LIST	OF	FIGU	JRES

SR. NO.	FIGURE NO.	FIGURE DESCRIPTION	PAGE NO.
		CHAPTER 2: LITERATURE REVIEW	
1.	Figure 2.1:	Application areas of bio-medical textiles	14
2.	Figure 2.2:	Commercial Impact of the nanotechnology	23
3.	Figure 2.3:	Applications of Nanotechnology	23
4.	Figure 2.4:	Nano-composites/ Nanotechnology in Textile	24
5.	Figure 2.5:	Classification of nanomaterials	24
6.	Figure 2.6:	Application of silver nanomaterials	29
7.	Figure 2.7:	Approaches used in Metallic Nanoparticles Synthesis	30
8.	Figure 2.8:	Disadvantages of physical and chemical synthesis methods	41
9.	Figure 2.9:	Fundamental pillars of green chemistry	43
10.	Figure 2.10:	Principles of green chemistry	43
11.	Figure 2.11:	Green synthesis of metal nanoparticles	44
12.	Figure 2.12:	Favourable features of Green synthesis approach for Silver nanoparticles	49
13.	Figure 2.13:	Green mediums used in AgNPs synthesis	49
14.	Figure 2.14:	Medicinal applications of Calotropis procera	62
15.	Figure 2.15:	Gas chromatograph and mass spectrometer	70
16.	Figure 2.16:	Visual appearance of vials containing the Rumex hymenosepalus extract and $AgNO_3$ solution after different reaction times	71
17.	Figure 2.17:	Basic principle of X-ray diffraction	74
18.	Figure 2.18:	Schematic of a UV-Vis spectrophotometer's key components	76
19.	Figure 2.19:	Represents the basic principle of the FTIR technique	78
20.	Figure 2.20:	Core premise of the Dynamic Light Scattering (DLS)	78
21.	Figure 2.21:	a) Basic principle of the Scanning electron microscopy (SEM), and b) Schematic of electron beam interaction	81

22.	Figure 2.22:	a) Basic principle of the Transmission electron microscopy (TEM), and b) Schematic of electron beam diffraction	81
23.	Figure 2.23:	Schematic of the EDS spectroscopy technique	83
24.	Figure 2.24:	Specimen for GSM calculation a) Rectangular, and b) Circular	87
25.	Figure 2.25:	Fabric stiffness, cantilever principle	89
26.	Figure 2.26:	Shirley crease recovery tester	91
27.	Figure 2.27:	Air permeability test	91
28.	Figure 2.28:	a) Position of the test specimen in Parallel streak method, and b) Measurement of Zone of Inhibition (ZOI) in Parallel streak method	101
29.	Figure 2.29:	a) Position of the test specimen in disc diffusion test, and b) Measurement of Zone of Inhibition (ZOI) in disc diffusion test	102

CHAPTER 3: MATERIALS AND EXPERIMENTAL METHODS

30.	Figure 3.1:	Plan of experimental work	109
31.	Figure 3.2:	Experimental lab set-up for Chemical synthesis	112
32.	Figure 3.3:	Schematic illustration of Chemical AgNPs synthesis methods	113
33.	Figure 3.4:	Preparation of the CP leave powder and extract	116
34.	Figure 3.5:	Green synthesis methods of AgNPs	117
35.	Figure 3.6:	Scanning Electron Microscope (Model JSM-5610 LV, Version 1.0, Jeol Japan)	120
36.	Figure 3.7:	Schematic illustration of preparation of nano-composite textile material.	122
37.	Figure 3.8:	Preparation of the nutrient agar media	126
38.	Figure 3.9:	Preparation and Maintenance of bacterial culture	127
39.	Figure 3.10:	Loading of bacterial culture	127
40.	Figure 3.11:	Environmental Scanning Electron Microscope (Model: ESEM EDAX XL 30, Philips, Netherlands)	130
41.	Figure 3.12:	ESEM image processing by 'ImageJ' software	131

42.	Figure 3.13:	FTIR spectrometer, model: BRUKER ALPHA	130
43.	Figure 3.14:	Weighing Scale (Electronic balance)	134
44.	Figure 3.15:	Fabric thickness gauge	134
45.	Figure 3.16:	Shirley stiffness tester	135
46.	Figure 3.17:	Fabric crease recovery tester	135
47.	Figure 3.18:	Air Permeability Tester	138
48.	Figure 3.19:	SDL ATLAS Moisture Management Tester	138
49.	Figure 3.20:	The Ultraviolet Transmittance Analyser UV-2000F	141
50.	Figure 3.21:	Preparation of the PV-AgNPs/CP composites	148
51.	Figure 3.22:	Antibacterial assessment by disc diffusion method (SN 195 920 standard)	149
52.	Figure 3.23:	Transferring and spreading of bacterial culture	148
53.	Figure 3.24:	Shimadzu UV-Vis spectrophotometer, Model UV-1800	154
54.	Figure 3.25:	Particle size analyser, Model- Malvern Zetasizer Pro, Version 7.11	154
55.	Figure 3.26:	Gas Chromatograph with Mass Sepectrometer, Model- Autosystem XL GC with Turbomass, Perkin Elmer, Germany	156
56.	Figure 3.27:	MTT assay test samples for Set-I a) CP leave extracts, b) pure CP latex, and Set-II, c) AgNPs/CP colloidal solutions, and d) AgNO ₃ solutions	157
57.	Figure 3.28:	96-well plastic micro plates used for MTT assay	157
58.	Figure 3.29:	Electrical heater [A-ONE Scientific equipments, Volts: 230, Watts: 1500]	161

CHAPTER 4: RESULTS AND DISCUSSIONS

59.	Figure 4.1:	Colour change observation of the AgNPs colloidal - Chemical synthesis	168
60.	Figure 4.2:	Colour change observation of the AgNPs colloidal - Green synthesis	169
61.	Figure 4.3:	SEM micrograph of the AgNPs prepared through the Green	171

synthesis

62.	Figure 4.4:	Plant specification (Calotropis procera)	172
63.	Figure 4.5:	Antibacterial assessment of the Sample (00) and Sample (01)	175
64.	Figure 4.6:	ESEM images of Sample 00 at different magnifications (a-d)	176
65.	Figure 4.7:	ESEM images of Sample 01 at different magnifications (a-d)	177
66.	Figure 4.8:	Energy dispersive spectrums of Sample 00	180
67.	Figure 4.9:	Energy dispersive spectrums of Sample 01	180
68.	Figure 4.10:	Elemental mapping of Sample 00 a) Map of Carbon, and b) Map of Oxygen	181
69.	Figure 4.11:	Elemental mapping of Sample 01 a) Map of Carbon and b) Map of Oxygen	181
70.	Figure 4.12:	Micrograph used for determination of nanoparticles size distribution	182
71.	Figure 4.13:	a) Nano particle size distribution curve, and b) Histogram	184
72.	Figure 4.14:	FTIR spectra of the a) Sample 00, and b) Sample 01	185
73.	Figure 4.15:	Water content vs Time a) Sample 00, and b) Sample 01 respectively	192
74.	Figure 4.16:	Water location vs Time a) Sample 00, and b) Sample 01 respectively	192
75.	Figure 4.17:	Finger print of moisture management properties for a) Sample 00, and b) Sample 01 respectively	193
76.	Figure 4.18:	Overall moisture management capability of Sample 00 and 01	194
77.	Figure 4.19:	Accumulative one-way transport index (%) of Sample 00 and 01	194
78.	Figure 4.20:	Wetting time (sec.) for Top and Bottom surface of Sample 00 and 01	194
79.	Figure 4.21:	Absorption Rate (%/sec) for Top and Bottom surface of Sample 00 and 01	195
80.	Figure 4.22:	Max Wetted Radius (mm) for Top and Bottom surface of Sample 00 and 01	195
83.	Figure 4.23:	Spreading Speed (mm/sec) for Top and Bottom surface of Sample 00 and 01	195

84.	Figure 4.24:	UV Transmittance profile of a) Sample 00, b) Sample 01	197
85.	Figure 4.25:	CP leave extracts a) E05, b) E10, c) E15, and d) E20	202
86.	Figure 4.26:	Colour change observation of the AgNPs colloidal solutions (Major Trial)	203
87.	Figure 4.27:	Cytotoxicity effects of pure CP latex and CP leave extract with various % concentration	204
88.	Figure 4.28:	Zone of Inhibition (ZOI) in (mm) for each group (major scale)	206
89.	Figure 4.29:	Antibacterial assessment (Set A)	207
90.	Figure 4.30:	Antibacterial assessment (Set B)	207
91.	Figure 4.31:	Antibacterial assessment (Set C)	208
92.	Figure 4.32:	Antibacterial assessment (Set D)	208
93.	Figure 4.33:	Antibacterial Stability (Set A)	211
94.	Figure 4.34:	Antibacterial Stability (Set B)	211
95.	Figure 4.35:	Antibacterial Stability (Set C)	212
96.	Figure 4.36:	Antibacterial Stability (Set D)	212
97.	Figure 4.37:	Average ZOI as per Extract concentrations	213
98.	Figure 4.38:	Average ZOI as per molarity of the AgNO ₃	213
99.	Figure 4.39:	Colour change of the AgNPs colloidal solutions (Set-I)	218
100.	Figure 4.40:	UV-Vis spectrum of the AgNPs colloidal solutions in Set-I (a-e)	219
101.	Figure 4.41:	DLS spectrum for the particle size distribution of samples in Set-I (a–e)	224
102.	Figure 4.42:	Antibacterial assessment (Set-I)	225
103.	Figure 4.43:	Colour change observation of the AgNPs colloidal solutions (Set-II)	230
104.	Figure 4.44:	UV-Vis spectrum of the AgNPs colloidal solution in Set-II (a-e)	231
105.	Figure 4.45:	DLS spectrum for the particle size distribution of samples in Set-II (a–e)	234

106.	Figure 4.46:	Antibacterial assessment (Set-II)	237
107.	Figure 4.47:	Zone of Inhibition (ZOI in mm) of all samples (Set-I & II)	238
108.	Figure 4.48:	Cytotoxicity effects of pure AgNO ₃ and AgNPs colloidal solutions	241
109.	Figure 4.49:	Structure of the antibacterial compound N-Decanoic Acid	243
110.	Figure 4.50:	Structure of the antibacterial compound D-Glucopyranoside,4-O-Decyl-	243
111.	Figure 4.51:	Chromatogram of CP leave extract	244
112.	Figure 4.52:	Mass spectra of CP leave extract at 9.4 RT	245
113.	Figure 4.53:	Mass spectra of CP leave extract at 18.71 RT	246
114.	Figure 4.54:	Mass spectra of CP leave extract at 19.78 RT	247
115.	Figure 4.55:	Mass spectra of CP leave extract at 20.33 RT	248
116.	Figure 4.56:	Mass spectra of CP leave extract at 25.81 RT	249
117.	Figure 4.57:	Mass spectra of CP leave extract at 39.29 RT	250
118.	Figure 4.58:	Zone of Inhibition (ZOI) in (mm) of all the samples for a) SA and b) EC	257
119.	Figure 4.59:	't'-Test value [Zone of Inhibition for a) SA, and b) EC]	258
120.	Figure 4.60:	ESEM Images: a) untreated nonwovens (1000X), b) CP treated (1000X), and c) AgNPs/CP treated composites (2000X)	260
121.	Figure 4.61:	FTIR spectra of the a) PP30, b) PP30-CP, and c) PP30-AgNPs/CP	263
122.	Figure 4.62:	FTIR spectra of the a) PV40, b) PV40-CP, and c) PV40-AgNPs/CP	264
123.	Figure 4.63:	FTIR spectra of the a) PP50, b) PP50-CP, and c) PP50-AgNPs/CP	265
124.	Figure 4.64:	FTIR spectra of the a) PP45, b) PP45-CP, and c) PP45-AgNPs/CP	266
125.	Figure 4.65:	GSM (Gram per Sq. meter)	273
126.	Figure 4.66:	Thickness (mm)	273
127.	Figure 4.67:	't'-Test value (GSM)	274

128.	Figure 4.68:	't'-Test value (Thickness)	274
129.	Figure 4.69:	Bending modulus (g/cm ²)	279
130.	Figure 4.70:	Crease recovery angle (°)	279
131.	Figure 4.71:	't'-Test value (Bending modulus)	280
132.	Figure 4.72:	't'-Test value (Crease recovery angle)	280
133.	Figure 4.73:	Air permeability (Nl/m ² /h)	282
134.	Figure 4.74:	't'-Test value (Air permeability)	282
135.	Figure 4.75:	Overall moisture management capability	286
136.	Figure 4.76:	Accumulative one-way transport index (%)	286
137.	Figure 4.77:	Wetting time (sec) for top and bottom surface	287
138.	Figure 4.78:	Absorption rate (%/sec) for top and bottom surface	287
139.	Figure 4.79:	Max wetted radius (mm) for top and bottom surface	288
140.	Figure 4.80:	Spreading speed (mm/sec) for top and bottom surface	288
141.	Figure 4.81:	Water content vs Time a) PP30, b) PP30-CP, and c) PP30-AgNPs/CP respectively	289
142.	Figure 4.82:	Water content vs Time a) PV40, b) PV40-CP, and c) PV40-AgNPs/CP respectively	290
143.	Figure 4.83:	Water content vs Time a) PP50, b) PP50-CP, and c) PP50-AgNPs/CP respectively	291
144.	Figure 4.84:	Water content vs Time a) PP45, b) PP45-CP, and c) PP45-AgNPs/CP respectively	292
145.	Figure 4.85:	Water location vs Time a) PP30, b) PP30-CP, and c) PP30-AgNPs/CP respectively	293
146.	Figure 4.86:	Water location vs Time a) PV40, b) PV40-CP, and c) PV40-AgNPs/CP respectively	294
147.	Figure 4.87:	Water location vs Time a) PP50, b) PP50-CP, and c) PP50-AgNPs/CP respectively	295
148.	Figure 4.88:	Water location vs Time a) PP45, b) PP45-CP, and c) PP45-AgNPs/CP respectively	296
149.	Figure 4.89:	Finger print of moisture management properties for a) PP30, b) PP30-CP, and c) PP30-AgNPs/CP respectively	297

150.	Figure 4.90:	Finger print of moisture management properties for a) PV40, b) PV40-CP, and c) PV40-AgNPs/CP respectively	298
151.	Figure 4.91:	Finger print of moisture management properties for a) PP50, b) PP50-CP, and c) PP50-AgNPs/CP respectively	299
152.	Figure 4.92:	Finger print of moisture management properties for a) PP45, b) PP45-CP, and c) PP45-AgNPs/CP respectively	300
153.	Figure 4.93:	UPF values of nano-composites	303
154.	Figure 4.94:	't'-Test value (UPF)	303
155.	Figure 4.95:	UV Transmittance profile of a) PP30, b) PP30-CP, and c) PP30-AgNPs/CP	305
156.	Figure 4.96:	UV Transmittance profile of a) PV40, b) PV40-CP, and c) PV40-AgNPs/CP	306
157.	Figure 4.97:	UV Transmittance profile of a) PP50, b) PP50-CP, and c) PP50-AgNPs/CP	307
158.	Figure 4.98:	UV Transmittance profile of a) PP45, b) PP45-CP, and c) PP45-AgNPs/CP	308