CHAPTER 3

BURROW MORPHOLOGY OF ILYOPLAX SAYAJIRAOI

3.1 Burrows of crab and its morphology

Burrow is an excavation of soft sediment or soil by species to protect itself from the harsh environment and where it can stay for a long period time to complete its life cycle.

Burrow morphology is the study of its outer structure that includes length, width, volume, weight, angle, reproductive chamber, etc. The burrow morphology is species-specific. Species modify this structure to overcome the physical and biochemical stress of the environment (Griffis and Suchanek, 1991; Wolfrath, 1992; Griffis and Chavez, 1988). Crabs of family Dotillidae are the most common habitat of tropical and subtropical regions showing characteristic features of bioturbation. Burrows provide shelter from terrestrial predators and also from natural stress factors. It is the site for breeding, reproduction, and moulting. Bioturbation is common in mudflat areas of Kamboi; crustacean species show such activity at this

zone. *Ilyoplax sayajiraoi* was a newly discovered species by Trivedi et al. in 2015 and members of this family formed morphologically diverse shapes of the burrow; S showing major two curves J and L having single curved structure and spiral grading to most complex structure which are also considered as abandoned burrows.

Present study deals with obtaining proper shape of the burrow to analyse the morphological burrows differences seasonally. In India, the ghost crab *Ocypode ceratophthalma* has several types of burrows, including J-, U- and Y-shaped burrows, and different types of burrows were reported to exist in different tidal zones on sandy shores (Chakrabarti, 1981). Similar patterns also in the crab *Ocypode* were reported ghost quadrata (Fabricus) in the Barrier Island, Texas coast, USA (Hull and Hunter, 1973). In Hong Kong study on burrow morphology of ghost crab, Ocypode ceratophthalma was carried out by Chan et al., 2004); it builts burrows of various shapes at different ages. Smaller crabs (Juveniles) (mean carapace length 11 mm) build shallow J-shaped burrows with zero branches and end straight into substratum (mean depth 160 mm). Larger crabs (17-25 mm carapace length) have Y-shaped and spiral burrows (mean depth 361 mm). The sand surface temperature at the burrow opening was 48°C, but temperatures inside the burrows can drop to 32°C at a depth of 250 mm. Large crabs have a big gill surface area that helps them to tolerate longer exposure periods to air. Crabs entirely stay in their respective burrows during daytime, and as a result, their burrows are deeper and more complex as compared with the juveniles. Ocypode created differently shaped burrows during their entire life span, and those burrows may serve different functions.

Burrow morphology of burrowing crab *Ocypode ceratophthalma*, including burrow diameter, orientation, inclination, branching, and volume, were studied from Chandipur, on the eastern Indian coast. Burrow morphological features (e.g., I, J, Y) were not dependent on their positions with respect to the coastline. Also, no correlation between burrow morphology and burrow diameter was observed. Burrow diameter is smaller at the foreshore compared to that of backshore, indicating larger individuals reside at the backshore, where they can excavate deep into the sediment and large-diameter burrows to minimize chances of desiccation. Small burrows are straight with no branching. Large burrows are inclined towards the land to minimize the energy required to excavate sediments.

Trivedi and Vachhrajani in 2014 performed a similar analysis on Ghost crabs at two sandy shorelines of Gujarat, Sutrapada, and Kodinar. Intact 55 burrow casts were obtained with eight different types of burrow shapes. The crab carapace width showed a significant correlation with burrow opening diameter, burrow volume, and burrow total length. The juveniles utilized shallow burrows located near the foreshore. Adults utilized deep burrows with large diameters located on the upper part of the sandy shore. A specific pattern was observed in the burrow temperature in which the temperature dropped significantly at the greatest depth that provided a suitable environment for the crab to survive in the harsh environmental conditions.

3.2 Methodology

Burrows of *Ilyoplax sayajiraoi* was identified, and burrow diameter was measured along the transect. Resin mixed with cobalt and catalyst (1:2) was poured into burrows till it gets completely filled. Crabs that emerged from the burrows were collected, sexed and the carapace width and length were measured using vernier calipers (\pm 0.1mm). When the burrow cast had solidified (~2 h), they were dug up for subsequent measurement of burrow dimensions (Figure 3.1). The volume of

the burrows was determined by weighing the burrow cast (\pm 0.1g).

3.3 Results and observation

3.3.1 Shape and morphology of burrow

Relation between burrow diameter and distance from shore was analysed as shown in figure 3.6 Maximum burrows formed by larger crabs were at UTZ (Upper Tidal Zone), and maximum burrows with minimum diameter were observed at LTZ (Lower Tidal Zone). Shape vs. number of burrows showed; highest burrows of J-shape and least were spiral also known as abandoned burrows as shown in figure 3.7.

A total of 135 burrow casts were obtained, of which the 65 host crabs were captured (45 males and 20 females). Three types of

burrow architecture were identified; they were J-Shaped (Figure 3.4), Spiral (Figure 3.4), and single tube burrow (Figure 3.3). The relationship between various parameters was studied in three seasons.

Burrows are the sole protector of brachyuran crab species. They form burrows in different shapes and size. Every species have specificity in burrow formation and that makes it different from other species. With such specificities crab species can also be identified. During high tide or just at the arrival of high tide crabs use these burrows to hide for few hours. Burrow diameter is also known as opening diameter which is the entry point for crabs to enter in and come out. Range of burrow diameter is from 0.5cm to 1.2cm with a depth of 15-40cm. Density ranges from 15 burrows/m² to 25. Various relations were studied to establish correlation between burrow diameter and crab morphology.

Figure 3.2 Burrow architecture of *Ilyoplax sayajiraoi* with different labels of burrow cast. O. D. - Opening diameter, H. L. - Horizontal length, V. D. - Vertical depth, C. L. - Chamber length, C. W. - Chamber width, T. L. - Total length

3.3.2 Seasonal burrow measurements and statistical analysis

The study was carried out in May, July, and December of the year 2018. Burrows of *Ilyoplax sayajiraoi* were identified, and its diameter was measured along the transect during season-wise field visits. Resin mixed with cobalt and catalyst (1:2) was poured into burrows till it gets filled. Crabs that emerged from the burrows were collected, sexed and the carapace width and length were measured using vernier calipers (± 0.1 mm). When the burrow cast solidified (~2 h), it was dug and cleaned thoroughly for subsequent measurements of burrow dimensions in the laboratory (Figure 2). The volumes of the burrows were determined by weighing the cast $(\pm 0.1g)$. Gradient-wise (5 cm each), the temperature difference was studied on mudflats. Burrows with different opening sizes were selected randomly along the transect. Surface and gradient temperatures were measured using a digital thermocouple (±0.1°C). Measurements could not be conducted for depth more than 30cm as the thermocouple could not pass vertically due to restrictions of the spiral turnings. We have variables as number of burrows in (Lower Tidal Zone (LTZ), Middle Tidal Zone (MTZ) and Upper Tidal Zone (UTZ). We have to establish whether there is any correlation between these burrows with respect to the zonation of mudflat area LTZ, MTZ, and UTZ. These correlations were conducted for each season winter, summer and monsoon.

Principle Component Analysis (PCA): In factor analysis univariate descriptives statistics was used and in correlation matrix two selected attributes were 'coefficient' and 'significance levels.' In 'factor analysis extraction' attribute display selected was 'unrotated factor' solution and 'scree plot.' Method of extraction was based on 'Eigen value > 1. **Multi-dimensional scaling (MDS)** analysis was conducted to check if multi-colinearity exists between the parameters or variables.

Table 3.1 Winter burrow morphology data								
Burrow	M/F	Shape	CW/CL	Length	Volume	Weight		
number								
			cm	cm	cm ³	gm		
Quadrate 1	LOWER TIDAL ZONE							
D 50	F	S	0.7	15	2.94	10.73		
D 65	М	L	0.5	17.5	2.19	7.93		
D 31	М	L	0.6	23.6	9	17.7		
D 14	М	J	0.8	23	14.62	29.61		
D 54	М	S	0.9	35.6	25	31.71		
D13	М	L	0.5	19.5	3.82	12.87		
D 09	М	J	0.5	15.5	5.96	9.63		
D 50	F	J	0.7	20.9	5.9	10.13		
D 34	F	J	0.6	20.5	4.02	6.35		
S 60	М	L	0.6	19.5	5.51	9.51		
D 17	М	L	0.5	13	1.63	7.56		
D 58	F	J	0.6	17	3.53	7.15		
Quadrate 2	MIDDL E TIDAL ZONE							
D 07	М	J	0.84	16.5	10.49	15.36		
D 49	М	J	0.84	21.5	16.09	15.86		
D 64	М	J	0.95	34.5	23.93	30.17		
S 51	F	Curve d	0.6	37	29.04	34.31		

> Winter measurements and statistical analysis

D 33	М	J	0.5	24.5	23.27	41.04
D 08	М	L	0.94	41.5	26.38	52.73
D 61	М	S	1.3	45.5	62.92	71.33
D 32	F	J	0.7	32	25.12	25.81
D 47	М	L	0.9	32	9.04	15.8
D 39	F	J	0.79	21	4.12	12.22
D 27	М	J	0.85	22.9	17.97	23.17
S 52	F	J	0.7	25.5	7.2	10.56
D 05	F	J	0.8	23.5	4.61	12.75
D 23	М	L	0.92	31	15.57	32.61
Quadrate	UPPER					
3	ZONE					
D 42	М	L	0.8	18.9	3.7	8.36
D 11	F	J	1.1	19.5	10.32	24.24
D 38	М	J	0.7	20	11.07	21.47
S 53	М	S	0.9	25.2	19.78	24.95
D 10	М	S	1	34.1	32.38	47.65
D 53	М	J	0.9	37.8	18.99	39.54
S 59	М	J	1	38.4	36.47	42.94
D 40	М	S	1.1	41.5	20.84	57.76
D 44	F	L	0.7	18.1	2.27	8.32
D 20	F	L	0.6	29.1	38.6	13.32
D15	М	S	1.2	42.5	33.36	43.19
D51	F	L	0.8	26	7.34	12.2
*Blank cell in	the table is	because cr	abs were n	ot captured	l in some ca	se or were

*Blank cell in the table is because crabs were not captured in some case or were solidified along with the resin. So its measurement was not possible.

Relationship between burrow parameters of Ilyoplax sayajiraoi in three different intertidal zones.

Winter season demonstrated high Pearson correlation (0.05 level of significance). Larger crabs preferred upper tidal zone (UTZ) and thus built a proper burrow with all requirements in this area. Appropriate length, width, volume of burrow was observed. Burrows had resting chamber to accommodate ovigerous females in it. Optimum Pearson coefficient was observed in middle tidal zone (MTZ) as crabs reduced in size compared to UTZ crabs. Lower LTZ showed least correlation between burrow parameters as maximum accommodation was of juveniles. They built burrows with lesser developed morphological structures.

Table 3.2 Indicates Pearson correlation between various burrowparameters for winter season in lower tidal zone (LTZ)								
WEIGHT DIAMETER VOLUME CW LENGTH								
WEIGHT	1							
DIAMETER	.905**	1						
VOLUME	.929**	.915**	1					
CW	.748**	.756**	.802**	1				
LENGTH	.806**	.751**	.920**	.657*	1			
**. Correlation is significant at the 0.01 level (2-tailed).								
*. Correlation	ı is signifi	cant at the 0.()5 level (2-	tailed).				

Table 3.3 Indicates Pearson correlation between various burrowparameters for winter season in lower tidal zone (MTZ)									
WEIGHT DIAMETER VOLUME CW LENGTH									
WEIGHT	1								
DIAMETER	.912**	1							
VOLUME	.681**	.874**	1						
CW	.805**	.523	.802**	1					
LENGTH	.806**	.456	.766**	.759**	1				
**. Correlation is significant at the 0.01 level (2-tailed).									
*. Correlation	ı is signifi	cant at the 0.()5 level (2-	tailed).					

Table 3.4 Indicates Pearson correlation between various burrowparameters for winter season in upper tidal zone (UTZ)									
WEIGHT DIAMETER VOLUME CW LENGTH									
WEIGHT	1								
DIAMETER	.664*	1							
VOLUME	.577*	.565	1						
CW	.792**	.787**	.564	1					
LENGTH	.857**	.431	.733**	.678*	1				
*. Correlation is significant at the 0.05 level (2-tailed).									
**. Correlatio	n is signif	ficant at the 0.0)1 level (2-	tailed).					

> Regression analysis

In winter strong positive correlation was seen w.r.t. burrow between its length of burrow and volume (correlation coefficient $R^2=0.6633$) Figure 3.9; carapace width of crab and weight of burrow ($R^2=0.66$) Figure 3.10; volume and diameter of burrow ($R^2=0.64$) Figure 3.11; burrow diameter and carapace width of crab ($R^2=0.635$) Figure 3.12; length and weight of burrow ($R^2=0.735$) Figure 3.13.

Relationship between various burrow parameters

Gargi V (*2021*). Crab ecology as potential biomonitoring tool: Studies on population and behaviour ecology of *Ilyoplax sayajiraoi*. Ph.D. Thesis. Page 77

Principle component analysis (PCA) of burrow morphology for winter season.

In winter season number of variables in LTZ (L1 to L11) are eleven, in MTZ (M1 to M13) and in UTZ (U1 to U11), which means thirteen in MTZ and eleven in UTZ as shown in table 3.12.

Scree plot in figure 3.14 shows data has three major components as shown in table 3.12. Per cent variance for component 1 is 83.768%, 2 is 11.890% and 3 is 4.342%. Cumulative percentage for component 1 is 83.768%, component 2 is 95.658% and component 3 is 100% shown in table 3.13.

Figure 3.15 indicates all burrows of UTZ and MTZ are concentrated in one quadrate and burrows of LTZ are

concentrated in one quadrate. Similar results can be seen in the summer season, but inn winter highest cluster formation is seen as compared to other seasons. All burrows are closely present giving out maximum correlation. Figure 3.16 gives 3D view of the PCA suggesting highest amount of cluster formation.

Table 3.5 Component Matrix ^a for winter season								
		Component						
	1	2	3					
L1	.950	240	198					
L2	.888	457	044					
L3	.992	107	060					
L4	.916	.331	225					
L5	.973	.195	.124					
L6	.949	276	152					
L7	.976	212	.053					
L8	.929	363	.078					
L9	.841	521	.145					
L10	.929	362	.075					
L11	.916	371	152					
M1	.986	.168	.019					
M2	.943	.121	.310					
M3	.975	.179	.131					
M4	.950	.265	.166					
M5	.802	.562	205					
M6	.922	.327	209					
M7	.720	.684	.120					
M8	.941	.194	.277					
M9	.935	348	.073					
M10	.939	333	088					
M11	.902	408	.143					

M12	.932	360	054
M13	.971	.157	181
U1	.899	436	.030
U2	.924	.251	287
U3	.968	.195	160
U4	.949	.295	.109
U5	.854	.517	056
U6	.972	.156	175
U7	.889	.436	.142
U8	.888	.293	355
U9	.891	452	049
U10	.531	.234	.814
U11	.947	.310	.090

Table 3.6 Total Variance in winter season										
Componen	Ini	tial Eigen	values	Ex	traction S	ums of				
t				Sq	uared Loa	adings				
	Total	% of	Cumulative	Total	% of	Cumulative				
		Variance	%		Variance	%				
1	30.1	83.768	83.768	30.1	83.768	83.768				
2	4.28	11.890	95.658	4.28	11.890	95.658				
3	1.56	4.342	100.000	1.56	4.342	100.000				

> Multidimensional analysis (MDS) for winter season

Multi-dimensional scaling (MDS) analysis with Euclidean distance model was used to highlight similarity among different burrow and crab parameters concerning seasonal variations. In winter, clustering between W-D (weight and diameter of burrow), W-V (weight and volume of burrow), V-L (volume and length of burrow), and D-C (opening diameter of burrow and carapace width of crab) was observed (Figure 3.17).

Table 3.7 Young's S-stress formula 1 used for Winter season								
	1	.38411						
	2	.36301	.02109					
	3	.36087	.00215					
	4	.36108	00021					

Stress and squared correlation (RSQ) in distances RSQ values are the proportion of variance of the scaled data (disparities) in the partition (row, matrix, or entire data) which is accounted for by their corresponding distances. Stress values are Kruskal's stress formula 1.

	Table 3.8 Stress and RSQ values for winter season										
Matrix	Stress	Stress RSQ Matrix Stress RSQ Matrix Stress RSQ									
1	0.25	0.481	2	0.202	0.663	3	0.35	0.92			

Average (rms) over matrices

Stress = 0.27430 RSQ = 0.93

Figure 3.17 Multi-dimensional scaling (MDS) analysis between burrow parameters and crab parameters in the winter season. Labels in the above diagram represent W-D: Weight and diameter of the burrow, D-C: Opening diameter of burrow and carapace width of crab, D-V: Opening diameter and volume of the burrow, W-L: Weight and length of the burrow, V-L: Volume and length of the burrow, W-V: Weight and volume of the burrow, W-C: Weight and carapace width of crab

Т	Table 3.9 Summer burrow morphology data								
Burrow	M/F	Shap	CW/C	Lengt	Volum	Weigh			
number		е	L	h	е	t			
			mm	cm	cm3	gm			
Quadrate	LOWER								
-1	ZONE								
1	М	Spiral	5.5	7.5	2.88	4.77			
2	F	L	6.02	7.9	2.23	8.31			
3	М	L	8.26	7.6	4.8	6.33			
4	М	L	7.1	8	3	8.68			
5	F	L	6.5	8.5	2.4	4.77			
6	М	J	7.5	2.8	4.2	6			
7	М	J	6.25	8	3.07	8			
8	М	Spiral	4.25	6.8	0.85	7.52			
9	М	L	6.35	8	3.07	6.78			
10	М	L	6.02	7.8	2.2	8.67			
11	М	Spiral	8	12	3.39	7.18			
Quadrate	MID								
-2	ZONE								
12	F	L	7.82	14.9	9.47	7.81			
13	М	L	7.2	10	4.8	6.5			
14	F	L	8	10	6.35	9.86			
15	М	J	9.08	11.9	9.34	9.2			
16	Μ	J	9.6	14.1	8.96	7.73			
17	F	J	8.2	12.5	2.45	6.86			
Quadrate	UPPER								
-3	ZONE								
18	М	J	7.2	11.5	7.31	7.5			
19	М	J	9.23	13.5	15.26	12.04			

\succ Summer measurements and statistical analysis

20	М	L	9.15	11.5	10.92	4.67
21	F	L	7.29	9	5.72	7
22	М	L	9.2	12.5	9.8	8.44
23	М	J	9.4	14.1	29.22	10.19
24	Μ	L	9.2	12.1	9.49	13.66
25	Μ	J	9.92	29.5	39.13	25.24
26	М	J	9.8	12.5	11.87	8.2
27	F	J	7.2	13	8.26	7.8

Relationship between burrow parameters of Ilyoplax sayajiraoi in three different intertidal zones.

Burrow analysis of crabs was performed using SPSS software (version 20). The Pearson correlation coefficient was analyzed to establish a relationship between differences in burrow morphology concerning season change. Multi-dimensional scaling (MDS) analysis was conducted to check if multicolinearity exists between the parameters or variables. Pearson correlation was performed to analyze which burrow parameters have a strong correlation with each other and which are least correlated. The summer season demonstrated a high Pearson correlation (0.05 level of significance) in upper tidal zones (UTZ), as larger crabs accommodated in that area. They built a proper burrow to enhance their stay in it. Appropriate length, width, the volume of the burrow was observed. Burrows of this season also had a resting chamber to accommodate ovigerous females in it. Optimum Pearson coefficient was observed in the middle tidal zone (MTZ) as crabs reduced in size as compared to UTZ crabs. Lower LTZ showed the least correlation between burrow parameters as maximum accommodation was of juveniles. They built burrows with lesser developed morphological structures.

Table 3.10 Indicates Pearson correlation between various burrowparameters for summer season in lower tidal zone (LTZ)								
CWLENGTHVOLUMEWEIGHTDIAMETER								
CW	1							
LENGTH	023	1						
VOLUME	.114	.585	1					
WEIGHT	374	.499	.246	1				
DIAMETER	.164	110	.706*	211	1			
*. Co	*. Correlation is significant at the 0.05 level (2-tailed).							

Table 3.11 Indicates Pearson correlation between various burrowparameters for summer season in middle tidal zone (MTZ)									
	CW	LENGTH	VOLUME	WEIGHT	DIAMETER				
CW	1		_						
LENGTH	.316	1		_					
VOLUME	.320	.499	1						
WEIGHT	096	135	.340	1					
DIAMETER	.012	192	.677	.186	1				
*. Correlation is significant at the 0.05 level (2-tailed).									

Table 3.12 Indicates Pearson correlation between various burrowparameters for summer season in upper tidal zone (UTZ)									
	DIAMETER								
CW	1								
LENGTH	.570	1							
VOLUME	.525	.804**	1						
WEIGHT	.349	.868**	.788**	1					
DIAMETER	.518	.390	.200	.369	1				
**. Correlatio	**. Correlation is significant at the 0.01 level (2-tailed).								

Regression analysis

In summer, good correlation was obtained between volume and diameter of the burrow ($R^2=0.599$) Figure 3.18; length of burrow showed a positive correlation with volume and weight of burrow ($R^2=0.757$) Figure 3.19 and ($R^2=0.671$) Figure 3.20 respectively; Carapace width of crab and burrow diameter ($R^2=0.858$) (Figure 3.21) and weight ($R^2=0.16$) (Figure 3.22) show negligible correlation.

Regression graphs for summer season

Principle component analysis (PCA) of burrow morphology for summer season.

In summer season number of variables in LTZ (L1 to L9) are nine, in MTZ (M1 to M6) and in UTZ (U1 to U9), which means six in MTZ and nine in UTZ as shown in table 3.20

Scree plot shown in figure 3.23 shows data has three major components as shown in table 3.20. Per cent variance for component 1 is 79.242%, 2 is 15.621% and 3 is 5.137%. Cumulative percentage for component 1 is 79.242%, component 2 is 94.863% and component 3 is 100% shown in table 3.21.

Figure 3.24 indicate all burrows of UTZ and MTZ are concentrated in one quadrate and burrows of LTZ are concentrated in one quadrate. But all burrows are closely present giving out maximum correlation. Figure 3.25 gives 3D view of the PCA suggesting high amount of cluster formation.

Table 3.13 Component Matrix ^a for summer season							
		Component					
	1	2	3				
L1	0.961	-0.186	-0.203				
L2	0.86	-0.494	0.131				
L3	0.995	-0.048	0.085				
L4	0.878	-0.44	0.188				
L5	0.926	-0.234	-0.296				
L6	0.792	-0.542	-0.282				
L7	0.881	-0.433	0.191				
L8	0.792	-0.6	0.112				
L9	0.946	-0.324	0.006				
M1	0.957	0.22	-0.189				
M2	0.938	-0.309	0.157				
M3	0.964	-0.141	0.224				
M4	0.921	0.372	-0.113				
M5	0.965	0.201	-0.168				
M6	0.902	-0.299	-0.311				
U1	0.9	0.307	-0.311				
U2	0.85	0.432	0.302				
U3	0.777	0.607	-0.165				
U4	0.848	0.357	-0.39				
U5	0.962	0.271	0.012				
U6	0.455	0.845	0.282				
U7	0.924	-0.07	0.376				
U8	0.76	0.572	0.309				
U9	0.895	0.44	0.073				
U10	0.98	0.159	-0.12				
U11	0.945	-0.2	0.259				
*Blank cell in t were solidified	he table is because along with the resi	crabs were not captu n. So its measuremen	ired in some case or t was not possible.				

Table 3.14 Total Variance in summer season									
Component	Ir	nitial Eigen	nvalues	E: S	xtraction s quared Lo	Sums of adings			
	Total	Total% ofCumulativeTotal% ofCumVariance%VarianceVariance							
1	20.6	79.242	79.242	20.6	79.242	79.242			
2	4.06	15.621	94.863	4.06	15.621	94.863			
3	1.33	5.137	100.000	1.33	5.137	100.000			

> Multidimensional analysis (MDS) for summer season

Multi-dimensional scaling (MDS) analysis with Euclidean distance model was used to highlight similarity among different burrow and crab parameters concerning seasonal variations. In summer, clustering between W-D (weight and diameter of burrow), W-V (weight and volume of burrow), V-L (volume and length of burrow), and C-L (carapace width of crab- length of burrow) was observed (Figure 3.26).

Table 3.15 Young's S-stressformula 1 used for Summerseason							
Iteration S-stress Improvement							
1	.46858						
2 .37171 .09688							
3	.44740	07570 *					

Stress and squared correlation (RSQ) in distances RSQ values are the proportion of variance of the scaled data (disparities) in the partition (row, matrix, or entire data) which is accounted for by their corresponding distances. Stress values are Kruskal's stress formula 1.

	Table 3.16 Stress and RSQ values for Summer season									
Matrix	Stress	Stress RSQ Matrix Stress RSQ Matrix Stress RSQ								
1	0.089	0.927	2	0.084	0.935	3	0.24	0.92		

Average (rms) over matrices

Stress = 0.41090 RSQ = 0.78245

Figure 3.26 Multi-dimensional scaling (MDS) analysis between burrow parameters and crab parameters in the summer season. Labels in the above diagram represent W-D: Weight and diameter of the burrow, D-C: Opening diameter of burrow and carapace width of crab, V-L: Volume and length of the burrow, W-V: Weight and volume of the burrow, C-W: Weight and carapace width of crab C-L: Carapace width of crab and length of the burrow, D-L: Opening diameter and length of the burrow, C-W: Carapace width of crab and weight of burrow

Monsoon measurement

Table 3.17 Monsoon burrow morphology data							
Burrow	M/F	Shape	CW/C	Lengt	Volum	Weigh	
number			L	h	е	t	
			mm	cm	cm3	gm	
LOW TIDAL							
ZONE		-					
0-28	F	L	0.5	4.4	3.45	4.9	
0-50	М	J	0.6	5	2.51	2.87	
0-37	М	J	0.6	5.5	4.31	3.79	
0-43	М	J	0.5	3.1	0.6	0.98	
0-45	М	J	0.5	2.4	0.92	0.73	
0-46	М	J	0.5	3.5	1.34	0.91	
0-47	М	L	0.5	2.9	0.81	1.23	
0-51	М	J	0.6	7.9	5.02	4.39	
0-58	F	J	0.6	6.7	4.26	4.78	
0-59	М	-	0.62	6	3.01	2.69	
0-57	М	J	0.63	7.2	2.76	4.8	
S-02	М	SPIRA	0.62	8	5.08	6.36	
		L					
S-04	F	J	0.5	6.5	1.83	4.53	
S-05	М	J	0.8	11.3	4.34	11.3	
S-06	М	J	0.7	10.5	2.06	4.89	
S-07	М	J	0.8	12	4.61	10.16	
S-10		J	0.82	11.8	4.53	5.98	
MIDDLE ZONE							
S-08	М	J	0.5	6.5	4.13	5.25	
S-09	М	J	0.8	12.4	3.5	13.8	
S-13	М	L	0.82	9.9	6.29	5.77	

S-14	М	J	0.8	13	8.2	8.6		
S-21	F	J	0.7	10.9	4.19	5.3		
S-26	М	L	0.7	10.1	1.98	9.1		
S-28		J		18.1	3.55	6.77		
S-38		J		12	9.42	12.84		
S-58	F	J	0.6	8.3	2.34	4.53		
S-34	М	J	0.7	8.1	3.11	8.66		
UPPER ZONE								
D-63	М	J+C	0.7	19.2	21.7	27.8		
S-17	М	MIXED		30	23.55	25.92		
D-19		J		26.7	10.27	18.89		
L1	F	J	0.6	10.1	5.07	11.9		
D-41	М	J	0.7	20.1	15.77	17.1		
L2	F	J	0.7	21.9	15	20		
L3	М	L	0.7	19.5	14.2	27.75		
*Blank cell in the solidified along w	*Blank cell in the table is because crabs were not captured in some case or were solidified along with the resin. So its measurement was not possible.							

> Pearson correlation analysis for monsoon season

Monsoon season demonstrated low Pearson correlation (0.05 level of significance) in upper tidal zones (UTZ), middle tidal zone (MTZ) and lower tidal zone (LTZ) as juvenile crabs accommodated in that area. They built a very weak burrow without any resting chamber. Its length and width was also not properly developed. Juvenile need sea water on regular intervals as their gills are not large. Thus they have a smaller burrow (Chakrabarti 1981).

Table 3.18 Indicates Pearson correlation between various burrowparameters for monsoon season in lower tidal zone (LTZ)									
WEIGHT DIAMETER VOLUME CW LENGTH									
WEIGHT	1		_						
DIAMETER	.133	1		_					
VOLUME	.760**	.458	1						
CW	.816**	.090	.858**	1					
LENGTH	.865**	060	.777**	.935**	1				
**. Correlati	on is sign	ificant at the	0.01 level (2	2-tailed).					

Table 3.19 Indicates Pearson correlation between various burrowparameters for monsoon season in middle tidal zone (MTZ)								
	WEIGHT	DIAMETER	VOLUME	CW	LENGTH			
WEIGHT	1							
DIAMETER	.066	1						
VOLUME	.320	.843**	1					
CW	.459	106	.373	1				
LENGTH	.288	282	.221	.740*	1			
**. Correlation is significant at the 0.01 level (2-tailed).								
*. Correlatio	*. Correlation is significant at the 0.05 level (2-tailed).							

Table 3.20 Indicates Pearson correlation between various burrowparameters for monsoon season in upper tidal zone (UTZ)									
WEIGHT DIAMETER VOLUME CW LENGTH									
WEIGHT	1								
DIAMETER	078	1							
VOLUME	008	.809*	1						
CW	109	.661	.797*	1					
LENGTH	.455	094	.455	.219	1				
*. Correlation is significant at the 0.05 level (2-tailed).									

Regression analysis was performed to confirm correlation between three seasons and various burrow parameters

	Table 3.21 Regression analysis of burrow parameters in respective season					
Parameters	Winter		Summer	Monsoon		
	Regression equation	R2	Regression equation	R2 Regression equation		R2
	Length		Length Leng		Length	
Volume	y= 1.2199x-16.464	0.6633	y = 1.6755x - 10.674	0.7576	0.7576 y = 0.708x - 2.051	
	Carapace width		Carapace width		Carapace width	
Weight	y = 72.679x - 35.986	0.6632	y = 11.625x + 0.4618	0.1608	1608 y = 37.766x - 21.834	
	Volume		Volume		Volume	
Diameter	y= 0.0153x + 0.5354	0.6476	y = 0.0375x + 1.5159	0.0178	0.0178 y = 0.0231x + 0.6204	
	Length		Length	Length		
Weight	y= 1.5745x - 17.872	0.7357	y = 0.7586x + 0.2627	0.6713 y = 0.9719x - 1.6414		0.7588
	Diameter		Diameter	Diameter		
Carapace width	y = 1.0738x - 0.1225	0.9243	y = 1.3305x - 0.1706	0.8584	y = 0.2825x + 0.5519	0.0384

> Regression analysis for monsoon season

In monsoon, very weak correlation was obtained between volume and diameter of the burrow ($R^2=0.57$) Figure 3.27; length versus volume of burrow and weight also showed positive correlation ($R^2=0.672$) Figure 3.28 and ($R^2=0.758$) Figure 3.29 respectively; carapace width of crab and burrow diameter and weight ($R^2=0.038$) Figure 3.30; ($R^2=0.390$) Figure 3.31 respectively determining negligible correlation.

Regression graphs for monsoon season

Statistical analysis (C)

SPSS software has an attribute named 'Factor Analysis' which consist of two major types 1. Principle Component Analysis (PCA) and 2. Common Factor analysis. Most accurate and default procedure in SPSS is PCA so we have analysed our data using the same. PCA analyses the correlation or relationships between variables and basically it tries to determine a smaller number of variables that can explain these correlations. Fitting of large data base is a running problem for much analysis as huge data creates confusion for interpretation. PCA is a significant tool for reducing the problem of data over fitting. It simplifies the data and produces it as a very significant data for further interpretation.

Principle component analysis (PCA) of burrow morphology for monsoon season.

In monsson season number of variables in LTZ (L1 to L17) are seventeen, in MTZ (M1 to M10) and in UTZ (U1 to U8), which means ten in MTZ and eight in UTZ as shown in table 3.29.

Scree plot shown in figure 3.32 shows data has two major components as shown in table 3.29. Per cent variance for component 1 is 61.660%, 2 is 26.633%. Cumulative percentage for component 1 is 61.66, component 2 is 88.292%.

Figure 3.33 indicates all burrows of LTZ, MTZ and UTZ are spread widely and perfect cluster formation is not taking place for any for any of the zones. As burrows are not highly correlated with each other, 3D view in figure 3.34 shows all plots sparely plotted.

Table 3.22 Component Matrix ^a for monsoon season						
	Component					
	1	2				
L1	.875	454				
L2	.973	.050				
L3	.892	291				
L4	.859	.462				
L5	.777	.461				
L6	.800	.377				
L7	.901	.395				
L8	.924	110				
L9	.966	188				
L10	.922	.101				
L11	.999	.053				
L12	.967	242				
L13	.987	.118				
L14	.945	133				
L15	.959	.274				
L16	.983	070				
L17	.975	.111				
M1	.349	.915				
M2	.698	.258				
M3	095	.966				
M4	.545	.804				
M5	.166	.983				

M6	.276	.762
M7	.039	.999
M8	.544	.295
M9	.073	.990
M10	.249	.632
U1	.691	709
U2	.512	417
U3	.898	422
U4	.999	024
U5	.892	275
U6	.900	413
U7	.970	177
.U8	.728	661

Multidimensional analysis (MDS) for monsoon season

Multi-dimensional scaling (MDS) analysis with Euclidean distance model was used to highlight similarity among different burrow and crab parameters concerning seasonal variations. In monsoon, least parameters were clustered with each other. Some amount of grouping was seen between W-L (weight and length of burrow): V-L (volume and length of burrow) and D-V (opening diameter and volume of burrow): V-C (volume of burrow and carapace width of crab) as shown in figure 3.35.

Table 3.23 Young's S-stress formula 1 used for Monsoon season								
Iteration	S-stress	Improvement						
	1.39	885						
2	.36453	.03432						
3	.35263	.01190						
4	.34389	.00873						
5	.33596	.00793						
6	.32834	.00762						
7	.32091	.00743						
8	.31370	.00721						
9	.30682	.00688						
10	.30043	.00639						
11	.29472	.00571						
12	.28982	.00489						
13	.28583	.00399						
14	.28276	.00308						
15	.28052	.00224						
16	.40262	12210 *						

Stress and squared correlation (RSQ) in distances RSQ values are the proportion of variance of the scaled data (disparities) in the partition (row, matrix, or entire data) which is accounted for

by	their	corresponding	distances.	Stress	values	are	Kruskal's
str	ess for	rmula 1.					

	Table 3.24 Stress and RSQ values for Monsoon season							
Matrix	Stress	RSQ	Matrix	Stress	RSQ	Matrix	Stress	RSQ
1	0.471	0.74	2	0.256	0.466	3	0.24	0.995

Average (rms) over matrices

Stress = 0.30969 RSQ = 0.51185

Labels in the above diagram represent W-D: Weight and diameter of the burrow, D-C: Opening diameter of burrow and carapace width of crab, V-C: Volume of burrow and carapace width of crab, D-V: Opening diameter and volume of the burrow, W-L: Weight and length of the burrow, D-L: Opening diameter and length of the burrow

3.4 Discussion

In the present study, fewer burrow casts from female crabs were collected compared to males. Studies on the population ecology of Ilyoplax sayajiraoi by Vaidya and Vachhrajani 2021 noted sex ratio as 10:13, indicating the male population three times higher than females. Large crabs possess a considerably larger gill surface area (Chakrabarti 1981) to permit a long-time exposer to the air. These crabs entirely stay in their burrows during daytime; as a result, their burrows are deeper and complex compared to juveniles. Juveniles need seawater frequently as their gill surface area is smaller than larger crabs. Thus more giant crabs have burrowed in UTZ and juvenile burrows in LTZ closet to the seashore. Analysis showed that burrow diameter is significantly smaller at foreshore compared to that of backshore, suggesting that larger individuals reside along the backshore where they excavate deeper and larger diameter burrows to minimize chances of desiccation. A similar type of study was carried out by Chan et al in 2005 on crab Ocypode ceratophthalma in sandy shore of Hong Kong obtaining equivalent results for the present study. Trivedi and Vachhrajani in March-April 2014 performed similar analysis on Ghost crabs at two sandy shorelines of Gujarat, Sutrapada and Kodinar.

The endings of J and single tube structured burrows did not reach the groundwater table, but the burrows' sediment was highly moist. In peak summer highest sediment temperature reaches 45°C and above lethal to shore organisms. In the present burrow analysis, sediment temperature reduces rapidly with an increase in depth reaching up to 24°C, thus providing shelter to *Ilyoplax sayajiraoi* in distressful conditions. Single tube burrows constructed by *Uca pugilator* (Bosc), *Sesarma* *longipes* (Krauss), *Cardisomacarnifex* (Herbst), and *Macrophalmu s parvimanus* (Guerin) are temporary burrows to escape high tides (Braithwaite & Talbot, 1972; Christy, 1982).

The present study enlightens few behavioural aspects of species that add-ons to work carried out on newly discovered species *Ilyoplax sayajiraoi*. According to season and size, species *Ilyoplax sayajiraoi* living on muddy coast creates burrows with different shapes and sizes. Burrows serve multiple functions in the entire life of an individual.

In monsoon season, juveniles are high, and adults (male and female) are lesser in number (Vaidya and Vachhrajani 2021). Their burrows are not complete and properly developed (Chakrabarti 1981). This gives rise to less cluster formation in MDS analysis showing the most minor similarity. In winter and summer seasons, MDS analysis demonstrated better cluster formation as all burrow parameters correlate. For crabs, this season is for breeding and reproduction. Thus burrows are highly developed for mating with appropriate breeding chambers and for an ovigerous female to stay inside the burrow for a longer time with the least disturbance. As shown in figure RSQ value for summer and winter are above 0.5 and below 0.2 for stress value. This shows value is approaching towards absolute fit and giving a good cluster formation. Monsoon season shows a low RSQ value which indicates data is not showing a perfect fir and thus dispersed clusters are formed in this season.