
Chapter 7 : VLSI Implementation of Cryptographic Algorithms

Chapter 7
VLSI Implementation of Cryptographic Algorithms

7.1 Introduction : Until very recently, all encryption products were in the form of

specialized hardware. These encryption/decryption devices are plugged into a

communications line and encrypted all the data going across that line: Although

software encryption is becoming more popular today, hardware is still the

embodiment of choice for military and serious commercial applications. The

NSA(National Security Agency) of USA only authorizes encryption in hardware.

There are strong reasons for hardware implementation of cryptographic

algorithms. As far as 3G algorithms are concerned, in the User Equipment

(UE),the algorithm may be implemented as hardware .while in the Radio Network

Controller(RNC) it may also be implemented in software on a general purpose

processor. For hardware implementations, the working assumption was such that

it should be possible to implement one instance of the algorithm__using less than

10000 gates [89]. Kernel algorithm KASUMI has been designed so that it can be

efficiently implemented in hardware. Moreover, we want to compare DSP and

VLSI implementations of three algorithms KASUMI,f8 and f9 and hence this

chapter describes the VLSI implementation using Xilinx and Altera, synthesis

tools.

7.2 Advantages of Hardware Implementation: Speed is the most important

advantage of hardware implementation. Encryption algorithms consist of many

complicated operations on plaintext bits. These operations cannot run efficiently

on general purpose processors. While some cryptographers have tried to design

algorithms more suitable for software implementation, specialized hardware

always wins speed race. Additionally, encryption is often a computation intensive

task. Tying up computer’s primary processor for this purpose is inefficient.

Moving encryption to another chip (it can be another processor even) makes the

whole system faster.

Security is another reason for hardware implementation. An encryption

algorithm running on a generalized computer has no physical protection. Anyone

94

Chapter 7 : VLSI Implementation of Cryptographic Algorithms

can access and modify the algorithm with various debugging tools without

anyone ever realizing it. Hardware encryption devices can be securely

encapsulated to prevent this.

7.3 Previous work on Hardware Implementation of 3G Security Algorithms :

Several research papers describe the work done in the area of Hardware (VLSI)

implementation of KASUMI algorithm [38], [46]. Earlier publications related to

hardware implementations of block ciphers were related to the Data Encryption

Standard (DES) of to the block cipher IDEA. Speeds of IDEA implementations

ranging from 2.8 Mbps to 528 Mbps [46] have been reported. This high

throughput could only be achieved in a full pipeline architecture requiring up to

four Xiiinx XC4000 FPGAs. DES implementations delivering up to 400 Mbps

have also been shown. Extended performance evaluation of the five AES

algorithm finalists have been reported by C.Paar et1 al.Throughput varying

between 126 Mbps (RC6) and 444 Mbps(Serpent) under different optimization

constraints were mentioned. By introducing pipeline stages in the round functions

itself, throughput in the range of 7.5 to 16.8 Gbps were demonstrated for the

block ciphers Twofish, Rijnadaei, Serpent and 3DES.However,throughput

beyond the gigabit barrier is only possible under: extensive use of pipeline

techniques.

When compared to other modern block ciphers such as Rijndael, KASUMI

presents a rather regular structure which allows for several optimization

approaches. In a simple implementation , encryption will be done by just feeding

the input in the Feistel-network and looping it back eight times to achieve the

total required: eight rounds. This approach is not very efficient in terms of

throughput. Since even and odd rounds differ only in the order of execution of

the functions 'FOi and FL, one could implement one type of both and feed the

result backward to compute other type. Combining an even and an odd round of
KASUMI in a single combinational unit allows us to calculate two rounds of

KASUMI within one single clock cycle. This significantly reduces the amount of

iterations and is known as loop unrolling. Besides increasing throughput, loop

95

Chapter 7 : VLSI Implementation of Cryptographic Algorithms

unrolling also decreases the maximum possible clock frequency since it

introduces longer critical paths.

The high area requirement is principally due to the substitution boxes. This

number can be reduced by an additional circuitry that enables substitution box

sharing between rounds. But the high additional wiring that this implies is not

worth the effort. Further, the full loop unrolled architecture essentially requires a

full asynchronous design which is a very tedious task. KASUMI algorithm was

specified to be used in counter and output feedback mode within f8 and f9

functions.

In one of the research papers on Low-power UMTS Encryption [46], the

authors present an architecture which presents the best throughput/area ratio

since only 24 substitution boxes were required instead of 96 for a full loop

unrolled architecture. In this implementation, total gate count using this

architecture varies between 17000 and 8000 gates depending on the architecture

of the underlying substitution boxes.

Another research paper by Tomas Baldreas et. al [44] describe an efficient

FPGA architecture for block ciphering in Third Generation Cellular Networks.

This paper presents a novel hardware implementation of the KASUMI block

cipher using the principle of reuse of components. The architecture is a good

balance between high performance and low complexity in area as a result of

taking advantage of certain features present in modern FPGAs and some design

strategies. The main features of the architecture proposed in this paper are:

reuse of higher-level components of the block cipher, which reduces the number

of total cycles needed to carry out the process, mapping of the S-boxes to

embedded dual port memory blocks and the design of a simple key scheduler

that takes advantage of a clock -division technique.

7.4 Previous work on VLSI Implementation of IDEA
One research paper published by Oskar Mencer et al [36] from Stanford

University describe hardware software tri-design of encryption for mobile

communication units. This paper explores the design space of Field

Programmable Gate Arrays .Processors and ASICs-Hardware-Software Tri

96

Chapter 7 : VLSI Implementation of Cryptographic Algorithms

design in the framework of encryption for hand-held communication units. IDEA

is used to show the tradeoffs for these technologies. The parameters chosen for

comparison of different options are performance, programmability and power.

The conclusions drawn in this paper are as follows:

(i) Power consumption is directly proportional to frequency of the circuit.

Hence the technology with the highest MOPS/Watt and Mbps/Watt rating

yields the lowest power consumption for a given bit rate.

(ii) DSP Tl TMX320C6x gives 53.1 Mbps speed and DSP DEC SA-110
gives 32 Mbps speed.

(iii) FPGA implementation on XC 4000 XL gives 528 Mbps speed whereas

ASIC implementation on “VINCI” gives 180 Mbps speed.

7.5 : VLSI Implementation of KASUMI,f8 and f9: KASUMI, f8 and f9

algorithms are coded in VHDL . The simulation is done in Modelsim and

synthesis is done using Xilinx and Altera synthesis tools.

7.5.1 KASUMI Implementation :

The KASUMI algorithm consists of the following blocks:

• Key scheduler generates eight 16-bit sub keys (KI1, KI2, KI3, KOI, K02,

K03, KL1 and KL2) according to the 128-bit ciphering key for eight stages

(e.g. the first L sub key of the fifth round is KL51). Therefore total 64 sub

keys are created.

• Odd and even stages include FL function, FO function, and 32-bit XOR

operation. The stages are completely similar, except the order of the

functions which is reversed in the next stage.

• FL function divides the 32-bit input into two 16-^bit data paths. The block

utilizes the KL sub keys and basic mathematical operations like AND, OR,
and XOR. the block contains only combinational logic.

• FO function divides the 32-bit input into two 16-bit data paths. The block
utilizes KO sub keys, FI functions, and XOR Operations. The block

contains only combinational logic.

• FI function is a sub function of the FO function. Each FO function includes

three FI functions and six XOR operations. The FI function divides the 16-

97

Chapter 7 : VLSI Implementation of Cryptographic Algorithms

bit input into 7-bit and 9-bit wide data paths. The block utilizes FI sub keys

that are divided into 7-bit and 9-bit wide sub keys, S7 and S9 boxes, and

XOR operations. The block contains only combinational logic.

• S7 and S9 boxes are utilized by the FI function. They are practically look­

up tables that produce a 7-bit (9-bit) output from a 7-bit (9-bit) input. The

boxes are fully combinational.

7.5.2 Synthesis results for KASUMI:

The test data and summary of the synthesis results are given below:

Key : 2B D6 45 9F 82 C5 B3 00 95 2C 49 10 48 81 FF 48
Input: EA 02 47 14 AD 5C 4D 84
Output: DF 1F 9B 25 1C OB F4 5F

Key schedule:

Sub. Keys 1 2 3 4 5 6 7 8
KLi1 57AC 8B3E 058B 6601 2A59 9220 9102 FE91
KLi2 0B6E 7EEF 6BF0 F388 3ED5 CD58 2AF5 00F8
KOi1 B3E8 58B0 6016 A592 2209 1029 E91F 7AC5
KOi2 1049 8148 48FF D62B 9F45 C582 00B3 2C95
KOi3 2910 1FE9 C57A E8B3 B058 1660 92A5 0922
Kill 6BF0 F388 3ED5 CD58 2AF5 00F8 0B6E 7EEF
KN2 7EEF 6BF0 F388 3ED5 CD58 2AF5 00F8 0B6E
KM3 CD58 2AF5 00F8 0B6E 7EEF 6BF0 F388 3ED5

Table 7.1 -KASUWII test data

KASUMI Synthesis Results
1. Chip: Altera

Family: APEX20KC

Device: EP20K1000CB652C7

Total logic element: 6715/38400(17%)

Total pins: 150/488(30%)

Speed: 32 MHz

Throughput: 2048 Mbps

98

Chapter 7 : VLSI Implementation of Cryptographic Algorithms

2. Chip: Xilinx

Family: Spartan3

Device: xc3s1500l-4fg676

No. of slices: 4037/13312(30%)

No. of slices FF: 1193/26624(4%)

4 input LUTs: 7787/26624(29%)

Bonded Tobs: 150/487(30%)

Speed: 50 MHz

Throughput: 3200 Mbps

7.5.3 f8 Implementation: The interface has separate 64-bit wide data buses for

input and output bit streams. The write enable must be set active during the

initialization procedure. The operation of the f8 function has been made very

simple. After the reset has been deasserted, the f8 interface waits for the active

write enable. After the write enable has been set active, the interface goes to the

receive state. In the receive state the IF reads count, bearer, direction of

transmission, confidentiality key, and message length during the next four clock

cycles. After necessary parameters have been read, the interface initializes the

KASUMI core with the modified keys and the feedback register is initialized as

well. Then one KASUMI operation is performed to the feedback register. After the

feedback register has been updated, the interface initializes the KASUMI core

again using the confidentiality key. After a block has been processed, the

results are sent to the output bit stream. At this moment, the interface sets the

interrupt signal (INT) active when the encoded/decoded block can be read from

the output bit stream (OBS).

7.5.4 Synthesis results for f8

The test data and summary of the synthesis results are given below:

Key = 2BD6459F82C5B300952C49104881FF48

Count = 72A4F20F

Bearer = 0C

Direction = 1

Length = 798 bits

99

Chapter 7 : VLSI Implementation of Cryptographic Algorithms

fout Plaintext: 7EC61272743BF161 4726446A6C38CED1 66F6CA76EB543004

4286346CEF130F92 922B03450D3A9975 E5BD2EA0EB55AD8E

1B199E3EC4316020 E9A1B285E7627953 59B7BDFD39BEF4B2

484583D5AFE082AE E638BF5FD5A60619 3901A08F4AB41AAB 9B134880

Initial A = 72A4F20F64000000
Key used = 7E8310CAD790E655C0791C451DD4AA1D
Modified A = 34222BC8F7C39416
Key now = 2BD6459F82C5B300952C49104881FF48

BLKCNT Kasumi input Keystream enc/dec data

0 34222BC8F7C39416 AF24CC029AC39D08 D1E2DE70EEF86C69
Table 7.2 : f8 test data

f8 Synthesis results

1 .Chip: Altera

Family: APEX20KC

Device: EP20K1000CB652C7

Total logic element: 8113/38400(21%)

Total pins: 132/488(27%)

Speed: 32 MHz

Throughput: 218 Mbps

2. Chip: Xilinx

Family: Spartan3

Device: xc3s1500l-4fg676

No. of slices: 4500/13312(33%)

No. of slices FF: 1943/26624(7%)

4 input LUTs: 8586/26624(32%)

Bonded Tobs: 132/487(27%)

Speed: 50 MHz

Throughput; 340 Mbps

100

Chapter 7 : VLSI Implementation of Cryptographic Algorithms

7.5.5 f9 Implementation:
The interface is again as simple as possible. The interface has separate 64-bit

input bit stream and 32-bit MAC buses. The write enable must be active during

the initialization procedure. The operation of the f9 algorithm is almost similar to

the f8 algorithm. After the reset has been deasserted, the algorithm waits for the

active write enable. After the write enable has been set active, the algorithm

reads the necessary initialization data during the next seven clock cycles (count,

fresh, length, and integrity key). After the message has been processed, the

KASUMI core is initialized with the modified key and the contents of the MAC

register (register B) is selected. Then only a single KASUMI operation is

performed. After the operation has been performed, the interface asserts the

interrupt signal, and the MAC can be read from the output bit stream.

7.5.6 Synthesis results for f9

The test data and summary of the synthesis results are given below:

Key = 2BD6459F82C5B300952C49104881FF48
Count = 38A6F056
Fresh = 05D2EC49
Direction = 0
Length =189 bits
Message:
6B227737296F393C 8079353EDC87E2E8 05D2EC49A4F2D8E0

New Key: 817CEF35286F19AA3F86E3BAE22B55E2
final step: F1BEEC15B964E3F2 F63BD72C702EBC7A

MAC-I: F63BD72C
Table 7.3 : f9 test data

Synthesis Results:

1 .Chip: Altera

Family: APEX20KC

Device: EP20K1000CB652C7

Total logic element: 7937/38400(20%)

Total pins: 100/488(27%)

Speed: 32 MHz

Throughput: 217 Mbps

101

Chapter 7 : VLSI Implementation of Cryptographic Algorithms

2. Chip: Xilinx

Family: Spartan3

Device: xc3s1500l-4fg676

No. of slices: 4439/13312(33%)

No. of slices FF: 1847/26624(6%)

4 input LUTs: 8471/26624(31%)

Bonded Tobs: 100/487(20%)

Speed: 50 MHz

Throughput: 339 Mbps

7.6 Implementation of IDEA: The IDEA algorithm was implemented using

ALTERA’s QUARTUS tool for VLSI synthesis. The major blocks implemented are

(i) 16 bit XOR: Bit by Bit exclusive OR
(ii) 16 bit adder: Addition of integers modulo 216 with inputs and outputs treated

as unsigned 16 bit integers
(iii) Modulo 16 multiplier: Multiplication of integers modulo 216 +1 with inputs

and outputs treated as unsigned 16-bit integers .except that a block of all zeros is
treated as representing 216 .

The results for implementation are given below:

Fitter report for ide8rnd
Thu Aug 18 18:59:12 2005
Version 4.1 Build 181 06/29/2004 SJ Full Version
Fitter Summary

Fitter Status Successful - Thu Aug 18 18:59:11 2005
Quartus II Version 4.1 Build 181 06/29/2004 SJ Full Version
Revision Name ide8rnd
Top-level Entity Name ide8rnd
Family APEX20KE
Device EP20K1500EBC652-1
Timing Models Production
Total logic elements 43,249 / 51,840 (83%)
Total pins 257 / 488 (52 %)
Total memory bits 0 / 442,368 (0 %)

102

Chapter 7 : VLSI Implementation of Cryptographic Algorithms

7.7 Simulation Waveforms for KASUMI, f8 and f9: Modelsim simulation

waveforms for timing analysis of KASUMI, f8 and f9 are drawn here. They have

been used to determine latency and throughput for various algorithms.

Figure 7.1(a) Simulation waveforms for f8 (Initial A)
elk

reset

we
0- db

int

0- ob$

1__ ---------- 1 i------------1------------ J 1------

ff iTiTffiTi ffiTfi* ■■■■■■■■■■■■■■■1 Ml
—

D0D27104AEB5DD3C 4CA90599A24719C8 34222BC8F 7039416 4CA90? 99A247190S

l I 1 1 1II11 l 1

59£
1 1 1 1 1 1 1 1 l

ns
11 111 11 11

60C
II 11 1 11 II

ns
1 1 11 11 1 1 1

602
1 1 1 1111 1 1

ns
11 11111 i 1

604
11 1 1 111 1 l

ns
l l 1 1 1 1 1 1 1

60i
11 11111 11

ns
11 i 11ll 11

GOG
II 1 1 111 1 1

ns
1 l 1 1 1 1 1 1 1

61
ll 11111 i l

ns
1605992 ps|

Figure 7.1(b) Simulation waveforms for f8 (Modified A)

Figure 7.1(c) Simulation waveforms for f8 (Plain text stream)

103

Chapter 7 : VLSI Implementation of Cryptographic Algorithms

elk
reset

we
B- db

int
0- obs

I i I i | I I I i i ! i I i l l i I I I l l I I i I i I I I I I i i
1165 ns___________ 1170 ns___________ 1175 ns___________ 1180 ns___________ 1195 ns

Figure 7. 1(d) Simulation waveforms for f8 (Cipher text stream)

Figure 7. 2(a) Simulation waveforms for f9 (Count Fresh)

Figure 7.2(b) Simulation waveforms for f 9 (Message)

104

Chapter 7 : VLSI Implementation of Cryptographic Algorithms

[iiinniiiiiiiiiiniiiiiiiiiiii:

mac IDFDJDCB9 8565A12A C5E6DE... FC676B8E 431399E3 A94BA3D8 EAB9F512 0772F0F4 F55A8731 A165B2D7 F63BD72C

Figure 7. 2(d) Simulation waveforms for f9 (MAC - I)

Figure 7. 3(a) Simulation waveforms for KASUMI (Subkeys)

105

Chapter 7 : VLSI Implementation of Cryptographic Algorithms

elk
reset
we

LI j 1 1 r~

------ |
*---

round kz16------- P ■a■■ ■■■ ■■■■■■■hhMl
k 481014881 ~IFF4T po0

_____ _____
1

1 oooooooooooooooo ■if:2iS5IS(E?MI iriTirmriTiiTiii^M !--------
c 1A.J. 9E8375F36347BCE17 BD14AE3A75657"5F3 [032489D 6756575F3' 20CFB57D9B473373

1 530 ns
1 1

535 ns
1 1 1 1 1 1 1 1

540 ns 545 ns 550 ns 555 ns
[546088 ps|

Figure 7. 3(b) Simulation waveforms for KASUMI (Plain text)

Figure 7.3 (c) Simulation waveforms for KASUMI (Cipher text)

7.8 Throughput :The throughput availability for KASUMI ,f8 and f9 algorithms

are summarized in the following table:

Algorithm Throughput in Mbps

Xilinx Altera

KASUMI 3200 (50 MHz) 2048 (32 MHz)

f8 340 (50 MHz) 218(32 MHz)

f9 339 (50 MHz) 217(32 MHz)

IDEA 2900 (40 MHz)

Table 7.4 : Throughput for KASUMI, f8 and f9 algorithms

106

Chapter 7 : VLSI Implementation of Cryptographic Algorithms

7.9 Estimation of ASIC area: The relative merits and demerits of ASIC, FPGA

and DSP implementations were explored. Before taking up the research work, a

research paper based on software V/s ASIC implementation was studied by us.

This research work was taken up by NOKIA. It was found that ASIC solution

performance suffers from relatively large overhead in inter-process

communication and operating system context switches. The ASIC solution

involves a lot of signaling between the application process and the ASIC driver

process. The software ciphering performed on DSP does not have any of these

overheads because all the processing is done inside the application process.

Software ciphering improves performance for speech traffic ciphering. It also

simplifies the architecture because there is no need for HW-SW interface. It has

also got faster design cycle. If we talk about specific results, software ciphering

on DSP consumes about half of the time used by ASIC for speech traffic. There

is no significant difference for data traffic.

Comparison of <ASIC and FPGA design leads to fallowing facts:
ASIC requires about 108 mm2 for IDEA encryption as against 3200 CLBs

of XC4000 XL FPGA[14].

A rough estimation of area calculation for ASIC design can be done based

on the library attributes and a previously constructed standard library

dimensions. Total combinational area is 7390 units and total (sequential)

non combinationaljarea is 32340 units for IDEA implementation on ASIC. A

unit area is equivalent to physical area covered by 2-input NAND gate.

Depending on the technology that is chosen for fabrication of the device,
| i'

the actual value of the area can be calculated by multiplying the unit area

values with the area covered by a 2-input NAND gate.

7.10 Summary: In this chapter, we have discussed VLSI Implementation of f8,

f9, KASUMI arid IDEA algorithms on Xilinx and Altera synthesis tools. The

throughput availability is very good and is much larger than UMTS chip rate of

3.84 Mcps.

107

