List of Figures No. Title Page No. 1.1 14 Jatropha curcas Inflorescence and bloom of fruits 1.2 Images of Jatropha curcas 17 (A) Young Jatropha curcas plant with both flowers and developing seedpods (B) Jatropha curcas inflorescence containing both male staminate flowers (M) and female pistillate flowers (F) (C) Cross-section of a Jatropha curcas seedpod containing three developing seeds (D) Mature seeds of Jatropha curcas 1.3 Interaction of various plant hormones throughout the plant's 33 life cycle 35 1.4 Network of interactions between GA and Auxin 1.5 Network of interactions between GA and Ethylene 37 1.6 Network of interactions between GA and Cytokinin 38 1.7 Regulation of Ethylene biosynthesis by IAA 39 1.8 A model for general mechanism of PCD in plant 42 3.1 Different stages of Inflorescence development. 55 59 3.2 Different stages of Fruit development. Fruit yield from Jatropha curcas plantation of different 3.3 61 regions Seed weight from Jatropha curcas plantation of different 3.4 62 regions 3.5 Oil yield from Jatropha curcas plantation of different regions 63 4.1 Major Floral Inductive Pathways 68

of sepals, petals, stamens and carpels4.3Molecular basis of differentiation70

Typical flower showing organs arranged in concentric whorls

4.2

۷

69

4.4	Effect of GA and 2, 4-D on Inflorescence pattern in Jatropha curcas	79
4.5	Effect of GA, Ethrel and Silver thiosulfate on Inflorescence pattern in Jatropha curcas	80
4.6	Effect of GA on peduncle length of Jatropha curcas	81
5.1	Effect of phytohormones on Fruit yield per plant	88
5.2	Effect of phytohormones on Fruit morphology	89
5.3	Effect of phytohormones on Seed weight	91
5.4	Effect of phytohormones on Seed morphology	92
5.5	Effect of phytohormones on Seed Oil yield	93
6.1	Effect of phytohormones on endogenous GA level in floral bud	102
6.2	Effect of phytohormones on endogenous IAA level in floral bud	103
6.3	Effect of phytohormones on endogenous Ethylene level in floral bud	105
6.4	Effect of phytohormones on ACC level in floral bud	106
7.1(a)	Deleterious effect of GA, and Silver thiosulfate on Inflorescence morphology	113
7.1(b)	Effect of GA, Ethrel and Silver thiosulfate on Inflorescence morphology	114
7.2	Effect of GA, Ethrel and Silver thiosulfate on Endogenous hydrogen peroxide	115
7.3	Effect of GA, Ethrel and Silver thiosulfate on Catalase activity	116
7.4	Effect of GA, Ethrel and Silver thiosulfate on Peroxidase activity	117
7.5	Effect of GA, Ethrel and Silver thiosulfate on SOD activity	118
7.6	Effect of GA, Ethrel and Silver thiosulfate on Viability of cells	119
7.7	Monitoring cell viability by trypan blue exclusion method	120
7.8	Monitoring DNA fragmentation by Gel electrophoresis	121
7.9	Cell morphology monitored by Bright field microscopy	122
7.10	Nuclear morphology monitored by DAPI staining	123