
Chapter 7 : VLSI Implementation of Cryptographic Algorithms

Chapter 7
VLSI Implementation of Cryptographic Algorithms

7.1 Introduction : Until very recently, all encryption products were in the form of 

specialized hardware. These encryption/decryption devices are plugged into a 

communications line and encrypted all the data going across that line: Although 

software encryption is becoming more popular today, hardware is still the 

embodiment of choice for military and serious commercial applications. The 

NSA(National Security Agency ) of USA only authorizes encryption in hardware. 

There are strong reasons for hardware implementation of cryptographic 

algorithms. As far as 3G algorithms are concerned, in the User Equipment 

(UE),the algorithm may be implemented as hardware .while in the Radio Network 

Controller(RNC) it may also be implemented in software on a general purpose 

processor. For hardware implementations, the working assumption was such that 

it should be possible to implement one instance of the algorithm__using less than 

10000 gates [89]. Kernel algorithm KASUMI has been designed so that it can be 

efficiently implemented in hardware. Moreover, we want to compare DSP and 

VLSI implementations of three algorithms KASUMI,f8 and f9 and hence this 

chapter describes the VLSI implementation using Xilinx and Altera, synthesis 

tools.

7.2 Advantages of Hardware Implementation: Speed is the most important 

advantage of hardware implementation. Encryption algorithms consist of many 

complicated operations on plaintext bits. These operations cannot run efficiently 

on general purpose processors. While some cryptographers have tried to design 

algorithms more suitable for software implementation, specialized hardware 

always wins speed race. Additionally, encryption is often a computation intensive 

task. Tying up computer’s primary processor for this purpose is inefficient. 

Moving encryption to another chip (it can be another processor even) makes the 

whole system faster.

Security is another reason for hardware implementation. An encryption 

algorithm running on a generalized computer has no physical protection. Anyone
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can access and modify the algorithm with various debugging tools without 

anyone ever realizing it. Hardware encryption devices can be securely 

encapsulated to prevent this.

7.3 Previous work on Hardware Implementation of 3G Security Algorithms :

Several research papers describe the work done in the area of Hardware (VLSI) 

implementation of KASUMI algorithm [38], [46]. Earlier publications related to 

hardware implementations of block ciphers were related to the Data Encryption 

Standard (DES) of to the block cipher IDEA. Speeds of IDEA implementations 

ranging from 2.8 Mbps to 528 Mbps [46 ] have been reported. This high 

throughput could only be achieved in a full pipeline architecture requiring up to 

four Xiiinx XC4000 FPGAs. DES implementations delivering up to 400 Mbps 

have also been shown. Extended performance evaluation of the five AES 

algorithm finalists have been reported by C.Paar et1 al.Throughput varying 

between 126 Mbps (RC6) and 444 Mbps(Serpent) under different optimization 

constraints were mentioned. By introducing pipeline stages in the round functions 

itself, throughput in the range of 7.5 to 16.8 Gbps were demonstrated for the 

block ciphers Twofish, Rijnadaei, Serpent and 3DES.However,throughput 

beyond the gigabit barrier is only possible under: extensive use of pipeline 

techniques.

When compared to other modern block ciphers such as Rijndael, KASUMI 

presents a rather regular structure which allows for several optimization 

approaches. In a simple implementation , encryption will be done by just feeding 

the input in the Feistel-network and looping it back eight times to achieve the 

total required: eight rounds. This approach is not very efficient in terms of 

throughput. Since even and odd rounds differ only in the order of execution of 

the functions 'FOi and FL, one could implement one type of both and feed the 

result backward to compute other type. Combining an even and an odd round of 
KASUMI in a single combinational unit allows us to calculate two rounds of 

KASUMI within one single clock cycle. This significantly reduces the amount of 

iterations and is known as loop unrolling. Besides increasing throughput, loop
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unrolling also decreases the maximum possible clock frequency since it 

introduces longer critical paths.

The high area requirement is principally due to the substitution boxes. This 

number can be reduced by an additional circuitry that enables substitution box 

sharing between rounds. But the high additional wiring that this implies is not 

worth the effort. Further, the full loop unrolled architecture essentially requires a 

full asynchronous design which is a very tedious task. KASUMI algorithm was 

specified to be used in counter and output feedback mode within f8 and f9 

functions.

In one of the research papers on Low-power UMTS Encryption [46], the 

authors present an architecture which presents the best throughput/area ratio 

since only 24 substitution boxes were required instead of 96 for a full loop 

unrolled architecture. In this implementation, total gate count using this 

architecture varies between 17000 and 8000 gates depending on the architecture 

of the underlying substitution boxes.

Another research paper by Tomas Baldreas et. al [44] describe an efficient 

FPGA architecture for block ciphering in Third Generation Cellular Networks. 

This paper presents a novel hardware implementation of the KASUMI block 

cipher using the principle of reuse of components. The architecture is a good 

balance between high performance and low complexity in area as a result of 

taking advantage of certain features present in modern FPGAs and some design 

strategies. The main features of the architecture proposed in this paper are: 

reuse of higher-level components of the block cipher, which reduces the number 

of total cycles needed to carry out the process, mapping of the S-boxes to 

embedded dual port memory blocks and the design of a simple key scheduler 

that takes advantage of a clock -division technique.

7.4 Previous work on VLSI Implementation of IDEA
One research paper published by Oskar Mencer et al [36] from Stanford 

University describe hardware software tri-design of encryption for mobile 

communication units. This paper explores the design space of Field 

Programmable Gate Arrays .Processors and ASICs-Hardware-Software Tri
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design in the framework of encryption for hand-held communication units. IDEA 

is used to show the tradeoffs for these technologies. The parameters chosen for 

comparison of different options are performance, programmability and power.

The conclusions drawn in this paper are as follows:

(i) Power consumption is directly proportional to frequency of the circuit. 

Hence the technology with the highest MOPS/Watt and Mbps/Watt rating 

yields the lowest power consumption for a given bit rate.

(ii) DSP Tl TMX320C6x gives 53.1 Mbps speed and DSP DEC SA-110 
gives 32 Mbps speed.

(iii) FPGA implementation on XC 4000 XL gives 528 Mbps speed whereas 

ASIC implementation on “VINCI” gives 180 Mbps speed.

7.5 : VLSI Implementation of KASUMI,f8 and f9: KASUMI, f8 and f9 

algorithms are coded in VHDL . The simulation is done in Modelsim and 

synthesis is done using Xilinx and Altera synthesis tools.

7.5.1 KASUMI Implementation :

The KASUMI algorithm consists of the following blocks:

• Key scheduler generates eight 16-bit sub keys (KI1, KI2, KI3, KOI, K02, 

K03, KL1 and KL2) according to the 128-bit ciphering key for eight stages 

(e.g. the first L sub key of the fifth round is KL51). Therefore total 64 sub 

keys are created.

• Odd and even stages include FL function, FO function, and 32-bit XOR 

operation. The stages are completely similar, except the order of the 

functions which is reversed in the next stage.

• FL function divides the 32-bit input into two 16-^bit data paths. The block 

utilizes the KL sub keys and basic mathematical operations like AND, OR, 
and XOR. the block contains only combinational logic.

• FO function divides the 32-bit input into two 16-bit data paths. The block 
utilizes KO sub keys, FI functions, and XOR Operations. The block 

contains only combinational logic.

• FI function is a sub function of the FO function. Each FO function includes 

three FI functions and six XOR operations. The FI function divides the 16-
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bit input into 7-bit and 9-bit wide data paths. The block utilizes FI sub keys 

that are divided into 7-bit and 9-bit wide sub keys, S7 and S9 boxes, and 

XOR operations. The block contains only combinational logic.

• S7 and S9 boxes are utilized by the FI function. They are practically look­

up tables that produce a 7-bit (9-bit) output from a 7-bit (9-bit) input. The 

boxes are fully combinational.

7.5.2 Synthesis results for KASUMI:

The test data and summary of the synthesis results are given below:

Key : 2B D6 45 9F 82 C5 B3 00 95 2C 49 10 48 81 FF 48
Input: EA 02 47 14 AD 5C 4D 84
Output: DF 1F 9B 25 1C OB F4 5F

Key schedule:

Sub. Keys 1 2 3 4 5 6 7 8
KLi1 57AC 8B3E 058B 6601 2A59 9220 9102 FE91
KLi2 0B6E 7EEF 6BF0 F388 3ED5 CD58 2AF5 00F8
KOi1 B3E8 58B0 6016 A592 2209 1029 E91F 7AC5
KOi2 1049 8148 48FF D62B 9F45 C582 00B3 2C95
KOi3 2910 1FE9 C57A E8B3 B058 1660 92A5 0922
Kill 6BF0 F388 3ED5 CD58 2AF5 00F8 0B6E 7EEF
KN2 7EEF 6BF0 F388 3ED5 CD58 2AF5 00F8 0B6E
KM3 CD58 2AF5 00F8 0B6E 7EEF 6BF0 F388 3ED5

Table 7.1 -KASUWII test data

KASUMI Synthesis Results 
1. Chip: Altera

Family: APEX20KC

Device: EP20K1000CB652C7

Total logic element: 6715/38400(17%)

Total pins: 150/488(30%)

Speed: 32 MHz

Throughput: 2048 Mbps
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2. Chip: Xilinx 

Family: Spartan3 

Device: xc3s1500l-4fg676 

No. of slices: 4037/13312(30%)

No. of slices FF: 1193/26624(4%)

4 input LUTs: 7787/26624(29%)

Bonded Tobs: 150/487(30%)

Speed: 50 MHz 

Throughput: 3200 Mbps

7.5.3 f8 Implementation: The interface has separate 64-bit wide data buses for 

input and output bit streams. The write enable must be set active during the 

initialization procedure. The operation of the f8 function has been made very 

simple. After the reset has been deasserted, the f8 interface waits for the active 

write enable. After the write enable has been set active, the interface goes to the 

receive state. In the receive state the IF reads count, bearer, direction of 

transmission, confidentiality key, and message length during the next four clock 

cycles. After necessary parameters have been read, the interface initializes the 

KASUMI core with the modified keys and the feedback register is initialized as 

well. Then one KASUMI operation is performed to the feedback register. After the 

feedback register has been updated, the interface initializes the KASUMI core 

again using the confidentiality key. After a block has been processed, the 

results are sent to the output bit stream. At this moment, the interface sets the 

interrupt signal (INT) active when the encoded/decoded block can be read from 

the output bit stream (OBS).

7.5.4 Synthesis results for f8

The test data and summary of the synthesis results are given below:

Key = 2BD6459F82C5B300952C49104881FF48

Count = 72A4F20F

Bearer = 0C

Direction = 1

Length = 798 bits
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fout Plaintext: 7EC61272743BF161 4726446A6C38CED1 66F6CA76EB543004

4286346CEF130F92 922B03450D3A9975 E5BD2EA0EB55AD8E 

1B199E3EC4316020 E9A1B285E7627953 59B7BDFD39BEF4B2 

484583D5AFE082AE E638BF5FD5A60619 3901A08F4AB41AAB 9B134880

Initial A = 72A4F20F64000000
Key used = 7E8310CAD790E655C0791C451DD4AA1D
Modified A = 34222BC8F7C39416
Key now = 2BD6459F82C5B300952C49104881FF48

BLKCNT Kasumi input Keystream enc/dec data

0 34222BC8F7C39416 AF24CC029AC39D08 D1E2DE70EEF86C69
Table 7.2 : f8 test data

f8 Synthesis results 

1 .Chip: Altera 

Family: APEX20KC 

Device: EP20K1000CB652C7 

Total logic element: 8113/38400(21%) 

Total pins: 132/488(27%)

Speed: 32 MHz 

Throughput: 218 Mbps 

2. Chip: Xilinx 

Family: Spartan3 

Device: xc3s1500l-4fg676 

No. of slices: 4500/13312(33%)

No. of slices FF: 1943/26624(7%)

4 input LUTs: 8586/26624(32%) 

Bonded Tobs: 132/487(27%)

Speed: 50 MHz 

Throughput; 340 Mbps
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7.5.5 f9 Implementation:
The interface is again as simple as possible. The interface has separate 64-bit 

input bit stream and 32-bit MAC buses. The write enable must be active during 

the initialization procedure. The operation of the f9 algorithm is almost similar to 

the f8 algorithm. After the reset has been deasserted, the algorithm waits for the 

active write enable. After the write enable has been set active, the algorithm 

reads the necessary initialization data during the next seven clock cycles (count, 

fresh, length, and integrity key). After the message has been processed, the 

KASUMI core is initialized with the modified key and the contents of the MAC 

register (register B) is selected. Then only a single KASUMI operation is 

performed. After the operation has been performed, the interface asserts the 

interrupt signal, and the MAC can be read from the output bit stream.

7.5.6 Synthesis results for f9

The test data and summary of the synthesis results are given below:

Key = 2BD6459F82C5B300952C49104881FF48
Count = 38A6F056
Fresh = 05D2EC49
Direction = 0
Length =189 bits
Message:
6B227737296F393C 8079353EDC87E2E8 05D2EC49A4F2D8E0

New Key: 817CEF35286F19AA3F86E3BAE22B55E2
final step: F1BEEC15B964E3F2 F63BD72C702EBC7A

MAC-I: F63BD72C
Table 7.3 : f9 test data

Synthesis Results:

1 .Chip: Altera 

Family: APEX20KC 

Device: EP20K1000CB652C7 

Total logic element: 7937/38400(20%) 

Total pins: 100/488(27%)

Speed: 32 MHz 

Throughput: 217 Mbps
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2. Chip: Xilinx 

Family: Spartan3 

Device: xc3s1500l-4fg676 

No. of slices: 4439/13312(33%)

No. of slices FF: 1847/26624(6%)

4 input LUTs: 8471/26624(31%)

Bonded Tobs: 100/487(20%)

Speed: 50 MHz 

Throughput: 339 Mbps

7.6 Implementation of IDEA: The IDEA algorithm was implemented using 

ALTERA’s QUARTUS tool for VLSI synthesis. The major blocks implemented are

(i) 16 bit XOR: Bit by Bit exclusive OR
(ii) 16 bit adder: Addition of integers modulo 216 with inputs and outputs treated 

as unsigned 16 bit integers
(iii) Modulo 16 multiplier: Multiplication of integers modulo 216 +1 with inputs 

and outputs treated as unsigned 16-bit integers .except that a block of all zeros is 
treated as representing 216 .

The results for implementation are given below:

Fitter report for ide8rnd
Thu Aug 18 18:59:12 2005
Version 4.1 Build 181 06/29/2004 SJ Full Version
Fitter Summary

Fitter Status Successful - Thu Aug 18 18:59:11 2005
Quartus II Version 4.1 Build 181 06/29/2004 SJ Full Version
Revision Name ide8rnd
Top-level Entity Name ide8rnd
Family APEX20KE
Device EP20K1500EBC652-1
Timing Models Production
Total logic elements 43,249 / 51,840 ( 83%)
Total pins 257 / 488 ( 52 % )
Total memory bits 0 / 442,368 ( 0 % )
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7.7 Simulation Waveforms for KASUMI, f8 and f9: Modelsim simulation 

waveforms for timing analysis of KASUMI, f8 and f9 are drawn here. They have 

been used to determine latency and throughput for various algorithms.

Figure 7.1(a) Simulation waveforms for f8 (Initial A)
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Figure 7.1(b) Simulation waveforms for f8 (Modified A)

Figure 7.1(c) Simulation waveforms for f8 (Plain text stream)
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Figure 7. 1(d) Simulation waveforms for f8 (Cipher text stream)

Figure 7. 2(a) Simulation waveforms for f9 (Count Fresh)

Figure 7.2(b) Simulation waveforms for f 9 (Message)

104



Chapter 7 : VLSI Implementation of Cryptographic Algorithms

[iiinniiiiiiiiiiniiiiiiiiiiii:

mac IDFDJDCB9 8565A12A C5E6DE... FC676B8E 431399E3 A94BA3D8 EAB9F512 0772F0F4 F55A8731 A165B2D7 F63BD72C

Figure 7. 2(d) Simulation waveforms for f9 (MAC - I)

Figure 7. 3(a) Simulation waveforms for KASUMI (Subkeys)
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Figure 7. 3(b) Simulation waveforms for KASUMI (Plain text)

Figure 7.3 (c) Simulation waveforms for KASUMI (Cipher text)

7.8 Throughput :The throughput availability for KASUMI ,f8 and f9 algorithms 

are summarized in the following table:

Algorithm Throughput in Mbps

Xilinx Altera

KASUMI 3200 (50 MHz) 2048 (32 MHz)

f8 340 (50 MHz) 218(32 MHz)

f9 339 (50 MHz) 217(32 MHz)

IDEA 2900 (40 MHz)

Table 7.4 : Throughput for KASUMI, f8 and f9 algorithms
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7.9 Estimation of ASIC area: The relative merits and demerits of ASIC, FPGA 

and DSP implementations were explored. Before taking up the research work, a 

research paper based on software V/s ASIC implementation was studied by us. 

This research work was taken up by NOKIA. It was found that ASIC solution 

performance suffers from relatively large overhead in inter-process 

communication and operating system context switches. The ASIC solution 

involves a lot of signaling between the application process and the ASIC driver 

process. The software ciphering performed on DSP does not have any of these 

overheads because all the processing is done inside the application process. 

Software ciphering improves performance for speech traffic ciphering. It also 

simplifies the architecture because there is no need for HW-SW interface. It has 

also got faster design cycle. If we talk about specific results, software ciphering 

on DSP consumes about half of the time used by ASIC for speech traffic. There 

is no significant difference for data traffic.

Comparison of <ASIC and FPGA design leads to fallowing facts:
ASIC requires about 108 mm2 for IDEA encryption as against 3200 CLBs 

of XC4000 XL FPGA[14].

A rough estimation of area calculation for ASIC design can be done based 

on the library attributes and a previously constructed standard library 

dimensions. Total combinational area is 7390 units and total (sequential) 

non combinationaljarea is 32340 units for IDEA implementation on ASIC. A 

unit area is equivalent to physical area covered by 2-input NAND gate.

Depending on the technology that is chosen for fabrication of the device,
| i'

the actual value of the area can be calculated by multiplying the unit area 

values with the area covered by a 2-input NAND gate.

7.10 Summary: In this chapter, we have discussed VLSI Implementation of f8, 

f9, KASUMI arid IDEA algorithms on Xilinx and Altera synthesis tools. The 

throughput availability is very good and is much larger than UMTS chip rate of 

3.84 Mcps.
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