

nipple, a change in the size or shape of the breast, pealing or flaking or scaling of

the skin of the breast or nipple [ref: medicalnewstoday.com/articles/37136]. The

several risk factors that cause breast cancer are age, genetics, a history of breast

cancer or breast lumps, dense breast tissue, estrogen exposure and breast feeding,

body weight, alcohol consumption, radiation exposure, hormone treatments [ref:

https://www.medicalnewstoday.com/articles/37136.php]. As per the survey report

of GLOBOCAN 2012, Ferlay et al. (2014) found that, 1067 million women were

detected with breast cancer [38]. Also, the authors discovered that the breast can-

cer has highest proportion of 25% out of all cancers within women. In the research

of Global Cancer Statistics 2018, Bray et al. (2018) stated that, 2.1 million new

cases of breast cancer were identified and out of all registered cases of breast cancer,

53% were diagnosed as malignant [21]. As per the survey report of WHO, each

year 2.1 million women are impacting with breast cancer and also large number of
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women die due to deficiency in early diagnosis and early treatment [21]. In 2018,

627,000 women were died due to breast cancer. As per the survey report of WHO

in 2020, 2.3 million women were diagnosed with breast cancer and 685000 were died

worldwide [who.int/news-room/fact-sheets/detail/breast-cancer].

Early detection of breast cancer is important as it is associated with an increased

number of available treatment options, increased survival and improved quality of

life. Majority of the all affected women are middle-aged that is in the age of 50’s

& 60’s [109]. Early detection provides the best chance of effective treatment. The

earlier the stage of breast cancer the better the chance of survival. The very early

detection of breast cancer have a 97 to 100% chances of cure but once it spreads

to the lymph nodes or elsewhere, the chance of cure goes down significantly. If

an early diagnosis is made, patients can avoid the cost of different tests such as

mammograms, ultrasounds, other imaging tests, biopsies, well as at the same time

they can reduce the number of frequent visits to the doctor which can help them

mentally and financially. Early diagnosis can also save that doctor’s time and they

can reach to the more patients.

It is most essential to identify and cure breast cancer in its early stage. While

successful treatment depends on early detection, the diagnosis of breast cancer is

difficult due to the dense breast tissues with the detection being subject to human

error, the doctors looked for a way to improve the accuracy of the diagnosis. With

the help of computer aided technologies and Artificial Intelligence (AI), it is possible

to make early diagnosis of breast cancer. Development of such a tool or system is

required to make early diagnosis of breast cancer using soft computing techniques.

In medical science, an extensive and diverse spectrum of applied mathematics re-

search is being conducted. AI or ML is all about mathematics, which in turn helps

in creating algorithm that can learn data to make an accurate predication. Machine

Learning (ML) is an emerging technique which provides an efficient way to enhance

the knowledge in data in order to improve the performance of the disease predictive

models. There are server ML algorithm like Support Vector Machine (SVM), Arti-

ficial Neural Network (ANN), Deep Learning (DL), etc.. Using these algorithms AI

is built into machines. The basic requirements for any intelligent behavior is learn-

ing. Soft computing approaches are being used in medical science by researches

worldwide. The thesis is concerned with the diagnosis of breast cancer through

the application of various soft-computing approaches, with a particular emphasis

on Kernel-based methodologies. Classification plays an important role in medical

science where data mining techniques are used to diagnose and analyse disease at
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an early stage.

1.1.1 Literature survey

Many researchers have worked in diagnosis of breast cancer using various soft com-

puting techniques. Liu et. al. used SVM for classification of breast cancer data and

achieved 96.71% accuracy with polynomial kernel and 97.07% accuracy with radial

basis function kernel [70]. Chen et. al. and Keerthi have classified the breast can-

cer after applying various feature selection techniques like rule extraction, roughest

based feature selection, Genetic Algorithm (GA) etc and obtained good classifica-

tion accuracy [27, 41]. Polat and Salih developed the least square SVM Classifier

and Obtained 98.53% accuracy [95, 103]. Also Akay, Maglogiannis et. al. and

Osareh et. al. had built SVM and compared with other classifiers like Bayesian,

ANN , K-nearest neighbors probabilistic neural network and obtained nearby 97%

of classification accuracy [7, 74, 90].

For different data set like Wisconsin Breast Cancer, Wisconsin Diagnostic Breast

Cancer, Wisconsin Prognostic Breast Cancer, Aalaei et. al. employed ANN with

GA based feature selection and a Particle Swarm optimization algorithm based clas-

sifier (PS- classifier) to diagnosis of breast cancer [1].Abdel-Zaher et. al. employed

Deep Neural Network as a classifier with recursive feature elimination technique

[3].Karabatak et. al. developed ANN classifier based on association rule and imple-

mented on WBC data set [57]. Agarap Abien Fred M. experimented Six ML method

on WBC data set namely Gated Recurrent Unit with SVM; Linear Regression, Mul-

tilayer Perceptron (MLP), Nearest Neighbor (NN) search [6].P.R. Innocent et. al.

conducted a study of fuzzy methods for medical diagnosis in nursing assessment

using Type-II fuzzy sets (2007) [51]. Many authors namely Baig et. al., Awotunde

et. al. and Madkour et. al. have developed a control system using fuzzy logic in

diagnosis of various disease like brain tumor, malaria, wherping cough, chickenpox

etc [16, 15, 73]. Elif Derya Übeyli proposed an integrated view of ANFIS to detect

breast cancer and tested on WBC [122]. Seyedesh S.N. et al. designed a hierarchical

fuzzy neural system with Extended Kalman Filter (EKF) [86]. M. Ashraf et. Al.

introduced an information gain technique with ANFIS for breast cancer classifica-

tion [14]. Chakravarthy and Ghosh demonstrated scale based clustering with Radial

Basis function network [26]. Kiyan and Ypldrim proposed statistical neural network

topology in RBFN and Compared with various classifiers like ANFIS, ANN, RBFN

and evaluated on WBC data set and they achieved 97.55% success rate [64].
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1.2 Methodology for classification

The literature survey depicts that most of the research have been focused on the

diagnosis of the breast cancer and the researchers have proposed various predictive

models using the benchmark data sets namely Breast Cancer Wisconsin (Diagnostic)

Data sets. This data sets are widely available on the University of California at Irvine

(UCI) Machine Learning repository. Our aim is to diagnose the breast cancer based

on Breast Cancer Wisconsin (Diagnostic) Data sets. Features of these data sets are

computed from a digitized image of a fine needle aspirate (FNA) of a breast mass.

They describe characteristics of the cell nuclei present in the image. All features

are assigned numeric values with four significant digits. In the data set, diagnosis is

also specified by ”2” for malignant and ”4” for benign breast tumors. Hence, this

is classification problem.

Using the same data sets, we have proposed various predictive models along with

the time analysis for classification of breast tumor using various soft computing

techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM),

Deep Learning (DL), Radial Basis Function Network (RBFN) and Adaptive Neuro

Fuzzy Inference System (ANFIS). We employed various optimization techniques

like Stochastic Gradient Descent (SGD), Adaptive Moment Estimation (Adam),

Limited-memory Broyden fletcher Goldfarb Shanno (L-BFGS), Particle Swarm Op-

timization (PSO) in training the proposed models. We have also proposed various

feature reduction techniques like Principal Component Analysis (PCA), Indepen-

dent Component Analysis (ICA), Relief Based algorithm in data pre-processing.

Proposed predictive models are implemented on WDBC and WBC data sets for clas-

sification of tumor into benign or malignant. Details of the data sets are mentioned

in Appendix. The comparative analysis of our predictive models with predictive

models of other researchers is carried out in detail and we found that the predictive

models proposed by us gives highest classification accuracy in just few seconds.

1.3 Organization of the thesis

The layout of the thesis along with the proposed methodologies used in constructing

the predictive models for classification of breast cancer (described in chapters 3 to

6) is as follows.

5



1.3.1 Chapter 1: Introduction

This chapter mainly deals with the motivation as well as literature survey of the

breast cancer.

1.3.2 Chapter 2: Mathematical Preliminaries

This chapter concerns with the mathematical concepts used throughout the study.

1.3.3 Chapter 3: The Ultimate kernel machine based on

Support Vector Machines

In machine learning, Support Vector Machines are supervised learning models with

associated learning algorithms that analyse data for classification, regression analysis

and outliers detection. This algorithm has a good generalisation ability, better

performance and a robust mathematical theory. Machine learning, optimization

techniques from operations research, and kernel functions from functional analysis

are all combined in this approach. It is often referred to as a large margin classifier.

When it comes to diagnose breast cancer, SVM has proven to be extremely effective.

To build the cost-effective kernel machine for breast cancer diagnosis, the tools of

PCA and k-fold Cross-Validation (CV) techniques are employed. The model is

implemented on WDBC and WBC data sets to check the condition of the tumor

for its malignancy. Classification accuracy and time computation are obtained and

comparative experimental results are analysed under different conditions. For WBC

data set, 100% accuracy is obtained using Polynomial kernel in just 0.03 second.

1.3.4 Chapter 4: Regularized Deep Neural Network with

hybrid approach of Independent Component Analysis

Deep learning is part of a broader family of machine learning methods based on

artificial neural networks with representation learning. Learning can be supervised,

semi-supervised or unsupervised. One of the main advantages of deep learning lies

in being able to solve complex problems that require discovering hidden patterns

in the data and/or a deep understanding of complex relationships between a large

number of interdependent variables. It not only has the ability to tackle nonlinear

programming problems with the restrictions of equality and inequality, but it also
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has a greater overall performance.

In this study, we investigate the use of Regularized Deep Neural Network (R-DNN)

for the prediction of breast cancer. A variety of optimization techniques, such as

Limited-memory Broyden Fletcher Goldfarb Shanno (L-BFGS), Stochastic Gradient

Descant (SGD), Adaptive Moment Estimation (Adam), and activation functions like

as Tanh, Sigmoid, and Rectified Linear Unit (ReLu) are used in the simulation of R-

DNN. The Independent Component Analysis (ICA) approach is used to identify the

most effective features to be used in the study. To measure the efficacy of the model,

training and testing of the proposed network is carried out using the WDBC and

WBC data sets. The detailed analysis of the accuracy is carried out and compared

to the accuracy of other author’s model. We find that the proposed network attains

the highest accuracy.

1.3.5 Chapter 5: A Hybrid Approach of Adaptive Neuro

Fuzzy Inference System and Novel Relief Algorithm

An Adaptive Neuro-Fuzzy Inference System or Adaptive Network-based Fuzzy In-

ference System (ANFIS) is a kind of artificial neural network that is based on Tak-

agi–Sugeno fuzzy inference system. The technique was developed in the early 1990s

[53, 55]. Since it integrates both neural networks and fuzzy logic principles, it has

potential to capture the benefits of both in a single framework. Its inference sys-

tem corresponds to a set of fuzzy IF–THEN rules that have learning capability to

approximate nonlinear functions [4]. Hence, ANFIS is considered to be a universal

estimator [52].

ANFIS provides accelerated learning capacity and adaptive interpretation capabili-

ties to model complex patterns and apprehends nonlinear relationships. It is possi-

ble to identify two parts in the network structure, namely premise and consequence

parts. In more details, the architecture is composed by five layers. The first layer

takes the input values and determines the membership functions belonging to them.

It is commonly called fuzzification layer. The second layer is responsible of generat-

ing the firing strengths for the rules. The role of the third layer is to normalize the

computed firing strengths, by dividing each value for the total firing strength. The

fourth layer takes as input the normalized values and the consequence parameter

set. The values returned by this layer are the defuzzificated ones and those values

are passed to the last layer to return the final output.
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The proposed model introduces a hybrid strategy of effectively diagnosing breast

cancer by using a novel Relief algorithm for feature selection with an Adaptive

Neuro-Fuzzy Inference System. The efficiency of this proposed hybrid model and

the ANFIS model without using any feature selection technique are estimated using

WBC data set. The study finds that the new hybrid model has attained highest

accuracy of 99.30% and is ideal for detecting breast cancer.

1.3.6 Chapter 6: Ensemble Based Lasso Ridge Radial Basis

Function Network

Radial Basis Function Networks (RBFNs) are commonly used artificial neural net-

work for function approximation problems. RBFNs are distinguished from other

neural networks due to their universal approximation and faster learning speed.

The RBF network is a type of feed forward neural network composed of three lay-

ers, namely the input layer, the hidden layer and the output layer. The first layer

corresponds to the inputs of the network, the second is a hidden layer consisting

of a number of RBF non-linear activation units and the last one corresponds to

the final output of the network. Activation functions in RBFNs are conventionally

implemented as Gaussian functions. The input layer is not a computation layer, it

just receives the input data and feeds it into the special hidden layer of the RBF

network. The computation that is happened inside the hidden layer is very differ-

ent from most neural networks, and this is where the power of the RBF network

comes from. The output layer performs the prediction task such as classification or

regression.

RBF neural network architecture, which includes Lasso and Ridge Regularisation

and Ensemble learning, is used in the proposed approach. This has several ad-

vantages including greater approximation capabilities and shorter processing time.

Various RBF networks come together to form an ensemble. This study uses en-

semble RBF networks to detect breast cancer. We achieved 100% of classification

accuracy for diagnosis of breast cancer. Also novel RBF kernel is introduced with

Particle Swarm Optimization technique and obtained 97% classification accuracy.
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1.4 Conclusion

The predictive models based on various soft computing techniques like Support

Vector Machines, Deep Neural Network, Adaptive Neuro Fuzzy Inference System

and Radial Basis Function Network along with different optimization techniques

and different architectures are built and implemented on WDBC and WBC data

sets for classification of breast cancer. The comparative analysis of the performance

of the classification accuracy obtained by the various researchers in their models

with our respective proposed models is carried out. The proposed predictive models

attained highest classification accuracy in very less time.

1.5 Future scope

If the large amount of clinical data, pathological data, genomic data and images

of mammogram are available for Indian women, we can design the computer aided

expert system using deep learning techniques. Such expert system can assist the

medical professionals to predict the breast cancer in early stage and may reduce the

laboratory cost for further investigation.
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Chapter 2

Preliminaries

———————————————————————————————————–

This chapter provides some basic definitions and theorems which are useful in un-

derstanding the concepts discussed in successive chapters.
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2.1 Linear algebra

Linear algebra plays a requisite role in machine learning due to vectors availability

and several rules to handle vectors. Mostly classifiers or regressor problem in ma-

chine learning are tackle by linear algebra.

1. Quadratic form [10]:

Let A = [aij] be n× n symmetric matrix and X =
(
x1, x2, ..., xn

)T ∈ ℜn. The

Quadratic form Q : ℜn → ℜ defined as:

Q(x) = xTAx =
[
x1, x2, ..., xn

] 
a11 a12 · · · a1n

a21 a22 · · · a2n

an1 an2 · · · ann



x1

x2

...

xn



=
n∑

i,j=1

aijXiXj; aij = aji

Where, A is called matrix of the quadratic form.

2. Definite and Semi definite Quadratic form [10]:

Let Q(x) = xTAX be a quadratic form, where A is symmetric matrix is said

to be

(a) Positive definite if

xTAX > 0;∀x ̸= 0

xTAX = 0;∀x = 0

(b) Positive semi definite if

xTAX ≥ 0;∀x ̸= 0

xTAX = 0;∀x = 0

(c) Negative definite if

xTAX < 0;∀x ̸= 0

xTAX = 0;∀x = 0

(d) Negative semi definite if

xTAX ≤ 0;∀x ̸= 0

xTAX = 0;∀x = 0

3. Moore Penrose Pseudo inverse:

Let A be an m × n matrix, then the Moore penrose pseudo inverse of A is
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denoted by AT and defined as A† =
(
ATA

)−1
AT and it holds the following

properties.

(a) AA†A = A

(b) A†AA† = A†

(c)
(
A†A

)T
= A†A

(d)
(
AA†)T = AA†

4. Eigen vector and eigen value [10]:

Let A be a n× n matrix. A eigen vector of a matrix A is a nonzero vector X

such that AX = λX for some scalar λ. λ is called eigen value of A. If there

is a non-trivial solution of X of AX = λX ; such X is called eigen vector

corresponding to λ. λ is an eigen value of an n × n matrix A if and only if(
A− λI

)
X = 0

5. Hyperplane [10]:

A hyperplane H ∈ ℜn is consist of
(
x1, x2, ..., xn

)
points which satisfy a linear

equation a1x1 + a2x2 + ...+ anxn = b. Where, the vector u = [a1, a2, ..., an] of

coefficient is non-zero. In ℜn it is line, in ℜ3 it is plane and in higher dimension

it is called as hyperplane.

6. Gram matrix [19]:

Gram matrix is matrix that contains the evaluation of the kernel function on

all pairs of training set. Mathematically it represents as:

Let X ∈ ℜn be non-empty and function k : X×X → ℜ (or C) is given where,(
x1, x2, ..., xn ∈ X

)
. Then n×n matrix with elements Kij = k

(
xi, xj

)
is called

Gram matrix or kernel matrix of k w.r.t. x1, x2, ..., xn.

2.2 Optimization

1. Hessian matrix [99]:

A square matrix of second ordered partial derivatives of a scalar function f is

known as the Hessian matrix. It is used in linear algebra and for calculating

local maxima or minima points. Let H be a Hessian matrix of the function

f : ℜ → ℜ, where all second order partial derivatives of f exist and are con-

tinuous throughout domain and the function is f
(
x1, x2, ..., xn

)
. Then Hessian

matrix is defined as:
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H =


∂2f
∂x1

2
∂2f

∂x1x2
· · · ∂2f

∂x1xn

∂2f
∂x2x1

∂2f
∂x2

2 · · · ∂2f
∂x2xn

...
...

...
...

∂2f
∂xnx1

∂2f
∂xnx2

· · · ∂2f
∂xn

2


2. Karush-Kuhn-Tucker (KKT) condition [99]:

Consider optimization problem:

min
x∈ℜn

f(x)

subject to constraints,

gi(x) ≤ 0; i = 1, 2, ...,m

hj(x) = 0; j = 1, 2, ..., r

Define the general Lagrangian,

L
(
x, α, β

)
= f(x) +

m∑
i=1

αigi(x) +

hj(x)∑
βj

where αandβ are Lagrange’s multipliers. The Karush-Kuhn-Tucker (KKT)

condition are as follows:

∂

∂xi

L
(
x∗, α∗, β∗) = 0; i = 1, 2, ..., n(Stationary)

∂

∂βi

L
(
x∗, α∗, β∗) = 0; i = 1, 2, ..., r(Stationary)

α∗
i gi
(
x∗
i

)
= 0; i = 1, 2, ...,m(Complementary slackness)

gi(x
∗) ≤ 0; i = 1, 2, ...,m(Primal feasibility)

α∗
i ≥ 0; i = 1, 2, ...,m(Dual feasibility)

2.3 Functional analysis

1. Inner product [19]:

Let V be a vector space over the field K = CorR. An inner product on a

vector space V is a function ⟨·, ·⟩ : V × V → K, which satisfying following

properties:
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∀u, v, w ∈ V and α ∈ K

(a) Symmetry: ⟨u, v⟩ = ⟨v, u⟩

(b) Additivity: ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩

(c) Homogeneity: ⟨αu, v⟩ = α⟨u, v⟩

(d) Positivity: ⟨u, u⟩ = 0

(e) Nondegenerate: ⟨u, u⟩ = 0 if and only if u = 0

2. Inner product space [19]:

let V over the field K. A vector space V with an inner product i.e.
(
V, ⟨·, ·⟩

)
is called inner product space.

3. Dot product [19]:

Let f(·) =
∑n

i=1 αik
(
·, xi

)
and g(·) =

∑n
j=1 βjk

(
·, xj

′)
be K-valued functions.

Then dot product between f and g is defined as:

⟨f, g⟩ =
n∑

i,j=1

αiβjk
(
xi, xj

′)
Then dot product ⟨f, g⟩ is symmetric and positive definite.

4. Norm [66]:

Let V be a inner product space over ℜ or C. For u ∈ V is a real number. The

norm of u (or length) is defined as:

∥u∥ =
√
⟨u, v⟩

A norm holds the following properties:

(a) ∥u∥ ≥ 0 ; ∀u ∈ V

(b) ∥u∥ = 0 ; if an only if u = 0

(c) ∥αu∥ = |α|∥u∥ ; ∀α ∈ ℜ , ∀u, v ∈ V

(d) ∥αu+ v∥ ≤ ∥u∥+ ∥v∥ ; ∀u, v ∈ V

A norm is defined as a metric or distance on V which is defined as:

d(u, v) = ∥u− v∥ =
√(

u1 − v1
)2

+
(
u2 − v2

)2
+ ...+

(
un − vn

)2
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5. Kernel function [19]:

In machine learning, Kernel is also known as ”Kernel Trick”. It is used to

classify non-linear problem using linear classifier. Let X be a nonempty subset

of ℜn. A function k : X × X → ℜ, such that k
(
x, x

′)
gives a real number

giving the similarity between two patterns x and x
′
is called kernel function.

6. Mercer’s theorem [19]:

Let X be a closed subset of ℜn;n ∈ N. If k : X ×X be a symmetric function

i.e. k(x, x
′
) = k(x

′
, x) where x ∈ ℜn then k to be a valid kernel call Mercer’s

kernel.

For any finite set of points xi ∈ X and ∀ai ∈ ℜ, the necessary and sufficient

condition is
∑n

i,j=1 aiajk(xi, xj) ≥ 0 i.e. the corresponding kernel matrix k is

symmetric positive semi definite.

7. Reproducing kernel [19]:

Let real valued positive definite kernel is k and let X ∈ ℜn be a non empty

set. The non linear function ϕ : X → ℜX , which is defined as, ϕ : x→ k(·, x)
and ℜX be the space of functions from X to ℜ, i.e. ℜX = {ϕ : X → ℜ} ∈ ℜX .

Construct a vector space containing the images of input patterns under the

mapping ϕ as: f(·) =
∑m

i=1 αik(·, xi).

8. Reproducing Hilbert Space [19]:

Let X be a non-empty set. ℜX is a Hilbert space of functions: F : X → ℜ,
provided with the dot product and the norm. Let k : X × X → ℜ is a

reproducing kernel, i.e. ⟨f, k(x, ·)⟩ = f(x);∀f ∈ H and k span ℜX , then ℜX

is called Reproducing Hilbert Space.

2.4 Python preliminaries

To implement all mathematical algorithms, we have used python programming lan-

guage. We have used different python packages to build Kernel Based models.

Following python libraries have been used in our programming.

1. NumPy (NUmerical PYthon) [92]:

NumPy is a library for the python programming language, adding support for

large, multi-dimensional arrays and matrices, along with a large collection of

high-level mathematical functions to operate on these arrays. It is used for

scientific computing are the application of machine learning and deep learning.
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1 Import numpy as np

2

2. SciPy (Scientific Python) [92]:

It is used for scientific computing and technical computing. It contains mod-

ules for optimization, linear algebra, integration, interpolation, special function

and other tasks common in science f engineering.

1 Import scipy as sp

2

3. Pandas [92]:

It is an open source data analysis library for providing easy-to-use data struc-

tures and data analysis tools. It help to perform data analysis and data manip-

ulation in Python language.It offers data manipulation and data operation for

numerical tables and time series. It provide an easy way to create, manipulate

and wrangle the data.

1 Import pandas as pd

2

4. Matplotlib [92]:

It is plotting library for creating static, animated and interactive visualization

in python. It offers endless charts and customization from histograms to scat-

ter plots. It also offers away of colors, themes palettes and other options to

customize and personalize plots.

1 From matplotlib import pyplot as plt

2

5. seaborn [92]:

It is based on Matplotlib library which is use for data visualization. It is use for

making statistical graphics in python. Also, it integrates closely with pandas

data structures. It is more comfortable in handling Pandas data frames.

1 Import seaborn as sns

2

6. Scikit-learn (Sklearn) [92]:

One of the most useful library namely Sklearn has been used for building

machine learning model. It contains a lot of efficient tools for machine learn-

ing and statistical modeling including classification, regression, clustering and

dimension reduction.
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(a) To standardized the features of the data set by removing the mean and

scaling them to unit variance, standardization is used. It is calculated as

z = x−µ
σ

. Where, µ is mean of the training data set and σ is standard

deviation of the training data set.

1 From skelearn import standardscalar

2

(b) PCA or ICA is used to reduce the dimensionality without losing informa-

tion from any features and speed up the learning algorithm with lower

dimension.

1 From sklearn.Decomposition import PCA

2 From sklearn.Decomposition import ICA

3

(c) To split train-test data set to K consecutive folds, this package is used.

Each fold is then used once as a validation while the 3-1 remaining folds

from the training set.

1 From sklearn.Model -selection import Kfold

2

(d) Train-test package is used to divide data randomly into train-test data

set.

1 From sklearn.model_selection import

train_test_split

2

(e) To evaluate the performance of the model such as accuracy, recall, preci-

sion, F -Score for classification, confusion matrix is useful.

1 From sklearn.metrics import confusion matrix

2

(f) To calculate the classification score and report of the machine learning

model following is used.

1 From sklearn.metrics import accuracy_score

2 From sklearn.metrics import classification_report

3

(g) To binarize labels in one vs all following preprocessing package is used.

1 From sklearn.preprocessing import label_binarize

2
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(h) To measure the quality of the output of the classification model ROC and

AUC curv is used.Roc curves typically feature true positive rate on the

Y-axis and false positive rate on the X-axis.

1 From sklearn.metrics import roc_auc_curve

2

(i) To find the validatiton score of the machine learning model which cal-

culate the average over cross validation folds and following package is

used.

1 From sklearn.model_selection import

cross_val_score

2

(j) Support vectore Machines (SVMs) are a set of supervised learning meth-

ods used for classification, regression and outlier detection.

1 From sklearn import svm

2

(k) To build the neural network model this package is used.It implements a

Multi-Layer-Perceptron (MLP) algorithm that trains using Back-propagation.

1 From sklearn.neural_network import MLPClassifier

2

2.5 Machine learning:

1. Confusion matrix:

A confusion matrix is n× n matrix which is used to evaluate the performance

of the classification model. There n is number of target classes. Matrix com-

parison are made between actual target values by machine learning model. It

is defines in Table 1.

2. Accuracy:

Accuracy is one of the most important performance measure for evaluating

classification model which is define as :

Accuracy =
TP + TN

TP + FP + TN + FN
× 100%

3. Precision:

Precision is also known as true positive rate. It measures that, among all
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positive predicted samples how many samples are actually positive and it is

defined as:

Precision =
TP

TP + FP
× 100%

4. Recall:

Reall measure that, among all the samples how many of that actually positive

were found. It is defined as:

Recall =
TP

TP + FN
× 100%

5. F -score:

It measures model’s efficiency and used to evaluate binary classification model.

For imbalanced data set, if classification accuracy is measured according to

accuracy, then the classifier can predict the value of the majority class for

all predictions and achieve high classification accuracy which is not correct.

This drawback can overcome by evaluating the classification accuracy using

F -score. F -score is balance between Precision and recall. It is harmonic mean

of precision and recall. It is defined as:

F -score = 2× Precision× Recall

Precision + Recall
× 100%

6. Matthews’s correlation coefficient (MCC):

MCC measure the difference between the predicted values and actual values

Table 2.1: Confusion Matrix

Actual class

Positive (P) Negative (N)

Predicted class
Positive (P) TP FP
Negative (N) FN TN

∗Terms:
TP: Number of correctly classified data from positive class
FP: Number of wrong classified data from positive class
FN: Number of wrong classified data from negative class
TN: Number of correctly classified data from negative class
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form the confusion matrix.

MCC =

(
TP × TN

)
−
(
FP × FN

)√(
TP + FP

)(
TP + FN

)(
TN + FP

)(
TP + FN

)
7. Kappa Statistic:

Cohen’s kappa is more informative than overall accuracy when working with

unbalanced data. Also it is consider as classification accuracy.

k =
Accuracy− pe

1− pe

8. ROC-AUC curve:

Receiver Operator Characteristic (ROC) curve is a graph showing the perfor-

mance of a classification model at all classification thresholds. The curve plots

False-positive rate on x-axis vs true positive rate y-axis. ROC is as probability

curve and AUC represents the degree or measure of separability. It tells how

much the model is capable of distinguishing between classes.

9. Universal approximation theorem [45]:

Let ϕ(·) be a non constant, bounded and monotonically increasing continuous

function. Let In be the n-dimensional unit hypercube [0,1]n. Then ∀f ∈ C(In)

and ∀ϵ > 0,∃p ∈ N , set of real constants, αj, θj ∈ R,wij, where i = 1, 2, ..., n

and j = 1, 2, ...,m such that F (x) =
∑m

j=1 αjϕ
(∑n

i=1w
T
ijxi − θj

)
, x ∈ In, w ∈

ℜn×m as an approximation of function f(·) independent of ϕ, i.e. for x ∈
Im, |F (x)− f(x)| < ϵ,∀x ∈ Im.

20



Chapter 3

The Ultimate Kernel Machine

Based on Support Vector

Machines

———————————————————————————————————–

This chapter discusses Support Vector Machines, a classic kernel-based supervised

learning technique, for classifying breast tumours as malignant or benign. Several

kernel functions, including polynomial, linear, and Gaussian, are employed in breast

tumour identification, and their impact on classification is examined through the

use of several different metrics. Using Principal Component Analysis and k-fold

cross validation, a cost-effective kernel-based model is created for breast cancer

diagnosis. The WDBC and WBC data collection has been utilized to verify the

accuracy of the model. In Section 3.1, a broad introduction regarding Support Vector

Machines (SVM) and its applications in diverse fields is provided. The mathematical

foundations of SVM are laid up in Section 3.2. Principal Component Analysis is

used for feature reduction which is explained in detailed in section 3.3. In section

3.4 k-fold Cross Validation is explain. Experiments with the suggested SVM are

discussed in section 3.5, and the chapter concludes with a summary in section 3.6.
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3.1 Introduction

The support vector machine is based on the Vapnik Chervonenkis (VC) theory of

statistical learning and effectively executes structural risk minimization. The SVM

algorithm was created in 1963 by Vladimir N. Vapnik and Alexey Ya Chervonenkis.

Later, in the 1960s, Boser, Cortas, and Vapnik created the supervised learning SVM

at AT &T Bell Laboratories [30].

Over sixty years ago, in 1936, R.A. Fisher proposed the first method for pattern

recognition. Moreover, Fisher suggested a linear decision function in the event that

the two distributions are not normal [39]. An optimal quadratic decision function

was found when two populations with standard distributions were considered.

The study of perceptrons, or neural networks, was initiated by Rosenblatt in 1962.

The associated decision rule for building linear hyper planes was thus developed by

Rosenblatt. There were, however, two issues that arose at this time: one of them is:

a conceptual one, requiring the construction of a generalised separating hyperplane;

and second is: a technical one, involving the computational interpretation of high-

dimensional space. By creating the linear decision function with the largest margin

between the two classes’ vectors, Vapnik was able to determine the generalised

optimal separation hyperplane in 1965 [20] [30].

In 1992, Boser Guyon and Vapnik found a solution to the technical problems that had

been preventing them from properly handling the high-dimensional feature space.

They came up with the algorithm to increase the margin that existed between

the training data set and the decision boundary [20]. They suggested nonlinear

classifiers that might be created by applying the kernel method to the maximum

margin hyperplane. Since the data are not linearly separable, Cortos and Vapnik

established the idea of soft margin in 1993 [123].

SVM classifier for non-linear data was developed by Vapnik and Chervonenk with

the assistance of statistical learning theory. In its most basic form, support vector

machines (SVM) is a binary categorization strategy; however, it may also be used for

multi-class classification. The primary goal is to reduce the amount of computational

work required to deal with high-dimensional data. For the purpose of classification, a

support vector machine (SVM) builds a hyperplane or set of hyperplanes in a higher-

dimensional space. The goal of the Support Vector Machine (SVM) algorithm is to

locate a hyperplane in an N-dimensional space that can classify the data points

in a separate manner. Utilizing Kernel techniques for the categorization of non-

linear data. The efficiency of SVM is quite high. The kernel-based support vector
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machine does not deal with the higher dimensional space directly, but rather it is

dependent on the dot product of the input. Any non-linear function, or kernel, that

can transform the data into a higher dimensional feature space and separate the

data by determining the ideal border between the available outputs can be used in

place of the dot product. SVM performs well with high-dimensional data because the

data are automatically regularised and it prevents over-fitting with high-dimensional

data. This is one of the reasons why SVM is used in many fields, including data

classification, facial expression classification, text classification, speech recognition,

and many more.

SVM is one of the best learning algorithms because it avoids overfitting, generalises

classification results well, and works well in high-dimensional spaces using a variety

of kernel functions. Thus, it is relevant in the medical field, particularly in the

classification of diseases. Kourou et al. conducted research on a variety of machine

learning approaches and conducted experiments using the WDBC and WBC data

sets [65]. In the study by Huang et al., an SVM classifier was built with a variety of

kernels for the purpose of breast cancer classification [49]. The researchers found that

using an RBF kernel in conjunction with a feature selection strategy such a genetic

algorithm resulted in the highest accuracy. The hybrid method was proposed by Liu

et al. for the categorization of breast cancer [71]. Shravya et. al. achieved 92.7%

classification accuracy with the utilisation of logistic regression, SVM, and k-nearest

neighbour [110]. In addition, it is utilised in the fields of bioinformatics, medication

development [24], the diagnosis of diabetes [67], the forecasting of electrical load

[47], pattern recognition, and image processing. Additionally, it is helpful in the

detection of spam and the diagnosis of faults [116], among other applications.

The Vapnik-Chervenenkis (VC) theory and the Structural Risk Minimization (SRM)

premise are the foundations of the Support Vector Machine (SVM). Its purpose is to

discover the optimal balance between minimising the training error and increasing

the margin as much as possible. The fundamental concept of SVM is to locate or

create a hyperplane that can partition the data into a certain number of categories.

It is possible for the data to be separated in a linear or non-linear way. It is simple

to find a hyperplane that separates the data linearly in the case of linearly separable

classes. In the case of classes that are not linearly separable, it can be challenging to

locate a hyperplane that can separate the data in a linearly. Therefore, in this sce-

nario, the support vector machine (SVM) maps the input into a higher dimensional

feature space using kernel methods so that it can be linearly separated.
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3.2 Mathematical formulation

3.2.1 Linearly Separable case - Hard margin

Consider two-class (binary) classification problem. For training data set, consider

T = {Xi, di}, where i = 1, 2, · · · , Q,Xi ∈ ℜn and di ∈ {−1,+1}. Here, each input

vector has number of component features. Each input set has corresponding target

output di. Let decision function be a bipolar Signum function which is define as in

eq. 3.1:

f(X) = sign
(
W ·X + b

)
(3.1)

Here, ” · ” is a scalar or inner product. Hence, W ·X can be also written as W TX.

The data are classified by the decision function based on whether the quantity’s

value is positive or negative.

(a) Which hyperplane? (b) Maximize margin

Figure 3.1: Maximal Margin Classifier

There are many hyperplane that can separates the two classes. The decision bound-

ary should be as far away from the data of both classes as possible. The main goal of

SVM is to find an optimal separating hyperplane that maximize the separating mar-

gin between the two classes of data. By linearly separability we can find an oriented

hyperplane which is defined by a set of weights W and a bias b as shown in fig. 3.1.

It separates the positive data from the negative ones. The general equation of the

separating hyperplane is given by W ·X + b = 0 or W TX + b = 0. The hyperplanes

W · X+ + b = +1 for the closet point on the positive side and W · X− + b = −1
for the closet point on the negative side. Canonical hyperplanes are hyperplanes

that pass through the point where W · X+ + b = +1 and W · X− + b = −1 is

defined. The region that lies between these canonical hyperplanes is referred to as

the Margin. Margin is defined as the distance between the dividing hyperplane and
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the point that is closest to both classes. It is the data points that lie on the Margin

that are referred to as the support vectors. In other words, the support vectors are

the data points that are located on the hyperplane that are the nearest (or closest).

Maximizing the margin of separation is similar to maximising the margin between

hyperplanes. Therefore, M = 2
|W | is the entire margin between any two canonical

hyperplanes. As a result, increasing the margin M to its highest possible level is the

same as decreasing |W |. Therefore, it turns into a quadratic constrained optimiza-

tion problem, in which the objective function is to be minimized while adhering to

the constraints that are stated below in eq. 3.2:

Minimize:
1

2
∥W∥2 subject to constraint di

(
W TXi + b

)
≥ 1,∀i (3.2)

This quadratic constraint optimization formulation can be reduced to minimize of

the Lagrangian Multiplier technique. It is define as sum of the objective function and

the Q constraints multiplied by their respective Lagrangian Multipliers αi Which is

known as Primal Lagrangian function and defined as follows in eq. 3.3:

Minimize: Lp

(
W, b,Λ

)
=

1

2
∥W∥2 −

Q∑
i=1

λi

[
di(W

TX + b)− 1
]

(3.3)

Where, Λ = λ1, λ2, ..., λQ is Lagrangian multipliers and λi ≥ 0. The solution to the

constraint optimization problem is determined by finding the critical points of the

primal Lagrangian function and then by minimizing the primal Lagrangian function

Lp

(
W, b,Λ

)
with respect to primal variable W and b and maximize with respect to

dual variable λi ≥ 0. Differentiating Lp with respect to W and b and set it equal to

zero we get following eq. 3.4 and eq. 3.5:

For W :

∂

∂W
Lp

(
W, b,Λ

)
= W −

Q∑
i=1

λidiXi = 0 (3.4)

For b:

∂

∂W
Lp

(
W, b,Λ

)
= 0−

Q∑
i=1

λidi (3.5)

Substitute this results into Lp i.e. in eq. 3.3 in order to eliminate W and b, it gives

the Wolf Dual Lagrangian as follows in eq. 3.6 which is quadratic optimization

problem with linear constraints.
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LD

(
Λ
)
=

Q∑
i=1

λi −
1

2

Q∑
i=1

Q∑
j=1

λiλjdidj
(
Xi ·Xj

)
(3.6)

Due to dual formulation, it must be maximized with respect to λi subject to the

constraints as shown in eq. 3.7:

Q∑
i=1

λidi = 0 and λi ≥ 0; i = 1, 2, ..., Q (3.7)

Karush-Kuhn-Tucker (KKT) condition is the necessary and sufficient condition for

convex optimization problem with linear constraints and also it governs the duality

problem. By applying KKT condition to the Lagrangian function,λi

[
di(Xi ·W +

b) − 1
]
= 0;λi ̸= 0. We get the decision function which classifies points based on

the eq. 3.6. Eq. 3.6 and eq. 3.7 can be written as in the matrix form as follows:

Maximize: LD(Λ) = Λ · 1− 1

2
ΛTHΛ s.t.c., Λ ·D = 0 & Λ ≥ 0

Where, H is Hessian matrix having elements, Hij = didj(XiXj). Which is called

quadratic programming optimization problem with linear constraints. This gives

optimized Lagrangian multipliers Λ̂ = (λ̂1, λ̂2, ..., λ̂Q)
T . Some observations for KKT

condition:

1. The solution for minimizing Lp(W, b, λ) with respect to W and b and subject

to λ ≥ 0 is the same as the solution of maximizing Lp(W, b, λ) with respect to

λ and subject to appropriate constraints.

2. The Lagrangian multipliers are non-negative.

3. For equality constraints:

The differential of Lp(W, b, λ) w.r.t. the Lagrangian multiplier is zero at the

solution point.

4. For inequality constraints:

Either Lagrangian multiplier is zero and constraint is satisfied independently

or multiplier is non-zero and constraint is satisfied with equality.

From the KKT condition, for each point λi

[
di(W ·Xi + b)− 1

]
= 0 or either λi = 0

or λi(W ·Xi + b) = 1. Where we have two conditions for λi’s as follows”
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1. The data point for which lagrangian multipliers λi > 0 are called support

vectors. i.e. The data points which satisfy di(W ·Xi + b) = 1 are the support

vectors.

2. If λi = 0 then data points are non-support vectors. Such point does not

contribute to the separating hyperplane.

For the solution of the dual problem, consider λ∗,W ∗, and b∗ and we get,

W ∗ =
ns∑
k=1

λ̂kdkXk

Where, ns is number of support vectors and b∗ = 1
ds
−W ∗Xs which is evaluated

from the complementary condition. However, b is calculated by averaging over all

support vectors.

b∗ =
1

ns

[
ns∑
l=1

(
1

dl
−W ∗ ·Xi

)]

Hence, after substituting value of W ∗ and b∗ into eq. 3.1, the separating hyperplane

or discriminant function is given by eq. 3.8. Eq. 3.8 consider only those data points

which separated the negative and positive classes. and those data points are known

as support vectors (ns).

f(x) = sign

(
ns∑
i=1

diλ̂i(X ·Xi) + b∗

)
(3.8)

If f(x) = +1 then X is classified as positive data point. and if f(x) = −1 then X

is classified as negative data point.

3.2.2 Linear Non-separable case - Soft margin

SVM with hard margin is utilised in situations in which the data can be separated

linearly and there are no instances of incorrect classification. On the other hand, if

the data cannot be separated in a linearly, we have the option of using a more wide

margin for classification in order to reach a higher level of generality. This means

that it can be separated in a non-linear approach and that it permits some of the

data points to be unclassified. Even when the data can be separated linearly, the

margin may be so small that the model is over-fit or particularly sensitive to outliers.
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This can happen even though the data can be separated linearly. In addition, to

assist in the adaptability of the model, we may select a larger margin by utilising

soft margin SVM. This would allow the model to be more flexible. because of this,

in the scenario that the training data is not linearly separable and there is overlap

between the classes. To avoid mis-classification of noisy data points, slack variable

ξi can be added. Hence, new optimization problem can be reformulated as follows

in eq. 3.9

Minimize: f(W, ξi) =
1

2
∥W∥2 + C

Q∑
i=1

ξi s.t.c. di(W ·Xi) + b ≥ 1− ξi (3.9)

Here, a penalty value C is introduced for the points that cross the boundaries to

take into account the mis-classification errors. Parameter C also controls the over-

fitting issues. A soft margin is created within which a mis-classified data lies. The

width of this soft margin is controlled by a penalty parameter C. Also C controls

the weighting to make the ∥W∥2 small.

Now, Lagrangian of the given quadratic optimization problem in terms of primal

variable is given as follows:

Lp =
1

2
∥W∥2 + C

(
Q∑
i=1

ξi

)
−

Q∑
i=1

λi

[
di(W ·Xi + b)− 1 + ξi

]
−

Q∑
i=1

γiξi

Where, λi and γi are Lagrangian multipliers and λi ≥ 0 and γi ≥ 0.

Same as Hard margin case, from the KKT condition and at saddle points, partial

derivatives w.r.t. primal variable vanishes. In both cases there is only one difference

which is the upper bound on the Lagrangian multiplier λi

3.2.3 Non-linear separable case - Kernel trick

It is usually not possible to make a straight line of classification between the two

groups. In the year 1992, Bernhard Boser, Isabelle Guyon, and Vladimir Vapnik

presented a general concept of kernel trick to maximum – margin hyperplanes. Their

goal was to extend the capabilities of the linear learning machine so that it could deal

effectively with non-linear scenarios. When data points in the input space cannot

be separated by a linear decision boundary, the points are projected onto a higher-
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dimensional feature space. In this specific case, a non-linear kernel function is used

in place of every dot product. The data points are moved from the input space to

the higher-dimensional feature space using a non-linear function φ : X → H, where
X is a non-empty set and H is a Hilbert space.

Data mapping from input space to higher dimensions feature space using non-linear

functions like kernels is computationally intensive. When compared to other meth-

ods of transforming data into higher dimensions, kernel tricks are more time and

cost effective. Non-linear kernel function is applied directly without calculating non-

linear kernel function ϕ at each data point. X → φ(X) = (a1ϕ1(X), a2ϕ2(X), ..., anϕn(X)).

That can be formulated utilising an infinite number of feature variables. Therefore,

rather than working in X-space, we are now working on H. Using φ(X) as the in-

put variable instead of X, we apply the methods of the soft-margin classifier. Using

this mapping, the discriminant function in the feature space can be represented as

follows:

f(x) = sign

(
ns∑
i=1

diλ̂iϕ(X) · ϕ(Xi)
T + b

)
Where, XT

i X in the input space is represented as ϕ(X) ·ϕ(Xi)
T in the feature space.

Hence, the optimal separating hyperplane is given as follows:

ns∑
i=1

diλ̂iϕ(X) · ϕ(Xi)
T + b = 0

The functional form of the mapping ϕ(Xi) implicitly defined by the choice of kernel:

K(xi, Xj) = ϕ(Xi)
T ·ϕ(X). The input values of X can be written in the form of a dot

product Xi ·Xj. Hence, dot product is the operation which performs over X and in

feature space, it becomes ϕ(Xi) ·ϕ(Xj). In addition, the Kernel function ought to be

Mercer’s Kernel (insert cross reference), which means that it ought to be a positive

semi definite function. The term ”Reproducing Kernel Hilbert Space” refers to the

feature space that is associated to a certain kernel [19]. A kernel function that, in a

higher feature space, is equivalent to the dot product of two feature vectors is called

the dot product kernel function. There are a variety of well-known Mercer’s kernels

like Fisher’s Kernel, Graph kernel, Kernel Smoother, Polynomial kernel, Gaussian

kernel, Linear kernel, etc. which are compatible with SVM.

Various Kernel functions are used in SVM [46]. The most common Kernels used in

SVM are defined as follows.
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1. Polynomial Kernel : K(Xi, Xj) = (1 +XT
i Xj)

p, p is polynomial order.

2. Gaussian kernel : K(Xi, Xj) = exp
(

||Xi−Xj ||2
2σ2

)
, σ is the parameter controlling

the width of the Gaussian kernel.

3. Linear kernel: K(Xi, Xj) = XT
i Xj

3.3 Principal Component Analysis

The dimensionality of a large data set can be reduced using an unsupervised method

called principal component analysis. Large data sets are becoming more common

and are often difficult to comprehend. Principal component analysis (PCA) is a

statistical method that increases interpretability of large data sets by reducing the

number of dimensions in the data set without diminishing generality or information.

In order to achieve this goal, the initial variables are replaced by a new set that is

referred to as the principle components (PCs) [54]. These principal components are

not connected with one another. This is accomplished by including a number of

new variables that are unrelated to one another in order to increase the variance.

In 1901, Karl Pearson introduce Principal Component analysis as similar of the

principal axis theorem in mechanics and further it was individually developed and

named by Harold Hotelling in the 1930s [91] [48]. PCA has different goals like

the extraction of the data’s most significant feature, reduction of features while

maintaining the information’s integrity, in image compression, visualization of multi-

dimensional data. The dimension of the original data can be reduce dimension to

k, if original data consist of n dimension such that k ≤ n. Following are the steps

involved in applying PCA:

1 Standardization

This stage standardises the continuous initial variables to ensure each con-

tributes equally to the evaluation. If the initial variable ranges differ signifi-

cantly, the larger ranges will dominate the smaller ranges, causing bias in the

outcomes. This issue can be avoided by converting the data to comparable

scales. Mathematically, Subtract the mean from each variable’s value and di-

vide by the standard deviation i.e. xnew = x−µ
σ

; µ=mean and σ = Standard

deviation. Using this standardisation method, the values of all the features

will be converted to the same scale.

2 Compute Covariance matrix
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The purpose of generating a covariance matrix for the full data set is to ex-

amine the dispersion of the input data’s features (variables) relative to the

mean. There can be redundancy in data sets since features (variables) are

often highly associated with each other. Covariance matrix helps to find these

correlations. for 4 samples and 4 features, covariance can be written as follows:
var(f1) cov(f1, f2) cov(f1, f3) cov(f1, f4)

cov(f2, f1) var(f2) cov(f2, f3) cov(f2, f4)

cov(f3, f1) cov(f3, f2) var(f3) cov(f3, f4)

cov(f4, f1) cov(f4, f2) cov(f4, f3) var(f4)


3 Compute eigen vector and eigen value

Eigen value and Eigen vectors are computed from the covariance matrix. The

new variables known as Principal Components are created by linear combina-

tion of the initial variables and they uncorrelated.

4 Sort Eigen values and their corresponding eigenvectors

In order to determine the significant number of PCs, sort the Eigen values from

highest to lowest. Additionally, the dimensionality will be reduced without

significant data loss. To that end, the individual components can be treated

as independent variables.

5 Choose k eigenvalues and form a matrix of corresponding eigenvec-

tors to decide which PCs to keep

The low-significance eigenvectors are discarded, and a ”feature vector” ma-

trix is calculated from the high-significance eigenvectors. Eigenvectors of the

components we decide to retain are stored in a column matrix called a feature

vector.

6 Transform the original matrix/data

Using Eigen vectors of the covariance matrix feature vector is formed. Data

are reorient from the original axes to the ones which is known as principal

components. Data is transformed using following formula: Transform =

Featurevector ∗ topkEigenvectors

3.4 k-fold cross validation

Models’ ability to accurately generalise or perform on unknown data can be tested

with the help of the statistical approach of cross-validation, often known as the re-

31



sample technique. Here, single k refers the number of groups or folds into which a

specific data sample is ti be divided is indicated by single parameter. Initially, data

are randomly partitioned with equal size into k fold or groups, say D1, D2, ..., DK.

Training and testing data are performed k times. The first iteration is trained on

groups D2, D3, ..., Dk and tested on D1. Then the second iteration is trained on

groups D1, D3, ..., Dk and tested on D2. Likewise, this procedure will continue for

k-folds. Advantage of this method is that all samples in data set are eventually used

for training set as well as testing set. The general procedure is as follows:

1. Shuffle the data set randomly.

2. Split the data set into k-fold

3. For each folds:

(a) Consider one of the fold as a test data set.

(b) Consider remaining fold as a train data set.

(c) Fit a model on the training set and evaluate it on the testing set.

(d) Keep the evaluation score and repeat the process for k- fold.

4. Summarize the evaluation score of each mode by E = 1
k

∑10
k=1Ek.

3.5 Experimental work and results

SVM based Classifier is developed to classify breast cancer data set into Benign (B)

and Malignant (M) classes respectively. SVM classifier is designed by employing

linear, Gaussian and polynomial kernels. Additionally, PCA is utilized to diminish

the dimensions. We first accomplished the mean normalization step, before begin-

ning the PCA process. The feature vector dimensions of the WBC and WDBC

data set were significantly reduced up-to 3 without loosing any information of data

and retained 99% of discrepancy. By taking k = 10 folds. k-fold cross validation

technique is utilized to split data into train-test set. Where, all data are shuffle ran-

domly and split into 10 folds. Each set serves as both a training set and a testing

set and both are performed 10 times. after a model has been fitted to the training

data, then it is tested on the test data. Our investigation involve the following SVM

training scenarios for the WBC and WDBC data sets. WBC and WDBC data set

are explained in detail in Appendix-A.
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1. SVM without PCA and without k–fold CV

2. SVM with PCA only

3. SVM with k–fold CV only

4. SVM with PCA and with k–fold CV

In the first two scenarios, the data set are randomly divided into the training set

and the testing set. In the next two scenarios, the k-fold cross-validation method is

utilised for the purpose of partitioning data set into training and testing sets. There

are three distinct kernels utilised in each each case. Calculations of the confusion

matrix and several other accuracy metrics are performed in order to determine

the efficiency of the classification. In each scenario, the duration of time required

to complete all computations in each case is determined to check efficacy of the

classifiers. All experiments are carried out using Python programming language.

3.5.1 Experiment 1: Experiments using WDBC data set

To begin with, WDBC data set would be normalized in order to minimize and

remove any redundant data. Experiments are carried out with the different values

of the penalty parameter C, learning rate γ and three different kernels. The highest

accuracy is obtained for polynomial kernel with degree 3, C = 100 and γ = 0.0006.

The accuracy obtained is 96.63% and time required for training was 0.63 second.

The comparison of accuracy and time obtained for 3 different kernels are depicted

in table 3.1.

Table 3.1: Comparison of Accuracy and Time for different kernels using SVM

Kernels Measures
Without
PCA or
k-fold CV

With
PCA
only

With
k-fold CV

only

With
PCA and
k-fold CV

Polynomial
Accuracy(%) 92.98 91.23 96.43 96.63
Time (sec) 0.35 0.39 0.04 0.63

RBF
Accuracy(%) 59.69 92.98 76.79 96.43
Time (sec) 0.38 0.50 0.39 0.43

Linear
Accuracy(%) 92.98 92.98 96.43 96.43
Time (sec) 0.50 0.38 0.39 0.80

Graphically, accuracy and time comparison are plotted which is exhibited in fig. 3.2

and fig. 3.3.

33



Figure 3.2: Comparison of Accuracy for different kernels using SVM for WDBC
dataset
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Figure 3.3: Comparison of Time for different kernels using SVM for WDBC dataset
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Table 3.2 represents the confusion matrix for the WDBC data set. which was derived

through experiments using a case that had SVM along with PCA and k-fold CV.

The results of an analysis of the confusion matrix are shown in table 3.3 along with

a measure of performance.

We compare the results of our studies on the WDBC data set with the results

obtained by other authors as shown in table 3.4. When compared to other authors,

34



Table 3.2: Confusion matrix for WDBC dataset using SVM for different kernels

Polynomial Kernel RBF kernel Linear Kernel

Actual
value

Predicted value Actual
value

Predicted value Actual
value

Predicted value

M B M B M B

M 40 3 M 41 2 M 43 0
B 2 11 B 2 11 B 3 10

Table 3.3: Performance measures of SVM for WDBC dataset

Measures
Polynomial
Kernel

RBF
Kernel

Linear
Kernel

Sensitivity 0.93 0.95 1.00
Specificity 0.85 0.85 0.77
F -Score 0.91 0.93 0.95

we find that cite Mert2011 has the highest accuracy 94.40%. However, 96.63%

classification accuracy was achieved for the same data set in 0.63 second by proposed

SVM classifier with polynomial kernel.

Table 3.4: Comparison of classification accuracy of other papers with our experi-
ments for WDBC dataset

Authors Year Methods Classification
Accuracy

[76] 2011 SVM (Quad), 25% test data 94.40%
SVM (RBF), 25% test data 93.70%

[84] 2010 SVM (Poly.), 40% test data 92.62%
SVM (RBF), 40% test data 93.72%

[115] 2010 PSO and SVM 93.52%
QPSO and SVM 93.06%

[110] 2019 SVM 93.70%

Present study 2020 SVM (Linear) 96.43%
SVM (Polynomial) 96.63%
SVM (RBF) 96.43%

3.5.2 Experiment 2: Experiments using WBC data set

Experiments are carried out in the same manner using the WBC data set. The

results of a comparison of the accuracy and time required by three distinct kernels

for this data set are presented in table 3.5. Also, graphical representation of accuracy

and time are depicted in fig. 3.4 and fig. 3.5. For WBC data set, we tried out a

variety of combinations, including a wide range of values for the penalty parameter
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C, learning rate γ and using three distinct kernels. The polynomial kernel with 3

degree and C = 1.0 yeilds the maximum 100% accuracy in just 0.03 second.

Table 3.5: Comparison of Accuracy and computation time for different kernel using
SVM

Kernels Measures
without
PCA or
k-fold CV

With
PCA
only

With
k-fold CV

only

With
PCA and
k-fold CV

Polynomial
Accuracy(%) 93.66 94.15 95.59 100.00
Time (sec) 0.34 0.01 0.78 0.03

RBF
Accuracy(%) 96.59 97.56 98.53 98.53
Time (sec) 0.42 0.01 0.43 0.03

Linear
Accuracy(%) 96.10 97.56 98.53 98.53
Time (sec) 0.33 0.06 0.48 0.02

Figure 3.4: Comparison of Accuracy for different kernels using SVM for WBC
dataset
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The confusion matrix for the various kernels are presented in table 3.6. The per-

formance measures of the SVM for the WBC data set are displayed in table 3.7.

Table 3.8 represents a comparison of the classification accuracy achieved by pro-

posed model verses achieved by other authors using WBC data set. Among all the

authors, Huang et.al. (2017-add citation) have achieved 98.28% accuracy. However,

proposed SVM model achieved 100% classification accuracy in 0.03 second with

polynomial kernel.

The detailed information of the both data set are given in the Appendix. Also,
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Figure 3.5: Comparison of Time for different kernels using SVM for WBC dataset
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above all computation is carried out using Python programming and it is given in

the Appendix.

Table 3.6: Confusion matrix for WBC dataset using SVM for different kernels

Polynomial Kernel RBF kernel Linear Kernel

Actual
value

Predicted value Actual
value

Predicted value Actual
value

Predicted value

M B M B M B

M 55 0 M 54 1 M 54 1
B 0 13 B 0 13 B 0 13

Table 3.7: Performance measures of SVM for WBC dataset

Measures
Polynomial
Kernel

RBF
Kernel

Linear
Kernel

Sensitivity 1.00 0.98 0.98
Specificity 1.00 1.00 1.00
F -Score 1.00 0.99 0.99
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Table 3.8: Comparison of classification accuracy of other papers with this current
experiments for WBC dataset

Authors Year Methods
Classification
Accuracy

Authors Year Methods
Classification
Accuracy

[90] 2010 SVM 96.33%

[70] 2003
SVM (Polynomial) 96.71%
SVM (RBF) 97.07%

[41] 2005 SVM 97.51%

[49] 2017
SVM ensembles (RBF) + GA 98.28%
SVM (Linear) + GA 96.85%
SVM ensembles (Linear) + GA 96.57%

Present study 2020
SVM (Polynomial) 100.00%
SVM (RBF) 98.53%
SVM (Linear) 98.53%

3.6 Conclusion

Different kernels, PCA and k-fold CV are used to conduct a comparative evaluation

of SVM-based classifiers. Proposed models are validated using WDBC and WBC

data sets. Feature reduction in both data set is done so that 99% of variance is

preserved or retained. Evaluation of how various kernels give best classification

accuracy, performances and time has been compared.

The classification accuracy is significantly improved after employing PCA for feature

reduction and k-fold CV to split data into train-test set. By selecting the suitable

values for the penalty parameter C and learning rate γ.

For WDBC data set, Polynomial kernel achieved the maximum accuracy of 96.63%.

For WBC data set, Gaussian and Polynomial kernel achieved 98.53% and 100%

classification accuracy respectively. It is found that, combining SVM with PCA

and k-fold CV considerably decreases training time. The significance and efficiency

of proposed model’s finding have been established and validated by comparative

analysis. According to proposed findings, a computer-aided diagnostic system that

has been thoughtfully developed can be of assistance to medical professionals in

making quick decisions and reducing the risk of making an incorrect diagnosis.
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