Sr. No	Name of the Figure	Pg. No
1	Figure 1.1pathway by which fats stores in the adipose tissue.	5
2	Figure 1.2Fundamentals of energy balance and energy regulation	7
3	Figure2. 1Achyranthus Aspera Seed	28
4	Figure 2Murraya Koenigii(L) Leaves	29
5	Figure 2.3Commiphora mukul gum	30
6	Figure 2.4 Garcinia Indica Fruit	32
7	Figure 4.1Result of responses	63
8	Figure 4.2ANOVA for Response surface Linear Model	64
9	Figure 4.3ANOVA study Results for Disintegration time	65
10	Figure 4.4Desirability plot contour for Disintegration time.	65
11	Figure 4.5Desirability plot (3D surface) for Disintegration time	66
12	Figure 4.6ANOVA for Response surface Linear Model	66
13	Figure 4.7Desirability plot (Contour plot) for Hardness	67
14	Figure 4.8Desirability plot (3D surface) for Hardness	68
15	Figure 4.9Desirability plot (Contour plot) for optimized batch	70
16	Figure 10Desirability plot (3D surface) for optimized batch	70
17	Figure 11Overlay plot for design space	71
10	Figure 4.12Structures of (A) Natural Products NPs and (B) Drug	
10	molecules collected from ZINC database	86
19	Figure 5.1 Calibration graph of Gallic acid	96
20	Figure 5.2Calibration plot of gallic acid for tannin content	97
21	Figure 5.3Calibration plot of Quercetin	98
22	Figure 5.4 Overlay spectra of Overlay spectra for both markers GA and OA	101
23	Figure 5.5 HPLC Chromatogram of Simultaneous estimation of Gallic	
	acid and Oleanolic acid	101
24	Figure 5.6Overlay HPLC Chromatogram for different linearity	
	concentration for both	102
25	Figure 5.7Overlay HPLC Chromatogram for different linearity	
	concentration forGalic Acid	103
26	Figure 5.8Overlay HPLC Chromatogram for different linearity	
	concentration for Oleanolic acid	103
27	Figure 5.9Calibration curve between Area of peak GA verses its	
27	Concentration	104
28	Figure 5.10Calibration curve between Area of peak OA verses	
20	Concentration	104
29	Figure 5.11TLC plate at UV scan	109
30	Figure 5.12TLC Plate after spraying with reagent methanolic sulphuric	100
		109
31	Figure 5.13HP1LC Unromatogram of Gallic acid and E-Guggulosterone	100
1		109

List of Figures

	Figure 5 14HPTLC Chromatogram of Oleanolic acid after spraving with	l
32	reagent scanning at 368 nm	110
33	Figure 5.15HPTLC graph for linearity of Gallic acid and E-	
	Guggulosterone scannd at 270 nm	111
24	Figure 5.16Overlay HPTLC chromatogram for Linearity of Gallic acid	
54	and E-Guggulosterone scanned at 270 nm	111
25	Figure 5.17HPTLC chromatogram for Linearity of Oleanolic acid	
55	scanned at 368 nm.	112
26	Figure 5.18Overlay HPTLC chromatogram for linearity of Oleanolic	
30	acid scanned at 368 nm	112
37	Figure 5.19Calibration curve of Gallic acid.	113
38	Figure 5.20Calibration Curve of E-Guggulsterone	113
39	Figure 5.21Calibration Curve of Oleanolic acid.	114
40	Figure 5.22HPTLC chromatogram of laboratory prepared polyherbal	
40	tablet	117
41	Figure 5.23Docking interactions of (A) Oleanolic acid and (B) Acarbose	
+1	in the active sites of alpha-amylase (PDB id: 6GXV)	120
42	Figure 5.24Docking interactions of (A) Garcinia (B) Oleanolic acid and	
	(C) Orlistat in the active sites of human gastric lipase (PDB id: 1HLG)	123
	Figure 5.25Docking interactions of (A) Guggulsterone (B) Oleanolic	
43	acid (C) Mahanine (D) Quercetin and (E) Clofibrate in the active sites of	
	human PPAR alpha (PDB 1d: 3 V18)	126
44	Figure 5.26. Docking interactions of (A) Mahanine (B) Oleanolic acid	
	(C) Rimonabant in the active sites of human obesity protein, leptin (PDB	
	10: IAX8)	128
45	Figure 5.27Docking interactions of (A) Mahanine (B) Oleanolic acid (C)	
	Rimonabant in the active sites of leptin receptor (PDB id: 3V6O)	128
	Figure 5.28Docking interactions of (A) Quercetin (B) Oleanolic acid (C)	
46	Rimonabant in the active sites of cannabinoid receptor type I (PDB id:	
		131
	Figure 5.29Docking interactions of (A) Quercetin (B) Oleanolic acid (C)	
47	Atorvastatin in the active sites of human HMG-CoA reductase (PDB id:	
		133