
Chapter 6

Ensemble Based Lasso Ridge

Radial Basis Function Network

———————————————————————————————————–

In this chapter, we propose Lasso-Ridge Radial Basis Function Network (LR-RBFN)

and Ensemble LR-RBFN strategies in diagnosis of breast cancer. The proposed net-

works are deployed on the Wisconsin Breast Cancer (WBC) data set, and compar-

ative analysis is carried out. An overview of the Radial Basis Function Network is

provided in Section 6.1. The methodology of using a Radial Basis Function Network

and k-means clustering is detailed in Section 6.2. The Lasso and Ridge Regulariza-

tion is covered in detail in Section 6.3. Proposed LR- RBFN is explained in detail in

Section 6.4. Proposed Ensemble Learning is covered in Section 6.5. A Novel Mod-

ified Gaussian Kernel is discussed in Section 6.6. Method evaluation of proposed

Ensemble RBFN is presented in the Section 6.7. The Section 6.8 discussion focuses

on the Simulation Results and Conclusions.
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6.1 Introduction

Autonomous detection and diagnosis systems built on top of Machine Learning have

shown promising results in terms of accuracy and speed. Breast cancer analysis

methods have come a long way in the last decade. Multiple automatic classification

strategies have been deployed in recent years. The outcomes you get from using

various approaches will differ. Concerns, such as the necessity for the creation of

more effective methods, must still be addressed. To enhance the classification of

breast cancer illnesses, an unique Lasso-Ridge Radial Basis Neural Network (LR-

RBFN) and Ensemble LR-RBFN is introduced.

Yuehui Chen et. al. proposed Hierarchical RBF (HRBF) that can be built and

expanded according to a set of instructions. Using the same cutting-edge artificial

methods, the authors compared their proposed optimised HRBF network to alterna-

tives networks like NN Flexible Neural Tree and RBFN and achived 96.84% classifi-

cation accuracy [28]. Aye Mya Thandar and Myo Kay Khaing offered a consistency-

based method for selecting traits to use in order to narrow down the available options

[117]. The proposed method also reduced irrelevant features on breast cancer, lym-

phography, sick-thyroids, and hepatitis, enhancing the RBFN’s performance. In

testing, they had an accuracy of 85.19% when using the proposed consistency-based

RBF. Alex Alexandridis and Eva Chondrodima proposes method for training RBF

classifiers using RBF Neural Networks and Non-Symmetric Fuzzy Means (NSFM)

training, with evolutionary simulated annealing (ESA) to optimise the RBF models

[8]. The WBCD and WDBC data sets were used to test the effectiveness of their

suggested method. It was asserted that their proposed method required less time

to calculate than SVMs. In order to compare the efficacy of RBFNN and BPN

(Back Propagation Neural Network) strategies and SVM, S. Vijayalakshmi and J.

Priyadarshini and Sanaz Mojrian et. al. conducted experiments on the WBCD,

WDBC, and WPBC databases [125] [81]. This new system, called ELM-RBF, com-

bines Extreme Learning Machine with the RBF model and it achieves an accuracy

of 99.72% during training, 99.23% during testing, and 95.69% during validation, re-

spectively. For the purpose of WBCD classification in breast cancer, Roguia Siouda

and Mohamed Nemissi proposed an optimised RBF-NN [111]. Propagation networks

and PSO + K-mean networks were compared. They said their accuracy in identi-

fying breast cancer was 97.82%.Vincent F. Adegoke et. al. and Lavanya Doddipalli

have successfully analysed and tested their models with WBCD, including the Adap-

tive Neuro Fuzzy Inference System (ANFIS), Artificial Neural Networks, Recurrent

Back-propagation Fuzzy Networks and Back-propagation Neural Networks [5] [33].
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6.2 Methodology

6.2.1 Radial Basis Function Network

A Radial Basis Function Network (RBFN) is a type of Artificial Neural Network

in the field of mathematical modelling that use Gaussian Function as activation

function. As a nonlinear classifier based on supervised machine learning, RBFNs

are a specific sort of ANN. They were initially proposed in a study that was published

in 1988 by Broomhead and Lowe, who were both researchers at the Royal Signals

and Radar Establishment [22] [23] [109]. The network’s output is a linear mixture

of the input Gaussian’s and neuron parameters. RBFN have a wide variety of

applications, some of which include the approximation of functions, the prediction

of time series, the classification of data and the control of systems. RBF network is

based on Cover’s theorem.

Unlike other types of neural networks, RBFNs are designed differently from the

ground up. Many layers are used in ANN’s architecture and non-linearity is intro-

duced through the repeated application of nonlinear activation functions. On the

other hand, an RBF network needs only three layers to function properly: an input

layer, a single hidden layer with non-linear activation function and a linear output

layer. The input layer is not a calculation layer; rather, it only accepts the input

data and sends it on to the RBF network’s hidden layer. The processing that takes

place within the hidden layer of an RBF network is considerably different from that

of the majority of neural networks because of the Cover’s theorem [31]; this is where

the RBF network gets its impressive level of performance. The prediction task,

which may include classification or regression is carried out by the output layer.

The paradigm of high-dimensional feature transformation, as stated by Cover’s the-

orem, is supported by the fact that it enhances classification by linear separation

when features are translated from low-dimensional to high-dimensional spaces [31].

� Cover’s theorem:

In 1965, Thomas cover introduced Cover’s theorem based on the separability

of patterns which is stated as below [31]:

”A complex pattern classification problem which is non-linearly separable in

low-dimensional space can be more likely to be linearly separable in a high-

dimensional space, provided that the space is not densely populated.”

The RBF network is feed forward neural network consisting of three layers, a input
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layer, a single hidden layer and the output layer are having J1 − J2 − J3 number of

neurons respectively as shown in Fig.6.1 An activation function called ϕ(r) is used

by each hidden layer neuron, which is non-linear. The Gaussian function applied

to all neurons in the hidden layer is often the same. It has the following definition

ϕi(x⃗) = ϕ(x⃗ − c⃗i); i = 1, 2, ..., J2 where, c⃗i is center, x⃗ is input vector and ϕ(x) is

any basis function. A matrix form of N training pairs, (x⃗i, y⃗i)|i = 1, 2, ..., n, can be

represented as Y = W Tϕ; where W = [w⃗1, w⃗2, ..., w⃗J3 ] is J2 × J3 matrix with w⃗i =

(w1i, w2i, ..., wJ2i)
T , Φ = [ϕ⃗1, ϕ⃗2, ..., ϕ⃗n] is J2 × n matrix with ϕ⃗i = (ϕi1, ϕi2, ..., ϕiJ2

)T

is output of the hidden layer for the ith sample and Y = [y⃗1, y⃗2, ..., y⃗n] is J3 × n

matrix with y⃗i = (yi1, yi2, ...yiJ3)
T . The learning process revolves around modifying

the network’s parameters in order to replicate a predetermined set of input-output

patterns.

Figure 6.1: Architecture of Radial Basis Function Network (RBFN)

� Input layer: Data is simply passed from the input layer to the hidden layer. No

weights are connected through input to hidden layer. The input neurons are

fully connected to the hidden neurons and send the information they receive

to the hidden neurons.

� Hidden layer: The input, in which the pattern may or may not be linearly

separable, is transformed by the hidden layer into a new space that is more

linearly separable. Due to the necessity to translate non-linearly separable

patterns into higher-dimensional space in order to make them linearly separa-

ble, the hidden layer has a higher dimensionality than the input layer. Cover’s

theorem on pattern separability states that if a pattern is transformed into a

higher-dimensional space via nonlinear transformation, then it is more likely

to be linearly separable, and so the number of neurons in the hidden layer

should be larger than the number of neurons in the input layer [31]. Hidden

layer is also known as feature vector. Each node in the hidden layer consist

102



of individual Basis Function. There are different basis function like Gaussian,

Quadratic, Multi-Quadratic, etc. have been used in the experiments.

In the hidden layer, prototype vectors i.e. receptors or centers are calculated,

which are vectors from the training set. The distance between receptor and

input vector is calculated using norm. Here ϕ is Gaussian activation or Basis

function consist of centers C and spread σ. The computation that takes place

in the hidden layer can be expressed mathematically as follows in eq. 6.1:

ϕi =

J2∑
i=1

e
−∥x⃗i−C⃗∥2

2σ2
i (6.1)

where, x⃗i is input vector

c⃗i center or prototype vector

σi is smoothness parameter or variance-spread of RBF function

ϕi is non-linear RBF activation function or output of the ith hidden neuron

Here, norm is taken to be the Euclidean norm. For each node in the hidden

layer, center is calculate using k-means clustering algorithm.

� Output layer: The output layer computation is done in the same way as a tradi-

tional artificial neural network, which is a linear combination of the input vec-

tor (output of hidden layer will become input for output layer) and the weight

vector. The Weight vectors between hidden and output layer are learned and

updated using optimization algorithm like Gradient Descent, Adam, Particle

Swarm optimization, etc. The computation in the output layer can be stated

mathematically as follows in eq. 6.2:

yi(x⃗) =

J2∑
k=1

wkiϕ(∥x⃗− c⃗k∥); i = 1, 2, ..., J3 (6.2)

Where, wi is the weight connection between each hidden node to output node,

ϕi is the i
th neuron’s output from the hidden layer and y is network’s predicted

output.

k-means clustering

k-Means Clustering is an unsupervised learning approach used to address clustering

issues in machine learning and data science. This method clusters the unlabeled
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data set into distinct categories. Here, k determines how many distinct clusters

will be formed; for example, if k = 2, only two clusters will be formed, whereas if

k = 3, there would be three clusters, and so on. It is an iterative technique that

splits the unlabeled data set into k distinct clusters, with each data set belonging to

only one group with identical or common attributes. There is a centroid assigned to

each cluster in this technique. This algorithm’s primary goal is to find the smallest

possible sum of distances between data points and their respective clusters. As input,

the algorithm takes an unlabeled data set, which it then divides into k clusters and

iteratively searches until it fails to discover the optimal clusters. When using this

procedure, k should have a known value beforehand. k-means clustering is used for

primarily two purposes: i) Uses iteration to find the optimal location for k centres,

and ii) It gives each data point the k-center that is closest to it. A cluster is formed

by the data points that are located in close proximity to a specific k-center.

Algorithm for k-means clustering

1. Decide number of cluster k

2. Initialize k random centroids for each center of each cluster to a different

randomly selected training pattern.

3. Assign each data points (training pattern) to the nearest cluster. Then calcu-

lated euclidean distance between the training patterns and the cluster centers.

4. After assigning all of the training patterns, then compute the average position

for each cluster centre. They then become the new centres of their respective

clusters.

5. It is necessary to repeat steps 3 and 4 until the cluster centres remain constant

during the succeeding rounds.

Spread (σ)

Once the RBF centres are determined, the k-nearest neighbours approach can be

used to determine the spread of each RBF unit. The k closest centres to each of the

centres are determined. The Root-Mean Squared distance is used to find the spread

value, which is calculated between teh current cluster and its k nearest neighbours.

Therefore, if the current cluster centre is cj, the following expression will describe

the σ value:
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σi =

√∑J2
i=1(cj − ci)2

k

RBF network learning i.e. Weight

RBF network learning can be expressed as the Mean Square Error(MSE) function’s

minimization which is defined as follows:

E =
1

n

n∑
i=1

||y⃗i − wT ϕ⃗i||2 =
1

n
||Y −W TΦ||2F ′

Where, Y = [y⃗1, y⃗2, ..., y⃗n]; y⃗i is the target output for the ith sample in the training

set and || · ||2F is the Frobenious norm defined as ||A||2F = tr(ATA).

Usually, RBF network’s learning performed on the two stages, namely find the

centers and spread respectively and then update the weights(W ) of the network.

After calculation of spread and centers, network’s error is minimized and weight is

calculated using W = (Φ†)†Y T = (ΦΦT )−1ΦY T . Where, [·]† is the pseudo-inverse of
the matrix within.

6.3 Lasso-Ridge Regularization

The term ”Regularization” is used to describe the methods by which machine learn-

ing models are updated to prevent over-fitting, under-fitting and to minimize the

loss function. Regularization is an essential concept that is utilized to prevent the

data from being over-fit, particularly in situations in which the trained data and the

test data differ greatly from one another. Over-fitting can sometimes occur when

modelling a high-dimensional data set with an excessive number of features (model

captures both real and random effects). An overly complex model with a large

number of features, especially if those elements are connected, can be difficult to

understand. To reduce the variance of the tested data, regularization adds a penalty

term to the best fit from the training data and also compresses the coefficients of

the predictor variables that have an effect on the output variable. In the process

of regularization, the standard practise is to maintain the same number of features

while simultaneously decreasing the absolute value of the coefficients. By employing

a variety of different sorts of regression approaches, one of which is regularization,

we will be able to lessen the magnitude of the coefficients and thereby solve this

105



problem. Lasso and Ridge Regularization is two techniques to deal with over-fitting

problem.

6.3.1 Lasso Regularization

Lasso stands for Least Absolute Shrinkage and Selection Operator and also known as

L1 Regularization. It resolves the problem by adding a penalty that is comparable to

the total of the absolute values of the coefficients to the cost (loss or error) function ,

which changes the over-fitted or under-fitted models. Lasso Regularization is another

method that can be used to do coefficient reduction. However, unlike other methods,

it does not square the magnitudes of the coefficients; rather, it uses the coefficients’

actual values. Since negative coefficients are allowed, the sum of the coefficients can

be 0. When using L1 regularisation, a penalty is applied that is proportional to

the absolute value of the magnitude of the coefficient. Because of the nature of this

regularisation, the resulting model may be sparse and contain few coefficients. It is

possible that some of the coefficients will become 0 and then can be removed from

the model. Mathematically L1 regularization is defined as follows:

Residual Sum of Squares (i.e. Cost or loss or error function) + λ1 * (Sum of the

absolute value of the magnitude of coefficients)

L1 = Loss function + λ1

J3∑
i=1

∥w⃗i∥1 = Loss function + λ1

J3∑
i=1

|w⃗i|.

Where, λ1 is Penalty parameter or shrinkage for the errors.

w⃗i is slope of the curve.

When the penalties are higher, the resulting coefficient values are nearer to zero

(ideal for producing simpler models). However, sparse models and coefficients are

preserved with L2 regularisation. Therefore, as compared to the Ridge, the Lasso

Regression model is simpler to understand.

6.3.2 Ridge Regularization

Ridge regularization is also known as L2 Regularization. As a penalty term, L2 adds

“squared magnitude” of coefficient as penalty term to the cost function. Mathemat-
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ically, it is represented by as follows:

L2 = Loss function + λ2

J3∑
i=1

∥w⃗i∥22 = Loss function + λ2

J3∑
i=1

w⃗i
2.

Adjusting the penalty function’s parameters allows us to manipulate the penalty

value. The magnitude of the coefficients is decreased as the penalty is increased to

a greater level and hence it shrinks the parameters. Because of this, it is utilised

to prevent multi-collinearity, and it also minimises the complexity of the model by

means of coefficient shrinking. If λ2 is 0 at this point, then L2 becomes Ordinary

Least Square (OLS). On the other hand, if λ2 is excessively large, then it will add an

excessive amount of weight, which will result turn to under-fitting problem. How-

ever, the method of selecting λ2 is crucial. Over-fitting problems can be effectively

avoided with this method.

6.4 Proposed Lasso-Ridge Radial Basis Function

Network

Over-fitting and under-fitting problems have been addressed in this model by using

an RBF network which integrates the L1 penalty and L2 penalty. While L1 regu-

larization seeks to estimate the data’s median, L2 regularization seeks to do so by

estimating the data’s mean in an effort to minimize over-fitting.

Weights wi parameters are added as penalties to the cost function in L1 penalty

and the squared value of weight wi is added to the cost function in L2 penalty,

respectively. The proposed approach uses mean square error function (loss function)

to assess the classification model’s performance, as illustrated in 6.3.

E =
1

n

n∑
j=1

J3∑
i=1

(ej,i)
2. (6.3)

Approximate error at ith output node for the jth pattern is given by 6.4.

ej,i = yj,i − w⃗T
i ϕ⃗j. (6.4)

A regularization term has been incorporated to the loss function as shown in 6.3, of

the novel RBFN to enhance the model’s efficiency which is evince in the following
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6.5.

E =
1

n

n∑
j=1

J3∑
i=1

(ej,i)
2 + λ1

J3∑
i=1

∥w⃗i∥1 + λ2

J3∑
i=1

∥w⃗i∥22. (6.5)

Where, j = 1, 2, ..., n is number of pattern, i = 1, 2, ..., J3 which is number of output

neuron and m = 1, 2, ..., J2 which is number of neurons at the hidden layer and λ1

and λ2 are tuning parameter of L1 and L2 respectively which controls bias-variance

trade off.

Here, L1 penalty term is non-differentiable function. Gradient may not exist or

undefined. L1 penalty function is non-differentiable when wi = 0. Hence, sub-

gradient of L1 term is given as follows:

∂

∂wi

|wi| =


−1 ;wi < 0

[−1, 1] ;wi = 0

1 ;wi > 0

By taking the first derivative of E with respect to wm,i, we have following equation.

∂E

∂wm,i

= −2ρj + 2wm,izj + 2λ2wi +


−λ1 ;wi < 0

[−λ1, λ1] ;wi = 0

λ1 ;wi > 0

Where, ρj =
1
n

∑n
j=1 ϕ(∥x⃗j − c⃗m∥)

{
yj,i −

∑
k ̸=m wk,iϕ(∥x⃗j − c⃗m∥)

}
and

zj =
1
n

∑n
j=1 ϕ

2(∥x⃗j − c⃗m∥) .

Hence, weights can be determined using following (6.6):

wm,i =


−λ1+2ρj
2(zj+λ2)

; ρj <
−λ1

2

0 −λ1

2
< ρj <

−λ2

2

λ1+2ρj
2(zj+λ2)

; ρj <
−λ2

2

(6.6)

Weight updation is given by (6.7).
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wnew
m,i = wold

m,i − η1
∂E

∂wm,i

. (6.7)

Again taking first derivative of loss function E with respect to c⃗m, we have

∂E

∂c⃗m
= − 2

n

n∑
j=1

J3∑
i=1

ej,i

[
J2∑

m=1

wm,i

(
σ2 + ∥x⃗j − c⃗m∥2

)− 3
2

(
x⃗j − c⃗m

)(−(x⃗j − c⃗m
)

∥x⃗j − c⃗m∥

)]
.

Hence, update center c⃗m is given by 6.8.

cnewm = coldm − η2
∂E

∂cm
. (6.8)

Different types of basis functions can be used in RBFN ([128], [79]; [69]; [94]). In this

experiments, we have used Gaussian, Multi-quadratic and Inverse Multi-quadratic

basis functions which are defined in the experiment section.

6.5 Ensemble Learning

Ensemble methods are used in machine learning and statistics to improve predicted

performance over that of individual learning algorithms [101] [96]. Unlike a sta-

tistical ensemble in statistical mechanics, which is normally unlimited, a machine

learning ensemble consists of only a specific finite number of different models hav-

ing considerably more flexible structure. The term ”Ensemble Learning” refers to

the method of generating and combining several models such as classifiers or ex-

perts to address a specific computational intelligence challenge. The primary goal

of ensemble learning is to enhance the performance of the classification, function

approximation, etc of the model. Ensemble learning can also be used for data fu-

sion, incremental learning, non-stationary learning, error correction and assigning

confidence to the model’s choice.

Ensemble methods are classified into two types: sequential ensemble and parallel

ensemble approaches. For example, Adaptive Boosting is an ensemble method that

sequentially generates base learners (AdaBoost). Dependence between basis learn-

ers is encouraged by the sequential creation of the base learners. When this is done,
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Figure 6.2: Combining an ensemble of classifiers for reducing classification error
and/or model selection [96]

the model’s performance can be enhanced by giving more weight to the types of stu-

dents that were initially under-represented. The basis learners for parallel ensemble

methods like random forest are created simultaneously. By generating new basis

learners in parallel, parallel techniques enhance independence in the base learners.

As a result of their independence, the base learners considerably reduce the average

mistake. The vast majority of ensemble approaches use just one algorithm for base

learning, which leads to all of the base learners having the same characteristics. Base

learners of the same type and with similar characteristics are said to be homoge-

neous. Alternatively, other approaches use a variety of different types of foundation

learners to create a variety of different types of ensembles. Learners of various types

make up a heterogeneous base.

Hyun Chul Kim et. al. introduced the SVM ensemble with bagging and boosting

as an alternative to SVM ensemble [60]. The suggested SVM ensemble with bag-

ging or boosting outperforms a single SVM in terms of classification accuracy in

simulations, including those for IRIS data classification, hand-written digit classifi-

cation and fraud detection. With the help of bagging and boosting, Jork Stork et.

al. created SVM ensembles [112]. They came up with the novel idea of examining
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SVM ensembles composed of several kernel types like linear, polynomial and RBF.

For big data set, their goal is to train a single strong SVM ensemble classifier with

fewer resources than a single SVM on all the data. In the context of food quality

assessment, Fady Mohareb et. al. proposed an ensemble technique for classification

and regression based on SVM classifiers [80]. Min Wei Huang et. al. Used different

kernel functions such as linear, polynomial, RBF and compared SVM with SVM

Ensemble for prediction of breast cancer in order to determine which was superior

[49]. Tina Elizabeth Mathew proposed an ensemble decision tree classifier for the

diagnosis of breast cancer using Wisconsin diagnostic data [75]. Josef Kittler et. al.

used different decision tree classifier including the C4.5 and J48 classifier as well as

the Standard CART, REPTree, Hoeffding Tree, BFTree, Logostic model tree etc.

Nevertheless, it has been well known that combining multiple classifier or classifier

ensembles, which is another major study field in pattern classification ([63]). Vin-

cent F. Adegoke et. al. proved that they are known to perform better then single

classifiers. The author suggested that EKF-RBFN-Adaboost was able to speed up

training times while also improving the efficiency of RBFN’s training setting ([5]).

Proposed Ensemble RBF network

In order to make the most practical and precise prediction for breast cancer diagno-

sis, we develop machine learning models. It is possible that a single model, due to

issues like unpredictability and bias, doesn’t always make the most accurate fore-

casts. Errors can be reduced and prediction quality can be improved by combining

many models into a single model. The purpose of ensemble learning is to achieve

a specific task by combining the results of numerous base models. As a result of

their simplicity, they have earned the title ”weak learners,” and this is why ensemble

learning takes use of them. A strong learner is produced when a weak learner joins

forces with other weak learners. Those with stronger learning abilities tend to do

better than those with weaker ones. In order to enhance the performance of the

machine learning process, we create and analyse the Ensemble RBF learning model.

RBF networks have various advantages over other types of networks. These advan-

tages are due to the fact that RBF networks use RBF as their activation function

and have only one hidden layer. These functions are highly powerful when it comes

to approximation. RBF networks have the ability to learn online. They are very

resistant to input noise and have good generalization ability.

It is probable that a Standard RBFN will not learn the exact parameters of the
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Figure 6.3: A general architecture of the Ensemble RBFN

global optimum because of the approximation techniques that are employed in the

implementation of a Standard RBFN. The RBFN that was obtained via the process

of learning might not be adequate for classifying all of the unknown test samples.

Because of the possibility that a Standard RBFN would not always produce the

global ideal classification performance across all test samples, we suggest employing

a group of RBFNs as a solution. A general layout for the planned Ensemble RBFN

can be seen in the Fig.6.3

There have been many different ways of constructing an ensemble classifier. A few

different methods, including bagging, boosting, blending and stacking are utilized

to choose the training samples. Particularly, we concentrated on advanced ensemble

bagging as a model for the technique to follow. After the training has been com-

pleted, it is important to integrate a number of the RBFNs that were previously

trained into a single model. The bagging procedure is determined by the outcome

of the voting with the most votes winning.

6.6 A Novel Modified Gaussian Kernel and Par-

ticle Swarm Optimization

6.6.1 A Novel Modified Gaussain Kernel

It is known that Euclidean distance is not only the measure that can be used to find

whether the feature vectors are spaced out uniformly or not. In this case Euclidean

distance will have no measurable impact. To address this problem, we proposed a
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generalized RBF kernel along with cosine based RBF kernel which can be formulated

as follows:

ϕ(xi, ci) = ϕ1(xi, ci)ϕ2(xi, ci)

Where, ϕ1(xi, ci) =
xi·ci

||xi||||ci||+γ
; γ > 0 is cosine similarity and ϕ2(xi, ci) =

||xi−ci||2
2σ2 is

Gaussian kernel. Where, c and σ has their usual meaning. Hence, it is defined as

follows:

ϕ(xi, ci) =

(
xi · ci

||xi||||ci||+ γ

)
e

||xi−ci||
2

2σ2

The cosine similarity metric assesses similar two vectors in an inner product space.

It evaluates whether or not two vectors are pointing in nearly the same direction

by measuring the cosine vector and comparing the results. The similarity attains

the value between -1 and +1 . If the cosine similariy is +1 then it implies that two

vectors are aligned or have the same direction, if it attians 0 values then it means

x and y are orthogonal to each other and if it attains -1 then it indicates that both

vectors are aligned but in opposite direction.

6.6.2 Particle Swarm Optimization

The bio-inspired Particle Swarm Optimization (PSO) technique is a straightforward

approach to find the optimum solution. This optimization method is distinct from

others because it does not rely on the gradient or any differential form of the objective

function. Moreover, it uses few hyperparameters. An initial population of random

solutions is used to begin off the search for the best possible solution, which is then

refined through successive generational updates. In 1995, Kennedy and Eberhart

proposed Particle Swarm Optimization technique. Bird flocking behaviour is the

inspiration behind Particle Swarm Optimization. When birds flock together, they

forage in an area at random. Unfortunately, not every bird knows where the food

is hidden. However, they know the food’s distance each time. The PSO algorithm

is fast optimization method that can be implemented quickly since it only requires

a small number of parameters to achieve optimal performance, in addition to its

fast convergence speed, great robustness, strong global search capability and its

independence from gradient information.

PSO begins with a population called a swarm, which is initialised with a set of
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random values called particles (solutions), and then looks for the optimal position

of particles by updating its population at each iteration. Each particle is updated

in each iteration by taking the average of its two most recent fitness values and

applying the appropriate fitness function to that problem. The first number is the

most optimal starting point for each particle, and it is refereed as personal best

(pbest). Another value is the best swarm position that has been attained thus far

by any swarm; this best value is known as a global best (gbest). Every particle

has a velocity that determines its direction and moves it to a new location. It is

possible for the magnitude velocities to grow significantly when the velocities are

calculated. Therefore, it is best to limit the maximum velocity (Vmax) that the

user can select in order to effect PSO performance. The basic algorithm of PSO is

mention as follows:

1. Initialize each particle i of the swarm, with random values for position (xi) and

velocity (vi) in the search space according to the dimensionality of problem.

2. Evaluate fitness value of particle by using fitness function.

3. Compare the value obtained from the fitness function from particle i, with the

value of Pbest.

4. If the value of the fitness function is better than the Pbest value, then update

the particle position to takes the place of Pbest.

5. If the value of Pbest form any particle is better than gbest, then update gbest

= Pbest.

6. Modify the positionXi and velocity Vi of the particles using following equation.

Calculate particle position by:

xt+1
i = xt

i + vtit

Calculate velocity by:

vk+1
i = wvki + c1r1(xBestti − xt

i) + c2r2(gBestti − xt
i)

Where, xBest is best particle position, gBest is best group position, r1 and r2

are two random parameter within [0,1], i = 1, 2, ...,M ; d = 1, 2, ..., n, t+1 is the

current iteration number, t is the previous iteration number, w is the inertia

weight, c1 and c2 are the acceleration constant which are usually between [0,

2].
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7. If the maximum number of iterations or the ending criteria is not achieved so

far, then return to step 2.

6.7 Method Evaluation

In order to illustrate the utility of the proposed method as a medical diagnostic tool,

the LR-RBFN and Ensemble LR-RBFN are applied to the Wisconsin Breast Cancer

data set (WBCD) ([34]). By employing Multivariate Imputation by Chained (MICE)

Equation, 16 missing values are assigned in the data set. Appendix A provides a

brief overview of the data set, while this link: http://archive.ics.uci.edu/ml provides

further information.

A combination of bagging and majority voting is employed in the assembly of pro-

posed Ensemble LR-RBFN for testing and approval of the results. We also investi-

gate the efficacy of the proposed Ensemble LR-RBFN in comparison to the Standard

RBFN. Moreover, Standard RBFN is also compared to the proposed hybrid of Lasso

and Ridge RBFN (LR-RBFN) to test the performance of the model.

The WBCD data set is pre-processed using normalization and scaled into [0,1] us-

ing the following (6.9), once it is loaded into the RBF network to ensure that no

attributes are missing and that the data is consistent.

Xnormalized =
X −Xmin

Xmax −Xmin

. (6.9)

In this experiment, the Gaussian, Multi-quadratic and Inverse Multi-quadratic func-

tions have been employed as the basis function in RBFN. Which are defined as

follows in eqs. 6.10, 6.11 and 6.12

ϕ
(
x, c
)
= exp

(
−∥x− c∥2

2σ2
m

)
; c > 0, c ∈ R (6.10)

ϕ
(
x, c
)
=
(
x2 + c2

) 1
2 ; c > 0, c ∈ R. (6.11)

ϕ
(
x, c
)
=

1(
x2 + c2

) 1
2

; c > 0, c ∈ R. (6.12)

Centers and weights must be determined for use in the RBF networks learning
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process. The smoothness parameter σ must also be calculated for a RBFN with a

Gaussian RBF. There are two stages to the RBF network learning process. Phase

one begins with the identification of suitable centers and their associated standard

deviations. The weights are modified during the second phase using (6.7). RBF

network centers are found using k-means clustering method.

WBC data set consists of 699 records each having 9 features with integral values

ranging from 1 to 10. A single incidence is classified as either benign or malignant.

We simulated the network with diverse number of RBFs. Performance and error

reduction are two of the many advantages of employing an ensemble rather than a

single model. An evaluation of the RBFN was carried out utilising Gaussian, Multi-

quadratic and Inverse Multi-quadratic basis function to train and test the network.

When calculating the network output and the desired output, we employed the Mean

Square Error.

The proposed model’s efficacy in classifying breast cancer as benign or malignant is

evaluated using test data acquired after RBFN has been trained. Once the model

has been developed, it can be used to predict the class labels of previously unknown

data on a test set. Measurement of the model’s performance based on test data is

typically useful since it offers an unbiased estimate of generating errors.

For WBC data set, the model is built with nine input neurons, one hidden layer and

one output neuron. In order to reach the optimum rate of precision, it is required

to alter the number of neurons in the hidden layer. To emphasize the convergence

of the models, they are trained using learning rates of 0.01, 0.001, and 0.0001. In

addition, the proposed models are validated for several train-test pairs, such as

90-10%, 80-20% and 70-30%.

6.8 Simulation Results and Conclusion

6.8.1 Experiments for LR-RBFN

A new Lasso (L) and Ridge (R) penalty term is added in the loss function. Loss

function can be strengthened by including a regularization terms as shown in (6.5).

It is essential to use the regularization terms in order to reduce error by fitting a

function appropriately on the available training set while avoiding the over fitting.

As a result of penalizing for complexity, this regularization strategy aids in the

reduction of variance in the proposed model. Due to fusion of Lasso and Ridge
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regularization to the model, we effectively yield better performance for the training

data as well as better generalization ability for the test data. Lasso and Ridge

regularization is introduced into the loss error function in order to penalise heavy

weights.

The embedded approach of L1 and L2 penalty reduces the coefficients of ’unimpor-

tant’ features to zero or close to zero. Having a hybrid of the two penalties, L1 and

L2, is advantageous since it allows for a higher performance on some issues than

a model with only one penalty applied. λ1 and λ2 are another hyperparameters

that regulates the weighting of the total of both penalties to the loss function. For

λ1 and λ2 values ranging from 0 to 1, our proposed model attained an accuracy of

98.57% for λ1 = 0.03 and λ2 = 0.02 and learning rates: η1 = 0.75 and η2 = 0.75.

Here, λ1 and λ2 also controls bias-variance trade-off. Accuracy, precision, recall, the

F -score, Kappa statics (k), and the Matthews Correlation Coefficient (MCC) are

all employed to improve the overall performance of the proposed LR-RBFN model.

The pseudo-code of the proposed LR-RBFN model is outlined in Algorithm 4:

Algorithm 4 Proposed LR-RBFN model

Step 1. Pass training pattern
{(

x⃗p, y⃗p)
∣∣p = 1, 2, ..., N

}
.

Step 2. Set learning rate η for different range.
Set stopping criteria ϵ = 0.001.
Set initial weights randomly.

Step 3. Calculate centers c⃗m using k-means clustering.

Step 4. Calculate spread using σm using σm =
√

1
p

∑p
k=1(ti − tk)2 .

Step 5. Find the value of each RBF’s i.e. ϕi(x)
′s for each input vector using

Gaussian basis function.

Step 6. Take linear combination at hidden layer to output layer using following
equation: yi(x⃗) =

∑J2
k=1wkiϕ(∥x⃗− c⃗k∥); i = 1, 2, ..., J3 .

Step 7. Compute network’s error E from 6.3 and compare with desired output.

Step 8. Update weights and centers using 6.7 and 6.8.

Step 9. While stopping criteria is true, stop else repeat the procedure until con-
vergence.

For Multi-quadratic and Inverse Multi-quadratic radial basis function same proce-

dure is performed. The flow of proposed LR-RBFN algorithm is depicted in Fig.6.4.
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Figure 6.4: Flow chart of proposed LR-RBFN algorithm

Results and discussion

For several sets of centres, learning rates, and train-test sets (such as 90-10%, 80-20%

and 70-30%), the Standard RBFN is simulated using various radial basis functions

like Gaussian, Multi-quadratic and Inverse Multi-quadratic. The following Table 6.3,

Table 6.4 and Table 6.5 illustrate the best performance of the model. The efficacy

of the model is assessed using kappa statistic (k) and MCC and it is indicated in

tables.

Because of the embedded method, both penalties i.e. L1 and L2 can be balanced

out, which can lead to better results in some cases than a model with just one or the

other penalty. In addition to the ”lambda (λ)” hyperparameter, the loss function

can be tweaked to change the weighting of the total of both penalties. Adding

penalties to the loss function during training to encourage standard models with

smaller coefficient values. Better results are attained when compared to a standard

model.

The results of Table 6.1, Table 6.2 and Table 6.3 states that Gaussian basis function

attains 97.14% of classification accuracy in 6.42 seconds.

Figure 6.5, 6.6 and 6.7 shows the iteration process at each epoch for the best results
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Table 6.1: Performance analysis for 90-10% train-test set - Standard RBFN

BF NC CI II Acc(%) Pre (%) Re (%) F (%) T (sec) k MCC

GA 50 68 2 97.14 1.0 92.0 96.0 6.42 0.94 0.94
MQ 20 66 4 94.29 87.0 95.0 91.0 3.84 0.87 0.87
IMQ 15 67 3 95.71 1.0 87.0 93.0 2.15 0.90 0.90

Table 6.2: Performance analysis for 80-20% train-test set - Standard RBFN

BF NC CI II Acc(%) Pre (%) Re (%) F (%) T (sec) k MCC

GA 35 135 5 96.43 97.0 90.0 94.0 7.52 0.91 0.91
MQ 20 133 7 95.0 87.0 98.0 92.0 3.98 0.88 0.89
IMQ 20 133 7 95.0 98.0 89.0 93.0 3.71 0.89 0.90

(a) (b) (c)

Figure 6.5: Epoch vs error for Gaussian RBF for different train-test set - Standard
RBFN: (a) 90-10% train-test set, (b) 80-20% train-test set, (c) 70-30% train-test set

of the Standard RBFN for various learning rates, various centres with Gaussian,

Multi-quadratic and Inverse Multi-quadratic RBFs for various train-test pairs.

Table 6.4 presents the confusion matrix and accuracy for the best centres and best

learning rate of the Standard RBFN with Gaussian, Multi-quadratic, and Inverse

Multi-quadratic RBFs in various train-test sets. It can be seen in Table 6.4 and

Table 6.5 that of these three RBF’s, Gaussian RBF outperforms them all. The

Gaussian RBF achieves the best results with the 50 centres and with η1 = 0.75 and

η2 = 0.75, with the highest values of 98.14% accuracy, 100% precision, 92.0% recall

and 96.0% F -score achieved in just 6.42 seconds.

Table 6.5 shows the best performance of the proposed LR-RBFN with multiple

centres and different tuning parameter pairs, i.e. λ1 and λ2. Performance matrices

such as the confusion matrix, accuracy, precision, recall, F -score, k, and MCC are
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Table 6.3: Performance analysis for 70-30% train-test set - Standard RBFN

BF NC CI II Acc(%) Pre (%) Re (%) F (%) T (sec) k MCC

GA 50 201 9 95.71 94.0 95.0 94.0 9.35 0.91 0.91
MQ 40 201 9 95.71 97.0 90.0 93.0 3.48 0.92 0.90
IMQ 15 194 16 92.38 91.0 83.0 87.0 1.75 0.82 0.82

∗Terms: BF - Basis Function, NC - No. of Centroids, CI - Correct Instances, II -
Incorrect Instances, Acc - Accuracy, Pre - Precision, Re - Recall, F - F -score, T

(sec) - Time, GA - Gaussian, MQ - Multi-Quadratic, IMQ - Inverse
Multi-Quadratic

(a) (b) (c)

Figure 6.6: Epoch vs error for Multi-quadratic RBF for different train-test set -
Standard RBFN: (a) 90-10% train-test set, (b) 80-20% train-test set, (c) 70-30%
train-test set
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Figure 6.7: Epoch vs error for Inverse Multi-Quadratic RBF for different train-test
set - Standard RBFN: (a) 90-10% train-test set, (b) 80-20% train-test set, (c) 70-
30% train-test set

used to evaluate each model. For 20 centres and η1 = 0.75 ”and” η2 = 0.75 with

λ1 = 0.03 and λ2 = 0.02, the model attains a classification accuracy of 98.57%.

Fig.6.8 depicts the results of a performance assay i.e. accuracy, precsion, recall and

F -score of several λ1 and λ2 combinations. According to the results, when compared
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Table 6.4: Confusion matrix and accuracy with different RBF’s for different train-
test set - Standard RBFN

RBF’s Train-Test set Center Accuracy (%) Confusion Matrix

GA

90-10% 50 97.14
45 0
2 23

80-20% 35 96.43
97 1
4 38

70-30% 50 95.71
128 5
4 73

MQ

90-10% 20 94.29
46 3
1 20

80-20% 15 94.28
87 1
7 45

70-30% 40 95.71
137 2
7 64

IMQ

90-10% 15 95.71
47 0
3 20

80-20% 20 95.0
84 1
6 49

70-30% 15 92.38
141 5
14 59

Figure 6.8: Comparison of performance for various values of λ1 and λ2 with different
centers - LR-RBFN

to the standard RBFN, LR-RBFN attained the best classification accuracy 98.57%,

and it did it in just 12.56 seconds as depicts in Fig.6.9.

Fig. 6.10 represents the training error at each epoch for different values of centers,

λ1 and λ2 for proposed LR-RBFN.
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Table 6.5: Performance analysis - LR-RBFN

λ1 λ1 C CM Acc(%) Pre (%) Re (%) F T (sec) k MCC

0.03 0.02 20
47 1

98.57 100.0 95.0 98.0 12.56 0.97 0.97
0 22

0.1 0.02 15
41 0

95.71 100.0 90.0 95.0 12.40 0.91 0.91
3 26

0.1 0.5 30
91 2

94.28 95.0 87.0 91.0 15.05 0.87 0.87
6 41

0.05 0.05 22
77 6

91.42 89.0 89.0 89.0 15.87 0.82 0.82
6 51

0.01 0.15 17
86 2

94.28 96.0 86.0 92.0 12.37 0.88 0.88
6 46

0.07 0.02 23
90 4

92.14 91.0 88.0 88.0 25.78 0.82 0.82
7 39

0.01 0.05 15
94 1

97.85 98.0 97.0 97.0 14.46 0.95 0.95
2 43

0.001 0.02 27
80 9

92.14 84.0 90.0 90.0 29.82 0.84 0.84
2 49

0.02 0.03 23
84 8

92.14 85.0 89.0 89.0 17.63 0.83 0.83
3 45

0.01 0.03 35
86 6

95.71 89.0 94.0 94.0 15.71 0.91 0.91
0 48

Figure 6.9: Comparison of time for various values of λ1 and λ2 with different centers
- LR-RBFN

6.8.2 Experiments for Ensemble LR-RBFN

The ensemble learning technique known as ”bagging” or ”bootstrap aggregation”,

reduces variance in a noisy data set. To build the Ensemble LR-RBFN, we em-

ploy a bagging method. Bagging is a process in which several RBFN are trained

independently using the bootstrap approach and then they are aggregated using the

majority voting method.

There is a training and a testing subset of the experimental data. Bootstrap sam-
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Figure 6.10: Epoch vs error Gaussian RBF for different values of centers and λ1 and
λ2 - LR-RBFN

pling is used to reproduce overlapping random samples of the training subset for

each RBFN classifier, depending on the size of training subset and classification

algorithm. Once the ensemble has been used to evaluate the unseen test data, all

RBFN classifiers are fused together using a maximum voting technique. We antic-

ipate the class label yi(x⃗) by applying the following formula to obtain a majority

(plurality) vote from each classifier RBFN-N : yi(x⃗) = maxi=1

∑N
i=1 yi.

The Fig.6.11 depicts the overall execution of the ensemble based LR-RBFN with

bagging strategy. First and Foremost, the original data set D is divided into two

subsets: a training subset (TR) and a testing subset (TS). The training subset TR

is subdivided into training tr1 and testing ts1. Subset is created using re-sampling

technique. After that, ts is bootstrapped into a 300 samples. This procedure is

repeated several times until the entire ensemble is generated. The ensemble is used

in order to label the unseen testing subset D samples. In order to enhance the overall
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Figure 6.11: Flowchart of development process for Ensemble LR-RBFN.

performance of the proposed ensemble model, accuracy, precision, recall, F -score,

kappa statics (k) and Matthews Correlation Coefficient (MCC) are used.

Table 6.6: Comparison of Standard RBFN vs Proposed LR-RBFN vs Ensemble
LR-RBFN

Classifiers
Evaluation criteria

Accuracy (%) Precision (%) Recall (%) F -score (%)

Standard RBFN 97.14 100.0 92.0 96.0

LR-RBFN 98.57 100.0 95.0 98.0

Ensemble LR-RBFN 100.0 100.0 100.0 100.0

Novel RBFN 97.14 100.0 92.0 65.0

Results and discussion

The bagging approach is used to construct an ensemble-based system for predicting

breast cancer, and the results are promising. The data set was divided into two

subsets: train and test. In order to complete the optimization procedure depicted

in Fig. 6.11, the training subset for each of the classifiers in the ensemble is boot-

strapped to generate a subset of 90%, 80%, and 70% samples consisting of 699 data,

which was then partitioned into train-test subsets. We train number of LR-RBFNs

independently over the replicated training data set. The accuracy of the ensemble

prediction was calculated using the testing subset, and the final output was com-
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Table 6.7: Performance comparison of various author’s work

Author Year Algorithm Accuracy (%)

T. Kiyan and T. Yildrim 2004 RBFN 96.18

A. M. Thandar and M. K. Khaing 2012 Consistency based RBFN 85.19

S. Vijayalakshmi and J. Priyadarshini 2017 RBFN 98.26

S. Mojrian et. al. 2020 ELM-RBF 99.23

Our Study 2022
Standard RBFN 97.14

LR-RBFN 98.57

Ensemble LR-RBFN 100.0

puted using the majority voting aggregation approach. The use of ensemble methods

helped to alleviate (reduce) prediction variance. Analysing the performance of mul-

tiple models and averaging them together helped to keep the spread of performance

under control. The variability in performance is minimized by averaging the results

of the multiple model at the same time. The bagging process contributes to the

reduction of variation. As a result, model’s capacity to forecast the prediction is

enhanced.

A total of 2, 3, 5, 7, and 10 LR-RBFN classifiers are incorporated into each ensemble

system. This quantity is found to be adequate for stabilising the accuracy of the

ensemble prediction. Various LR-RBFN were added at a time to each ensemble in

an accumulative fashion to test for stability, which is illustrated in Fig. 6.12 and

Fig. 6.13 by a comparison of accuracy and time for several models with different

train-test combinations for Ensemble LR-RBFN.

Figure 6.12: Comparison of accuracy for various models with different train-test -
Ensemble LR-RBFN.
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Figure 6.13: Comparison of time for various models with different train-test - En-
semble LR-RBFN.

From the above Fig.6.12 and Fig.6.13, we see that the highest classification accuracy

of 100% is achieved with only two LR-RBFN in the Ensemble model in just 30.86

seconds, for 90-10% of train-test set. The above accuracy is obtained using the

following parameter values: η1 = 0.75, η2 = 0.75, λ1 = 0.08 and λ2 = 0.02 with 30

centres.

We also see that, in comparison to the Standard RBFN performance, the bagging

strategy and majority voting approach used in the Ensemble model has increased

overall prediction accuracy by 3% approximately, as shown in Table 6.6.

Table 6.7 represents the comparative analysis of the performance of the accuracy

obtained by the various researchers in different models with the proposed models in

this study. A proposed novel RBF kernel with PSO optimization technique gives

96.23% classification accuracy for WBC data set and 97.14% classification accuracy

for WDBC data set as shown in Taable 6.6.

The detailed information of the both data set are given in the Appendix. Also,

above all computation is carried out using Python programming and it is given in

the Appendix.

6.8.3 Conclusion

In this study, standard RBFN, LR-RBFN and Ensemble LR-RBFN models are

developed and implemented on Wisconsin Breast Cancer data set. In the LR-RBFN

model, Lasso and Ridge regularization technique is employed along with L1 and L2

penalty into the loss function and obtained better accuracy of 98.57% compare

to the accuracy of 97.14% in Standard RBFN. The Ensemble based LR-RBFN,

using bagging strategy with majority voting technique is proposed and its accuracy
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is compared with LR-RBFN. It is found that, Ensemble based LR-RBFN gives

the highest 100.0% accuracy. Also for each model performance analysis in terms

of accuracy, precision, recall, F -score is carried out and found that the proposed

Lasso-Ridge RBFN (LR-RBFN) and Ensemble LR-RBFN models outperforms the

standard RBFN model.
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