

J

Chapter 6

Pharmacokinetic Study

1 INTRODUCTION:

Reports from the literature indicated the usefulness of radiolabeling techniques for pharmacokinetic and biodistribution studies. The radiolabeled formulations were better traced out in the biological system for their fate rather than conventional tissue extraction followed by instrumental analytical studies. Technetium-99m is a radionuclide of choice because of its unique properties like visualization of coupled complex in organs, sensitivity in detection even in extreme low levels in the organs.

6.2 MATERIALS:-

7

Stannous chloride dihydrate (SnCl₂.2H₂O) was purchased from Sigma Chemical Co.(St. Louis, MO), sodium pertechnetate, separated from molybdenom-99 (99m) by solvent extraction method, was provided by Regional Center for Radiopharmaceutical Division (Northern Region) Board of Radiation and Isotope Technology (BRIT, Delhi, India)

Preparation and characterization of formulations:-

The formulations (solution S, microemulsion ME and mucoadhesive microemulsion MME) of clobazam (CZ) and clopidogrel bisulphate (CS) were prepared as described in section 4.4 and characterized as described in section 4.5. The formulations listed in the Table 5.5 & 5.6 and nasal gel of insulin like growth factor-1 were taken for the biodistribution study.

6.3 RADIOLABELING OF FORMULATIONS AND OPTIMIZATION:-

The formulations were radiolabeled using technetium-99m (^{99m}Tc) by directlabeling method (Eckelman et al 1995; Babbar et al 2000). Radiolabeled technetium in sodium pertechnetate was reduced in the acidic medium in the presence of stannous chloride.

For carrying out the radiolabelling of the formulations, the required volume of formulation was treated with stannous chloride in 0.1Nhydrochloric acid and the pH was adjusted with sodium bicarbonate solution. Sterile sodium per ^{99m}Tc-pertechnetate (35 to 40 mCi/ml) was added with continuous mixing such that the resultant solution has the required radioactivity for the animal studies. The mixture was incubated at 30°C \pm 5°C for 10 minutes. The final required volume was made up with 0.9 %w/v sterile sodium chloride solution.

Generally technetium is reduced in the presence of formulations, which enable the formulations tagged with technetium. In certain case, the previously reduced technetium is used for tagging of the formulations as like in the case of clopidogrel bisulphate formulations.

The radiochemical purity of the formulations was determined using ascending instant thin layer chromatography (TLC). Silica gel-coated fiberglass sheets (Gelman Sciences Inc, Ann Arbor, MI) were used as stationary phase while dual solvent systems consisting of acetone and pyridine: acetic acid: water (3:5:1.5 v/v) were used as mobile phases (Saha1993, Saha 2005). Since the free technetium is having R_f value of nearly 1 in acetone mobile phase, the ratio of radioactivity in the top $1/3^{rd}$ to lower $2/3^{rd}$ of the ITLC plates were used as the index of the percentage labeled. The contaminants redued/ hydrolysed (99m Tc) collectively were called as colloids which were identified by their lower R_f values in pyridine: acetic acid: water (3:5:1.5 v/v) mobile phase.

The effect of incubation time, pH, and stannous chloride concentration on labeling were studied to achieve optimum labeling of the formulations and were tabulated. The in-vitro stability of radiolabeled formulations was evaluated in 0.9%w/v sodium chloride (normal saline) and mice serum by ascending ITLC (Garron et al 1991).

To evaluate stability and bonding strength of the labeled complex, the radio labeld formulations were challenged against various concentrations (1,2,3 and 4mM) of Diethylene Triamine Penta acetic acid (DTPA). Since 99mTc- DTPA complex have higher R_f values in pyridine: acetic acid: water (3:5:1.5 v/v) mobile phase, where the radiolabeled formulations retained at point of application. The effect of different molar concentrations and percent transchelation on radiolabeled formulations was tabulated. The optimized radiolabelled formulations were assessed for *in vitro* stability in normal saline and in mice serum (Theobald 1990). Consequently, the optimized stable radiolabeled formulations were used for *in vivo* studies.

6.4 BIODISTRIBUTION STUDIES:

The Social Justice and Empowerment Committee, Ministry of Government of India, approved all animal experiments were conducted for the purpose of control and supervision on animals and experiments. Balb/c mice (aged 4 to 5 months), weighing between 25 to 40 g were selected for the study. Three mice for each formulation per time point were used in the study. Radiolabeled complex of ^{99m}Tc-formulations was administered (10 µL) in each nostril. The mice were anaesthetized using chloroform inhalation from cholorform soaked cotton. Formulations were instilled into nostrils with the help of micropipette (10 to 100 μ L) attached with low-density polyethylene (LDPE) tubing, having 0.1 mm internal diameter at the delivery site. Similarly, 100 uL of radiolabeled complex of ^{99m}Tc-solution was injected through tail vein of the mice. The animals were killed humanely at different time intervals and the blood collected using cardiac puncture. Subsequently, brain and other tissues (liver, spleen, kidney, stomach and tail) were dissected, washed twice using normal saline, made free from adhering tissue/fluid, and weighed. Radioactivity present in each tissue/organ was measured using shielded well-type gamma scintillation counter. Radiopharmaceutical uptake per gram in each tissue/organ was calculated as a fraction of administered dose using equation:

counts in sample x 100

% Radioactivity /gm of tissue = -----

wt of sample x total counts injected

The pharmacokinetic parameters, like C_{max} , T_{max} , AUC, brain /blood ratio in all time points were calculated. The area under the % radio activity per gram of tissue vs. time curve from zero to 24 hour (AUC) was calculated by standard trapezoidal rule. Terminal elimination rate constant (β) for drug following intranasal and intravenous administration was obtained by linear regression analysis of the terminal log-linear portion of % radio activity per gram of tissue vs. time curve. The corresponding half life of drug was calculated using the relationship 0.693 / β . The 0th time concentration followed by IV route was calculated by interpolation of terminal elimination curve to the Y axis. The nasal bioavailability of the drugs from the formulations was calculated using equation (Zhao Y 2007).

$$\frac{AUC_{IN}}{\text{Masal bioavailability}} = \frac{AUC_{IN}}{AUC_{IV}} \times 100$$

To evaluate the brain targeting efficiency, 2 indices [Drug targeting efficiency (DTE) (%) and direct nose-to-brain transport (DTP) (%)] were adopted as mentioned below. (Jung BH et al 2000, Zhang 2004). Brain targeting efficiency was calculated using two equations mentioned below. Drug targeting efficiency (DTE %) represents time average partitioning ratio.

$$DTE = \frac{AUC_{brain}}{AUC_{blood}}$$

Where, AUC indicates area under the curve.

Brain drug-direct-transport percentage [DTP%] was calculated using equations:

$$B_{IN} - B_X$$
DTP% =----- x 100
$$B_{IN}$$

Where,

$$\mathbf{B}_{\mathbf{X}} = (\mathbf{B}_{\mathbf{IV}}/\mathbf{P}_{\mathbf{IV}}) \times \mathbf{P}_{\mathbf{IN}}$$

 $\mathbf{B}_{\mathbf{X}}$ = Brain AUC fraction contributed by systemic circulation through the bloodbrain-barrier (BBB) following intranasal administration.

 $\mathbf{B}_{\mathbf{IV}} = AUC_{0 \rightarrow 24}$ (brain) following intravenous administration.

 $\mathbf{P}_{\mathbf{IV}} = AUC_{0 \rightarrow 24}$ (blood) following intravenous administration.

 $\mathbf{B_{IN}} = AUC_{0 \rightarrow 24}$ (brain) following intranasal administration.

 $\mathbf{P_{IN}} = AUC_{0 \rightarrow 24}$ (blood) following intranasal administration.

AUC = Area under the curve.

6.5 GAMMA SCINTIGRAPHY IMAGING:-

The NewZealand rabbits (2.0 - 2.5 kg) were selected for the study. The radiolabeled complex of solutions was injected through the ear vein of the rabbits. Similarly, radiolabeled formulations ^{99m}Tc- S, ^{99m}Tc- ME, ^{99m}Tc- MME, ^{99m}Tc- IGF1 Gel were administered (50 µL) in each nostril (Eckelman 1995). The animals were anaesthetized using diazepam subcutaneous injection prior to administration of formulations. The animals were placed on board and images were captured using single positron emission computerized tomography (SPECT, LC 75-005, Diacam,

Siemens AG, Erlanger, Germany) gamma camera (Capala et al.1997; Babbar et al 2000). The scintigraphy images following intravenous and intranasal administration of formulations were shown in Fig.6.1, Fig. 6.2. and Fig. 6.3

6.6. STATISTICAL ANALYSIS:-

All data are reported as mean \pm SD and the difference between the groups were tested using Student's t test at the level of P<0.05.

6.7 RESULTS

6.7.1 CLOBAZAM FORMULATIONS:

Table 6.1 Effect of quantity of SnCl₂ on radiolabeling of clobazam formulations

S.No.	Amount of Stannous Chloride		% Radiolabe	led
	(µgm)	CZ Solution	CZ ME	CZ MME
1.	200	81.62 ± 1.08	86.29 ± 1.53	87.64 ± 2.4
2.	250	92.86 ± 2.41	$.81.87 \pm 0.98$	95.77 ± 1.35
3.	300	90.44 ± 1.32	78.34 ± 1.81	91.65 ± 2.6

Table 6.2 Invitro stability of labeled clobazam formulations

S.	Time		In saline			In serum	
No		CZS	CZ ME	CZMME	CZS	CZ ME	CZMME
1.	½ hr	92.86 ± 2.41	86.29 ± 1.53	95.77 ± 1.35	91.18 ± 1.35	92.56 ± 0.8	97.36 ± 2.4
2.	1 hr	91.42 ± 3.53	89.95 ± 2.17	95.71 ± 1.20	92.36 ± 2.31	94.35 ± 1.1	95.21 ± 1.3
3.	2 _{1/2} hr	90.75 ± 2.62	92.17 ± 1.18	94.78 ± 1.57	91.11 ± 1.41	95.71 ± 1.9	92.8 ± 1.04
4.	4 _{1/2} hr	90.01 ± 1.34	91.67 ± 2.11	94.16 ± 2.03	90.31 ± 0.98	91.25 ± 2.1	93.62 ± 0.9
5.	<u>24 hr</u>	89.14 ± 1.26	90.87 ± 1.98	91.84 ± 1.68	89.87 ± 2.54	90.45 ± 1.4	91.81 ± 1.1

Table 6.3	Effect of l	DTPA on	radiolabelin	g of clobaza	m formula	ations

S.No.	DTPA concentration (mM)		% Transchelat	ion
		CZ Solution	CZ ME	CZ MME
1.	1.0	1.25 ± 0.29	1.18 ± 0.26	1.36 ± 0.81
2.	2.0	2.86 ± 0.35	1.23 ± 0.55	2.19 ± 0.57
3.	3.0	3.44 ± 0.34	2.26 ± 0.81	3.15 ± 0.81
4.	4.0	3.29 ± 0.42	3.49 ± 0.63	3.0 ± 0.14

Table 6.4 Radiolabelling summary of clobazam formulations

S.No.		CZ Solution	CZ ME		CZ MN	ME
1.	Method	Direct labe method	ling Labeling reduced technetium	with	Direct method	labeling
2.	Amount of SnCl ₂ (4mg/ml)	25 0 µgm	200µgm		250µgr	n
3.	pH/ colour of pH paper	pH 6-7 / yellow green	vish pH 6.5 -7		pH 8.5 green	/slightly
4.	Incubation duration	¹ ⁄ ₂ hr	Needs more nearly an ho	-	½ hr	
5.	Labelling efficiency (%)	92.86 ± 2.41	89.95 ± 2.17		95.77 ±	: 1.35

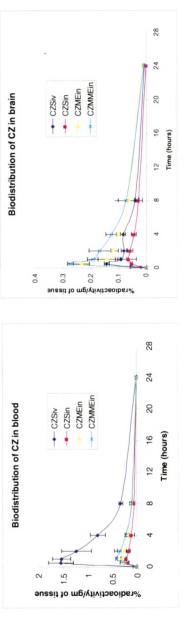
6. Pharmacokinetic study

S.No	Organ/ tissue			Time (hours)	iours)		
		0.5		7	4	~	24
	Blood	1.5 ± 0.45	1.53 ± 0.28	1.23 ± 0.03	0.79 ± 0.18	0.33 ± 0.04	0.01 ± 0.002
	Brain	0.14 ± 0.06	0.09 ± 0.01	0.09 ± 0.05	0.08 ± 0.01	0.04 ± 0.01	0.002 ± 0.002
	Kidney	2.90 ± 0.54	4.12 ± 0.04	4.25 ± 0.08	4.37 ± 0.11	3.81 ± 0.22	0.98 ± 0.01
	Liver	65.32 ± 0.64	64.13 ± 0.32	58.35 ± 1.0	55.94 ± 0.41	37.44 ± 0.62	2.94 ± 0.32
	Spleen	12.07 ± 0.29	46.61 ± 0.65	35.26 ± 0.59	21.80 ± 0.68	10.24 ± 0.15	1.05 ± 0.4
	Stomach	0.55 ± 0.07	0.53 ± 0.08	0.55 ± 0.02	0.56 ± 0.09	0.38 ± 0.11	0.25 ± 0.02

Table 6.6 Tissue/ organ distribution of ^{99m}Tc-CZS in Balb/c mice at predetermined time intervals of post intranasal administration

$S.N_0$	Organ/ tissue			Time (hours)	iours)		
		0.5	1	2	4	8	24
1.	Blood	0.19 ± 0.03	0.21 ± 0.01	0.17 ± 0.04	0.073±0.07	0.053 ± 0.02	0.002 ± 0.001
5.	Brain	0.05 ± 0.002	0.06 ± 0.003	0.058 ± 0.06	0.046 ± 0.01	0.028 ± 0.01	0.001 ± 0.001
Э.	Kidney	0.25 ± 0.09	0.27 ± 0.02	0.25 ± 0.03	0.24 ± 0.01	0.12 ± 0.02	0.002 ± 0.001
4.	Liver	0.45 ± 0.04	0.32 ± 0.03	0.27 ± 0.01	0.23 ± 0.02	0.10 ± 0.01	0.003 ± 0.002
5.	Spleen	0.05 ± 0.03	0.085 ± 0.01	0.12 ± 0.02	0.15 ± 0.017	0.09 ± 0.01	0.002 ± 0.001
6.	Stomach	2.49 ± 0.03	3.46 ± 0.42	3.57 ± 0.22	3.31 ± 0.31	1.24 ± 0.05	0.21 ± 0.02

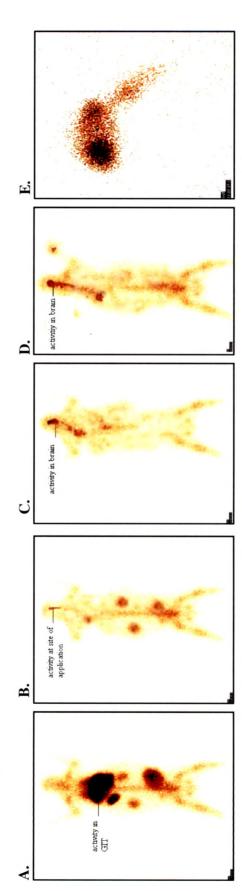
S.No	Organ/ tissue			Time (hours)	ours)		
	•	0.5	Ţ	2	4	¢	24
	Blood	0.26 ± 0.08	0.32 ± 0.09	0.278 ± 0.01	0.19 ± 0.12	0.119 ± 0.02	0.009 ± 0.001
	Brain	0.24 ± 0.17	0.14 ± 0.04	0.12 ± 0.02	0.102 ± 0.02	0.065 ± 0.015	0.013 ± 0.004
	Kidney	1.57 ± 0.37	0.91 ± 0.13	0.58 ± 0.032	0.17 ± 0.11	0.07 ± 0.011	0.002 ± 0.001
	Liver	0.64 ± 0.06	0.73 ± 0.04	0.65 ± 0.017	0.55 ± 0.07	0.35 ± 0.1	0.02 ± 0.0
	Spleen	0.31 ± 0.039	0.33 ± 0.018	0.42 ± 0.02	0.51 ± 0.08	0.41 ± 0.21	0.07 ± 0.01
	Stomach	0.58 ± 0.11	0.78 ± 0.02	0.71 ± 0.03	0.66 ± 0.03	0.45 ± 0.017	0.07 ± 0.02
S.No	Organ/ tissue	•		Time (hours)	ours)		-
		0.5	1	2	4	8	24
	Blood	0.25 ± 0.02	0.42 ± 0.02	0.34 ± 0.12	0.23 ± 0.01	0.11 ± 0.04	0.005 ± 0.001
	Brain	0.28 ± 0.01	0.19 ± 0.11	0.17 ± 0.04	0.13 ± 0.06	0.073 ± 0.03	0.008 ± 0.002
	Kidney	2.60 ± 0.4	1.23 ± 0.019	0.81 ± 0.03	0.54 ± 0.07	0.27 ± 0.04	0.06 ± 0.04
	Liver	1.03 ± 0.2	0.96 ± 0.051	0.75 ± 0.01	0.82 ± 0.04	0.68 ± 0.02	0.12 ± 0.02
	Spleen	0.28 ± 0.013	0.32 ± 0.036	0.44 ± 0.012	0.54 ± 0.04	0.28 ± 0.08	0.02 ± 0.001
	Stomach	0.48 ± 0.72	0.89 ± 0.074	0.68 ± 0.12	0.45 ± 0.05	0.35 ± 0.11	0.06 ± 0.01


----i

2
2
-
+
stud
0
-
9
2
~
0
9
0
2
2
~
-
-
0
~
-
Pharmacokinetic.
-
0
0

time	
t predetermined	
at	
mice*	
BALB/c	
, iii	
99mTc-CZMME _{IN}	
ź	
99mTc-CZME	
^{99m} Tc-CZS _{IN} ,	
^{99m} Tc-CZS _{IV} ,	
\mathbf{of}	
Distribution	
6.9	0
Table	interve

Intervals							
Formulation	Organ/Tissue	0.5hr	1.0hr	2.0hr	4.0hr	8.0hr	24hr
CZS _{IV}	Blood	1.543 ± 0.45	1.5315 ± 0.28	1.2306 ± 0.3	0.7947 ± 0.18	0.3312 ± 0.04	0.01 ± 0.002
	Brain	0.1439 ± 0.06	0.0920 ± 0.01	0.0818 ± 0.02	0.0846 ± 0.01	0.0403 ± 0.01	0.002 ± 0.002
CZS _{IN}	Blood	0.1982 ± 0.03	0.2138 ± 0.01	0.1751 ± 0.04	0.1173 ± 0.07	0.0727 ± 0.02	0.002 ± 0.001
	Brain	0.0532 ± 0.02	0.066 ± 0.003	0.0584 ± 0.06	0.0458 ± 0.01	0.0282 ± 0.01	0.001 ± 0.001
CZME IN	Blood	0.2539 ± 0.08	0.3192 ± 0.09	0.2763 ± 0.01	0.1946 ± 0.12	0.1192 ± 0.02	0.009 ± 0.001
	Brain	0.2361 ± 0.17	0.1437 ± 0.04	0.1219 ± 0.02	0.1015 ± 0.02	0.065 ± 0.015	0.013 ± 0.004
CZMME _{IN}	Blood	0.2439 ± 0.02	0.4161 ± 0.02	0.3417 ± 0.12	0.2303 ± 0.01	0.1047 ± 0.04	0.005 ± 0.001
	Brain	0.2750 ± 0.01	0.1944 ± 0.11	0.1689 ± 0.04	0.1274 ± 0.06	0.0725 ± 0.03	0.008 ± 0.002
CZS _{IV}	Brain/ Blood	0.0933	0.0601	0.0664	0.1064	0.1217	0.21
CZS _{IN}	Brain/ Blood	0.2688	0.3087	0.3337	0.3905	0.3878	0.5
CZME IN	Brain/ Blood	0.9298	0.4505	0.4414	0.5215	0.5453	1.4518
CZMME _{IN}	Brain/ Blood	1.1277	0.4674	0.4944	0.5532	0.6927	1.7002
*Mice were ac	*Mice were administered with the radiolabeled complex of ^{99m} Tc- CZS, ^{99m} Tc- CZME, ^{99m} Tc- CZMME (20 µCi / 10 µL) containing 6-10µg	diolabeled complex	of ^{99m} Tc- CZS,	^{99m} Tc- CZME, ^{99m} T	c- CZMME (20 j	LCi / 10 μL) cont	aining 6-10µg
clobazam (equ	clobazam (equivalent to 0.4mg/ kg BW)	W)					



r ormui ation	Organ /Tissue	C _{max} (% radio activity/g) [†]	T _{max} (hours)	AUC _{0→24hrs} (hours×%	β(terminal) (hours ⁻¹)	T _{1/2} (hours)	Nasal bioavaila
				radioactivity/ g)			bility (%)
CZS _{IV}	Blood	1.9058*		8.5624	0.2185	3.1708	
	Brain	0.144 ± 0.22	0.5	0.5252	0.1847	3.7520	
CZS _{IN}	Blood	0.214 ± 0.04	1.0	0.9041	0.2056	3.3696	10.55
	Brain	0.066 ± 0.08	1.0	0.2711	0.1962	3.5318	51.62
CZME _N	Blood	0.319 ± 0.07	1.0	1.2844	0.1532	4.5249	15.00
	Brain	$0.236\pm 0.19^{\$}$	0.5	0.8347	0.1062	6.5273	158.93
CZMME _{IN}	Blood	0.416 ± 0.02	1.0	1.4711	0.1971	35153	17.18
	Brain	$0.275 \pm 0.05^{\ddagger}$	0.5	1.0311	0.1453	4.7688	196.32
at 0 th time was cale nificantly higher fre	culated by extr om correspond	C_{max} at 0 th time was calculated by extrapolation of terminal linear portion till zero time. [†] Each value is the mean \pm SD (n = 3) [§] Significantly higher from corresponding value for CZME _{IN}	near portion ti id CZS _{IN} [‡] Sig	ill zero time. [†] Each v nificantly higher fro	alue is the mea m correspondir	$n \pm SD (n = 3)$ ng value for 0	3) CZME _{IN}
le 6.11 Brain targ c-CZME and ^{99m} T	eting efficienc [c-ZMME	Table 6.11 Brain targeting efficiency and Direct nose to brain transport percentage following intranasal administration of ^{99m} Tc-CZME and ^{99m} Tc-ZMME	brain transpo	ort percentage follo	wing intranasa	al administra	ation of ^{99m} Tc-CZS,
Formulation	Rou	Route of administration	Brain	Brain targeting efficiency (DTE (%))	DTE	Direct nose pe (D	Direct nose to brain transport percentage (DTP (%))
CZS		Intranasal		29.9856		2	79.5442
CZME		Intranasal		64.9875		6	90.5674

6. Pharmacokinetic study

Figure 6.1 Gamma scintigraphy images of rabbits following A.^{99m}Tc- CZS _{IV}; B. ^{99m}Tc- CZS _{IN}; C. ^{99m}Tc- CZME _{IN}; D. ^{99m}Tc-CZMME_{IN} (100 μCi / 100 μL) & E.^{99m}Tc- CZMME_{IN} (Lateral view)

194

6.7.2 CLOPIDOGREL BISULPHATE FORMULATIONS

Table 6.12 Effect of quantity of SnCl₂ on radiolabeling of clopidogrel bisulphate formulations

21.4

S.No.	Amount of Stannous Chloride (µgm)		% Radiolabele	d
		CS Solution	CS ME	CS MME
1.	100	75.25 ± 1.21	90.18 ± 1.17	87.36 ± 1.14
2.	200	88.86 ± 2.35	95.23 ± 0.95	93.79 ± 1.87
3.	300	85.44 ± 1.34	87.26 ± 2.07	90.25 ± 1.81

Table 6.13 In vitro stability of labeled complex (%) of clopidogrel bisulphate formulations

Time		In saline			In serum	
	CSS	CS ME	CSMME	CSS	CS ME	CSMME
½ hr	86.86 ± 2.5	95.23 ± 0.9	93.79 ± 1.8	91.18 ± 1.3	92.36 ± 0.8	92.5 ± 0.4
1½ hr	97.76 ± 1.1	96.75 ± 2.1	95.76 ± 1.5	96.25 ± 1.5	94.21 ± 1.9	91.81 ± 0.8
3 hr	95.78 ± 1.5	95.79 ± 0.8	95.37 ± 1.4	96.27 ± 1.4	95.21. ± 1.2	92.35 ± 1.2
5 hr	94.06 ± 0.9	94.27 ± 2.7	94.78 ± 1.8	92.64 ± 2.0	91.37 ± 1.3	93.11 ± 1.8
24 hr	92.55 ± 3.1	90.16 ± 1.8	93.08 ± 2.1	$\textbf{88.29} \pm \textbf{1.1}$	90.17 ± 0.4	$90.85\pm~0.6$
	1½ hr 1½ hr 3 hr 5 hr	CSS $\frac{1}{2}$ hr 86.86 ± 2.5 $\frac{1}{2}$ 97.76 ± 1.1 hr 95.78 ± 1.5 5 hr 94.06 ± 0.9	CSSCS ME $\frac{1}{2}$ hr 86.86 ± 2.5 95.23 ± 0.9 $\frac{1}{2}$ 97.76 ± 1.1 96.75 ± 2.1 hr 95.78 ± 1.5 95.79 ± 0.8 5 hr 94.06 ± 0.9 94.27 ± 2.7	CSSCS MECSMME $\frac{1}{2}$ hr 86.86 ± 2.5 95.23 ± 0.9 93.79 ± 1.8 $\frac{1}{2}$ 97.76 ± 1.1 96.75 ± 2.1 95.76 ± 1.5 hr 3 hr 95.78 ± 1.5 95.79 ± 0.8 95.37 ± 1.4 5 hr 94.06 ± 0.9 94.27 ± 2.7 94.78 ± 1.8	CSSCS MECSMMECSS $\frac{1}{2}$ hr 86.86 ± 2.5 95.23 ± 0.9 93.79 ± 1.8 91.18 ± 1.3 $\frac{1}{2}$ 97.76 ± 1.1 96.75 ± 2.1 95.76 ± 1.5 96.25 ± 1.5 hr 95.78 ± 1.5 95.79 ± 0.8 95.37 ± 1.4 96.27 ± 1.4 5 hr 94.06 ± 0.9 94.27 ± 2.7 94.78 ± 1.8 92.64 ± 2.0	CSSCS MECSMMECSSCS ME $\frac{1}{2}$ hr 86.86 ± 2.5 95.23 ± 0.9 93.79 ± 1.8 91.18 ± 1.3 92.36 ± 0.8 $\frac{1}{2}$ hr 97.76 ± 1.1 96.75 ± 2.1 95.76 ± 1.5 96.25 ± 1.5 94.21 ± 1.9 hr 95.78 ± 1.5 95.79 ± 0.8 95.37 ± 1.4 96.27 ± 1.4 $95.21. \pm 1.2$ 5 hr 94.06 ± 0.9 94.27 ± 2.7 94.78 ± 1.8 92.64 ± 2.0 91.37 ± 1.3

Table 6.14 Effect of DTPA on radiolabeling of clopidogrel bisulphate formulations

S.No.	DTPA concentration	9/	6 Radiolabeled	
	(mM)	CS Solution	CS ME	CS MME
1.	1.0	0.95 ± 0.14	1.03 ± 0.21	1.06 ± 0.32
2.	2.0	1.98 ± 0.65	1.58 ± 0.23	2.01 ± 0.17
3.	3.0	2.56 ± 0.31	2.18 ± 0.72	2.15 ± 0.09
4.	4.0	2.3 ± 0.22	2.49 ± 0.62	2.5 ± 0.19

Table 6.15 Radiolabelling summary of clopidogrel bisulphate formulations

S.No.		CS Solution	CS ME	CS MME
1.	Method	Reduced method	Reduced method	Reduced method
2.	Amount of SnCl ₂ (4mg/ml)	200µgm	200µgm	200µgm
3.	pH/ colour of pH paper	рН 6 - 7	рН 6.5	pH 6.5
4.	Incubation duration	Needs more time, nearly an hour	½ hr	½ hr
5.	Labelling efficiency (%)	97.76 ± 1.05	95.23 ± 0.95	93.79 ± 1.87

study
<i>anetic</i>
macol
Phar
Ó.

Table 6.16 Tissue/ organ distribution of ^{99m}Tc-CSS in Balb/c mice at predetermined time intervals of post intra -venous administration

S.No	Organ/ tissue			Time (hours)	hours)		
		0.5	1	2	4	×	24
1.	Blood	0.61 ± 0.02	0.59 ± 0.04	0.50 ± 0.02	0.37 ± 0.02	0.20 ± 0.04	0.0171 ± 0.002
5.	Brain	0.076 ± 0.006	0.19 ± 0.012	0.15 ± 0.002	0.093 ± 0.003	0.036 ± 0.01	0.004 ± 0.002
3.	Kidney	10.60 ± 0.6	9.58 ± 1.0	7.48 ± 0.4	4.52 ± 0.85	$2.31 \pm 0.0.55$	0.52 ± 0.15
4.	Liver	33.37 ± 2.1	28.36 ± 2.9	15.33 ± 3.1	10.28 ± 1.5	7.48 ±1.25	1.03 ± 0.45
5.	Spleen	15.47 ± 2.3	10.21 ± 3.4	8.17 ±1.3	4.11 ± 0.5	3.93 ± 0.35	0.75 ± 0.11
6.	Stomach	0.98 ± 0.2	0.65 ± 0.015	0.53 ± 0.02	0.25 ± 0.01	0.12 ±0.05	0.05 ± 0.01

Table 6.17 Tissue/ organ distribution of ^{99m}Tc-CSS in Balb/c mice at predetermined time intervals of post intranasal administration

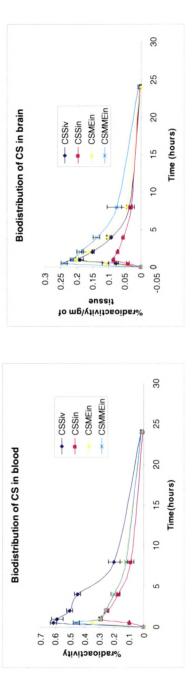
ξi

S.No	Organ/ tissue			Time (hours)	ours)		
		0.5	1	2	4	8	24
Ι.	Blood	0.096 ± 0.002	0.29 ± 0.011	0.244 ± 0.004	0.172 ± 0.01	0.085 ± 0.02	0.005 ± 0.001
5.	Brain	0.039 ± 0.005	0.083 ± 0.002	0.0712 ± 0.001	0.0533 ± 0.001	0.029 ± 0.01	0.002 ± 0.001
3.	Kidney	0.127 ± 0.011	0.151 ± 0.12	0.172 ± 0.013	0.190 ± 0.04	0.151 ± 0.03	0.011 ± 0.002
4.	Liver	0.149 ± 0.03	0.112 ± 0.05	0.10 ± 0.02	0.082 ± 0.022	0.059 ± 0.02	0.006 ± 0.001
5.	Spleen	0.046 ± 0.002	0.087 ± 0.006	0.081 ± 0.001	0.073 ± 0.061	0.053 ± 0.01	0.003 ± 0.001
6.	Stomach	0.838 ± 0.06	0.63 ± 0.012	0.671 ± 0.02	0.539 ± 0.014	0.567 ± 0.1	0.042 ± 0.01

							1
Table	Table 6.18 Tissue/ organ distribution		f ^{99m} Te-CSME i	n Balb/c mice at	t predetermined	of ^{99m} Tc-CSME in Balb/c mice at predetermined time intervals of post intranasal	post intranasal
admin	administration						
S.No	Organ/			Time (hours)	hours)		
	tissue	0.5	Ţ	2	4	8	24
	Blood	0.35±0.05	0.296 ± 0.021	0.262 ± 0.03	0.206 ± 0.02	0.127 ± 0.02	0.018 ± 0.001
2.	Brain	0.11 ± 0.01	0.204 ± 0.01	0.164 ± 0.02	0.106 ± 0.001	0.044 ± 0.015	0.0043 ± 0.004
'n	Kidney	0.21 ± 0.03	0.25 ± 0.02	0.32 ± 0.02	0.28 ± 0.017	0.161 ± 0.03	0.021 ± 0.01
4	Liver	0.76 ± 0.08	0.63 ± 0.1	0.42 ± 0.07	0.33 ± 0.05	0.28 ± 0.017	0.11 ± 0.02
5.	Spleen	0.47 ± 0.02	0.94 ± 0.03	0.71 ± 0.034	0.51 ± 0.1	0.33 ± 0.02	0.12 ± 0.01
6.	Stomach	0.35 ± 0.2	0.16 ± 0.003	0.098 ± 0.02	0.076 ± 0.014	0.038 ± 0.01	0.002 ± 0.001
Table	Table 6.19 Tissue/ organ distribution o	n distribution of	^{99m} Tc-CSMIME	in Balb/c mice at	t predetermined	of ^{99m} Tc-CSMME in Balb/c mice at predetermined time intervals of post	post intranasal
admini	administration						4
S.No	Organ/ tissue			Time (Time (hours)		
		0.5	1	2	4	8	24
-	Blood	0.45 ± 0.02	0.296 ± 0.01	0.261 ± 0.005	0.202 ± 0.02	0.121 ± 0.04	0.016 ± 0.001
6	Brain	0.22 ± 0.01	0.194 ± 0.006	0.153 ± 0.01	0.096 ± 0.01	0.075 ± 0.03	0.006 ± 0.002
Э.	Kidney	0.17 ± 0.014	0.197 ± 0.02	0.21 ± 0.021	0.18 ± 0.022	0.11 ± 0.01	0.06 ± 0.01
4.	Liver	0.53 ± 0.002	0.99 ± 0.024	0.71 ±0.031	0.68 ± 0.028	0.46 ± 0.02	0.24 ± 0.02
5.	Spleen	0.21 ± 0.01	0.16 ± 0.005	0.142 ± 0.04	0.138 ± 0.02	0.112 ± 0.31	0.55 ± 0.2
6.	Stomach	0.68 ± 0.2	0.57 ± 0.11	0.372 ± 0.23	0.247 ± 0.41	0.134 ± 0.031	0.08 ± 0.011

197

6. Pharmacokinetic study

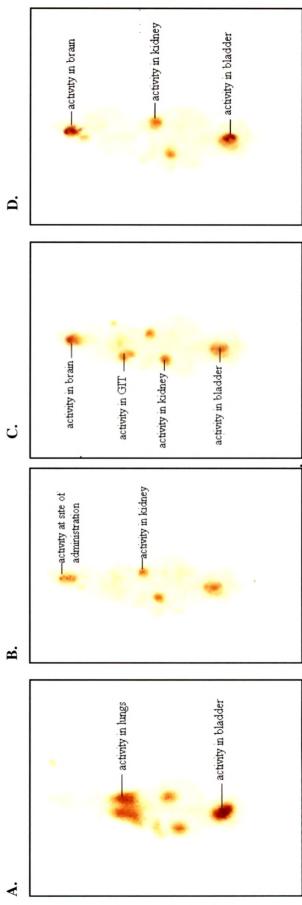

6. Pharmacokinetic study

- State

white we will a

Table 6.20 D intervals	Table 6.20 Distribution of 99m Tc-CSS _{IV} , intervals	Ce-CSS _{IV} , ^{99m} Tc-(CSS _{IN} , ^{99m} Tc-CS	ME _{IN} , ^{99m} Tc-CS	SMME _{IN} in BALI	3/c mice* at pre	99m Tc-CSS _{IN} , 99m Tc-CSME _{IN} , 99m Tc-CSMME _{IN} in BALB/c mice [*] at predetermined time
Formulation	Organ/Tissue	0.5hr	1.0hr	2.0hr	4.0hr	8.0hr	24hr
CSS _{IV}	Blood	0.6136 ± 0.02	0.5873 ± 0.04	0.5036 ± 0.02	0.4702 ± 0.02	0.2001 ± 0.04	0.0171 ± 0.002
	Brain	0.0760 ± 0.006	0.1904 ± 0.012	0.1498 ± 0.002	0.0926 ± 0.003	0.0355 ± 0.01	0.0036 ± 0.002
CSS _{IN}	Blood	0.0960 ± 0.002	0.2904 ± 0.011	0.2437 ± 0.004	0.1716 ± 0.01	0.0852 ± 0.02	0.0052 ± 0.001
	Brain	0.0392 ± 0.005	0.0834 ± 0.002	0.0718 ± 0.001	0.0533 ± 0.001	0.0294 ± 0.01	0.0015 ± 0.001
CSME IN	Blood	0.3537 ± 0.001	0.2959 ± 0.021	0.2622 ± 0.03	0.2059 ± 0.02	0.1269 ± 0.02	0.0184 ± 0.001
	Brain	0.1099 ± 0.01	0.2041 ± 0.01	0.1693 ± 0.02	0.1059 ± 0.001	0.044 ± 0.015	0.0043 ± 0.002
CSMME _{IN}	Blood	0.4572 ± 0.02	0.2959 ± 0.01	0.2606 ± 0.005	0.2019 ± 0.02	0.1214 ± 0.04	0.0158 ± 0.001
	Brain	0.2397 ± 0.01	0.2144 ± 0.006	0.1889 ± 0.01	0.1379 ± 0.01	0.0745 ± 0.03	0.0063 ± 0.002
CSS _{IV}	Brain/ Blood	0.1239	0.3247	0.2975	0.1970	0.1772	0.210
CSSIN	Brain/ Blood	0.4086	0.2873	0.2948	0.3107	0.3446	0.2885
CSME IN	Brain/ Blood	0.3107	0.6896	0.6255	0.5147	0.3484	0.2337
CSMME _{IN}	Brain/ Blood	0.5242	0.7246	0.7250	0.6829	0.6133	0.4006
*Mice were a	*Mice were administered with the radiolabeled complex of ^{99m} Tc- CSS, ^{99m} Tc- CSME, ^{99m} Tc- CSME (20 µCi / 10 µL) containing 8-	he radiolabeled co	omplex of 99mTc-	CSS, ^{99m} Tc- CSI	ME, ^{99m} Tc- CSMN	4E (20 μCi / 10	μL) containing 8-
13µg clopido	13µg clopidogrel bisulphate (equivalent to 0.52mg/ kg BW)	iivalent to 0.52mg	(/ kg BW)				

Graph 6.2 Blood, Brain concentration versus time plot following administration of 99^m Tc-CS formulations


6. Pharmacokinetic study

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Organ /Tissue	C _{max} (% radio activity/g) [†]	T _{max} (hours)	AUC 0-24 hrs(hours × %radioactivity/ g)	β(terminal) (hours ⁻¹)	T _{1/2} (hours)	Nasal bioavaila bility (%)
Brain 0.191± 0.012 0.5 0.5908 0.1568 Blood 0.29 ± 0.011 1.0 0.8882 0.1753 Brain 0.083 ± 0.002 1.0 0.8882 0.1783 Brain 0.083 ± 0.002 1.0 0.2821 0.1783 Brain 0.0354 ± 0.001 1.0 1.4456 0.1209 Brain $0.2397\pm 0.01^{\$}$ 0.5 0.6958 0.1261 E _{IN} Blood $0.2397\pm 0.01^{\$}$ 0.5 0.6958 0.1274 Brain $0.2397\pm 0.01^{\$}$ 0.5 1.0062 0.1274 Brain $0.2397\pm 0.01^{\$}$ 0.5 1.0062 0.1274 Brain $0.2397\pm 0.01^{\$}$ 0.5 1.0662 0.1274 Brain $0.2397\pm 0.01^{\$}$ 0.5 1.0662 0.1274 Brain $0.2397\pm 0.01^{\$}$ 0.5 1.0662 0.1274 Brain $0.22307\pm 0.01^{\$}$ 0.5 1.0662 0.1561 Brain 0.521 Brain targetin	CSS _{IV}	Blood	0.8502*		3.5443	0.1624	4.2682	10 10
Blood 0.29 ± 0.011 1.0 0.8882 0.1753 3.9542 25.03 Brain 0.083 ± 0.002 1.0 0.2821 0.1733 3.878 47.74 Brain 0.083 ± 0.002 1.0 1.4456 0.1209 5.7317 40.75 Brain 0.204 ± 0.01^4 0.5 0.6958 0.1261 4.4382 117.7 En Blood 0.354 ± 0.01^4 0.5 1.0622 0.1274 5.4414 46.51 En Blood 0.457 ± 0.02 1.0 1.6488 0.1274 5.4414 46.51 En Blood 0.2397 ± 0.01^{4} 0.5 1.0062 0.1574 5.4414 46.51 En 0.2397 ± 0.01^{4} 0.5 1.0062 0.1574 5.4414 46.51 eantly higher from corresponding values for CSS _N $^{4}{5}$ Significantly higher from corresponding value for CSME _N 5.0160 0.1541 2.4979 170.3 6.22 Brain targeting efficiency and Direct nose to brain transport percentage following intranasal ad		Brain	0.191 ± 0.012	0.5	0.5908	0.1568	4.4187	ł
02 1.0 0.2821 0.1783 3.8878 47.7 01 1.0 1.4456 0.1209 5.7317 40.75 01 1.0 1.4456 0.1561 4.4382 117.7 02 1.0 1.6488 0.1541 4.651 17.0 02 1.0 1.6488 0.1541 4.4979 170.3 01 [‡] 0.5 1.0062 0.1541 4.4979 170.3 01 [‡] 0.5 1.0062 0.1541 4.4979 170.3 of terminal linear portion till zero time. [†] Each value is the mean \pm SD (n = 3) 170.3 170.3 or CSS _{IN} ⁴ Significantly higher from corresponding value for CSME _{IN} * 170.3 or CSS _{IN} ⁴ Significantly bigher from corresponding value for CSME _{IN} * 31.0.3 or CSS _{IN} ⁴ Significantly bigher from corresponding value for CSME _{IN} * 31.0.3 or CSS _{IN} ⁴ Significantly migher from corresponding value for CSME _{IN} * 4.4372 or CSS _{IN} ⁴ Significantly migher from corresponding value for CSME _{IN} * 4.4372 or to bra	CSSIN	Blood	0.29 ± 0.011	1.0	0.8882	0.1753	3.9542	25.0599
01 1.0 1.4456 0.1209 5.7317 40.78 $01^{\$}$ 0.5 0.6958 0.1561 4.4382 117.7 02 1.0 1.6488 0.1274 5.4414 46.51 02 1.0 1.6488 0.1274 5.4414 46.51 02 1.0 1.6488 0.1274 5.4414 46.51 01^{\ddagger} 0.5 1.0062 0.1541 4.4979 170.3 of terminal linear portion till zero time. [†] Each value is the mean \pm SD (n = 3) 5 5 5 5 of terminal linear portion till zero time. [†] Each value is the mean \pm SD (n = 3) 7 5 </td <td></td> <td>Brain</td> <td>0.083 ± 0.002</td> <td>1.0</td> <td>0.2821</td> <td>0.1783</td> <td>3.8878</td> <td>47.7488</td>		Brain	0.083 ± 0.002	1.0	0.2821	0.1783	3.8878	47.7488
$11^{\$}$ 0.5 0.6958 0.1561 4.4382 117.7 02 1.0 1.6488 0.1274 5.4414 46.51 0.2 1.0 1.6488 0.1274 5.4414 46.51 01^{\ddagger} 0.5 1.0062 0.1541 4.4979 170.3 01^{\ddagger} 0.541 4.4979 170.3 170.3 01^{\ddagger} 0.5 170.3 170.3 170.3 01^{\ddagger} 0.541 170.3 170.3 170.3 01^{\ddagger} 0.541 170.3 170.3 175245 01^{\dagger} 0.10262	CSME IN	Blood	0.354± 0.001	1.0	1.4456	0.1209	5.7317	40.7866
021.01.64880.12745.441446.51 0.1^{\ddagger} 0.51.00620.15414.4979170.3of terminal linear portion till zero time. [†] Each value is the mean \pm SD (n = 3)or CSS _{IV} and CSS _{IN} [‡] Significantly higher from corresponding value for CSME _{IN} or CSS _{IV} and CSS _{IN} [‡] Significantly higher from corresponding value for CSME _{IN} or CSS _{IV} and CSS _{IN} [‡] Significantly higher from corresponding value for CSME _{IN} or CSS _{IV} and CSS _{IN} [‡] Significantly higher from corresponding value for CSME _{IN} or CSS _{IV} and CSS _{IN} [‡] Significantly higher from corresponding value for CSME _{IN} or CSS _{IV} and CSS _{IN} [‡] Significantly higher from corresponding value for CSME _{IN} or CSS _{IV} and CSS _{IN} [‡] Significantly higher from corresponding value for CSME _{IN} or CSS _{IV} and CSS _{IV} [‡] Significantly higher from corresponding value for CSME _{IN} cf nose to brain transport percentage following intranasal administration of DTE(%)ntranasal31.7609ntranasal47.5245ntranasal65.3725ntranasal61.0262		Brain	$0.204\pm 0.01^{\$}$	0.5	0.6958	0.1561	4.4382	117.7725
01^{4} 0.5 1.0062 0.1541 4.4979 170.3 of terminal linear portion till zero time. [†] Each value is the mean \pm SD (n = 3)or CSS _{IV} and CSS _{IN} ⁴ Significantly higher from corresponding value for CSME _{IN} or CSS _{IV} and CSS _{IN} ⁴ Significantly higher from corresponding value for CSME _{IN} or CSS _{IV} and CSS _{IN} ⁴ Significantly higher from corresponding value for CSME _{IN} or CSS _{IV} and CSS _{IN} ⁴ Significantly higher from corresponding value for CSME _{IN} or CSS _{IV} and CSS _{IV} ⁴ Significantly higher from corresponding value for CSME _{IN} or CSS _{IV} and CSS _{IN} ⁴ Significantly higher from corresponding value for CSME _{IN} or CSS _{IV} and CSS _{IN} ⁴ Significantly higher from corresponding value for CSME _{IN} or CSS _{IV} and CSS _{IV} ⁴ Significantly higher from corresponding value for CSME _{IN} or CSS _{IV} and CSS _{IV} ⁴ Significantly higher from corresponding value for CSME _{IN} or CSS _{IV} and CSS _{IV} ⁴ Significantly higher from corresponding value for CSME _{IN} or transal31.7609or transal47.5245or transal61.0262or transal72.6893	CSMME _{IN}	Blood	0.457 ± 0.02	1.0	1.6488	0.1274	5.4414	46.5198
of terminal linear portion till zero time. [†] Each value is the mean ± SD (n = 3) or CSS _{IV} and CSS _{IN} [‡] Significantly higher from corresponding value for CSME _{IN} et nose to brain transport percentage following intranasal administration of administration Brain targeting efficiency Direct nose to brain (DTE(%)) percentage (DT ntranasal 31.7609 47.5245 intranasal 61.0262 72.6893		Brain	$0.2397 \pm 0.01^{\ddagger}$	0.5	1.0062	0.1541	4.4979	170.3114
	* C _{max} at 0 th time [§] Significantly hi _§	: was calculated by gher from correspo	extrapolation of termin nding values for CSS _{IV}	nal linear port , and CSS _{IN} ⁴ 5	ion till zero time. [†] Eacl Significantly higher fro	h value is the mea m corresponding	m ± SD (n = g value for C9	
Route of administrationBrain targeting efficiency (DTE(%))Intranasal31.7609Intranasal48.1323Intranasal61.0262	Table 6.22 Brai ^{99m} Tc-CSME an	n targeting efficie d ^{99m} Tc-CSMME	ncy and Direct nose 1	to brain tran	sport percentage follo	owing intranasal	l administra	
Intranasal 31.7609 Intranasal 48.1323 Intranasal 61.0262	Form	ulation	Route of admin	istration	Brain targeting (DTE(%	efficiency ()	Direct nose percent	to brain transport age (DTP(%))
Intranasal 48.1323 Intranasal 61.0262	Ū	SS	Intranasa		31.7605	(7	47.5245
Intranasal 61.0262	CS	ME	· Intranasa		48.1323	~	Ŭ	65.3725
	CSN	AME	Intranasa	_	61.0262	~		72.6893

199

۰. .-

Figure 6.2 Gamma scintigraphy images of rabbits following A.^{99m}Tc- CSS IV; B. ^{99m}Tc- CSS IN; C. ^{99m}Tc- CSME IN; D. ^{99m}Tc- CSMME_{IN} $(100 \ \mu Ci / 100 \ \mu L)$

6.7.3 INSULIN LIKE GROWTH FACTOR-1 FORMULATIONS

Table 6.23 Effect of quantity of SnCl₂ on radiolabeling of insulin like growth factor1

S.No.	Amount of Stannous Chloride (µgm)	IGF 1 Solution	onivers'
1.	100	95.49 ± 2.18	
2.	200	82.65 ± 2.1	
3.	300	90.69 ± 1.52	

S.No.	рН	IGF 1 Solution	
1.	3	89.73 ± 2.17	
2.	5	78.10 ± 2.34	
3.	6.2-6.5	92.07 ± 1.56	
4.	7.5	19.49 ± 2.35	

Table 6.25 In vitro stability of labeled complex (%) of Insulin like growth factor 1

S.	Time (hou	r)	In saliı	ne	In se	erum
No	Solution	Gel	Solution	Gel	Solution	Gel
1.	1 hr	1/2 hr	92.48 ± 1.3	90.21 ± 1.2	94.21 ± 1.98	88.29 ± 1.87
2.	1 _{1/2} hr	1 hr	99.52 ± 2.3	93.22 ± 1.0	96.27 ± 1.37	93.86 ± 2.35
3.	2 _{1/2} hr	2 hr	99.0 ± 1.5	91.24 ± 1.1	95.27 ± 2.7	92.35 ± 1.37
4.	3 _{1/2} hr	3 hr	98.17 ± 0.89	91.82 ± 0.98	95.84 ± 1.68	91.01 ± 0.98
5.	4 _{1/2} hr	4 hr	95.36 ± 0.87	90.41 ± 2.0	92.79 ± 0.78	89.9 ± 1.25
6.	24	23 _{1/2} hr	91.11 ± 1.24	87.25 ± 1.4	86.75 ± 2.62	88.26 ± 0.93

Table 6.26 Effect of DTPA on radiolabeling of IGF-1formulations

S.No.	DTPA concentration	%	Radiolabeled	
	(mM)	IGF-1 Solution	IGF-1 gel	
1.	1.0	0.5 ± 0.2	0.93 ± 0.1	
2.	2.0	2.11 ± 0.5	2.81 ± 0.3	
3.	3.0	2.43 ± 0.4	3.11 ± 0.4	
4.	4.0	$2.48\ \pm 0.2$	2.37 ± 0.5	

Table 6.27 Radiolabelling summary of Insulin like growth factor 1 formulations

S.No.		IGF 1 Solution	IGF 1 Gel
1.	Method	Direct method	
2.	Amount of SnCl ₂ (10mg/ml)	100µgm	
3.	pH/ colour of pH paper	рН 6.2 – 6.5	
4.	Incubation duration	1/2 hr	1⁄2 hr
5.	Labelling efficiency (%)	92.48 ± 1.3	90.21 ± 1.2

Table admini	Table 6.28 Tissue/ organ administration	Table 6.28 Tissue/ organ distribution of ^{99m} Tc-IGF 1 Solution in Balb/c mice at predetermined time intervals of post administration	-IGF 1 Solution i	n Balb/c mice at	predetermined tir	ne intervals of po	st intravenous
S.No	Organ / tissue	0.5hr	1.0hr	2.0hr	4.0hr	8.0hr	24hr
1.	Blood	0.359 ±0.05	0.282 ± 0.02	0.247 ± 0.04	0.1903±0.01	0.1429 ± 0.03	0.0439 ± 0.008
5.	Brain	0.043 ± 0.01	0.048 ± 0.002	0.045 ± 0.015	0.034 ± 0.001	0.022 ± 0.001	0.0035 ± 0.001
ю.	Kidney	1.65 ± 0.3	1.45 ± 0.02	1.137 ± 0.4	0.92 ± 0.02	0.521 ± 0.2	0.24 ± 0.01
4.	Liver	25.48 ±1.8	19.56±1.1	17.04 ± 1.2	10.52 ± 0.85	8.612±0.6	1.06 ± 0.2
<i>5</i> .	Spleen	9.085±0.2	7.95±0.25	6.67±0.51	2.48±0.45	1.12 ± 0.11	0.35 ± 0.01
<u>.</u>	Stomach	0.44 ± 0.024	0.40 ± 0.02	0.41 ± 0.014	0.32 ± 0.009	0.25 ± 0.01	0.011 ± 0.007
	Table 6.29 Tissue/	Table 6.29 Tissue/ organ distribution of ^{99m} Tc-IGF 1 Solution in Balb/c mice at predetermined time intervals of post	^{9m} Tc-IGF 1 Solutio	n in Balb/c mice a	t predetermined ti	me intervals of po	st
	intra	intranasal administration			ı	4	
S.No	Organ / tissue	0.5hr	1.0hr	2.0hr	4.0hr	8.0hr	24hr
1.	Blood	0.119 ± 0.011	0.162 ±0.02	0.143±0.01	0.109±0.005	0.091±0.01	0.0178 ±0.002
5	Brain	0.032 ± 0.002	0.068 ± 0.01	0.059 ± 0.01	0.047 ± 0.013	0.0456 ± 0.01	0.0041 ± 0.003
Э.	Kidney	0.138 ± 0.05	0.184 ± 0.04	0.091 ± 0.01	0.075 ± 0.005	0.035 ± 0.01	0.007 ± 0.001
4.	Liver	0.153 ± 0.1	0.259 ± 0.2	0.182 ± 0.02	0.170 ± 0.017	0.15 ± 0.02	0.011 ± 0.002
5.	Spleen	0.045 ± 0.01	0.037 ± 0.011	0.024 ± 0.005	0.017 ± 0.003	0.011 ± 0.021	0.003 ± 0.001
ó.	Stomach	0.062 ± 0.02	0.043 ± 0.01	0.052 ± 0.02	0.045 ± 0.013	0.028 ± 0.002	0.01 ± 0.004

S.NoOrgan $0.5hr$ $/$ tissue $/$ tissue 0.095 ± 0.01 1.Blood 0.095 ± 0.01 2.Brain 0.074 ± 0.002 3.Kidney 0.108 ± 0.03 4.Liver 0.194 ± 0.2 5.Spleen 0.046 ± 0.011 6.Stomach 0.059 ± 0.005	1.0hr				And and a second se	
			2.0hr	4.0hr	8.0hr	24hr
		0.1849 ± 0.03 0.17	0.1713±0.01	0.146±0.01 (0.0733 ± 0.02	0.0149 ± 0.004
	0	0.078 ± 0.004 0.07	0.0721±0.02	0.0646±0.01	0.0472 ± 0.01	0.0084 ± 0.002
a ach O		0.140 ± 0.02 0.08	0.084 ± 0.005	0.069 ± 0.002	0.037 ± 0.01	0.014 ± 0.003
ų	0.194 ± 0.2 0.18	0.185±0.017 0.1	0.163 ± 0.05	0.124 ± 0.02	0.088 ± 0.02	0.017 ± 0.01
		0.064± 0.02 0.06	0.061±0.013	0.058 ± 0.011	0.028 ± 0.02	0.009 ± 0.001
	0.059±0.005 0.0	0.082±0.01 0.07	0.071 ± 0.002	0.045 ± 0.01	0.026 ± 0.003	0.013±0.003
Formulation Organ/Tissue	0.5hr	1 Ohr	2 Ohr	4 0hr	8 Ohr	74hr
IGF1Stv Blood	0.359 ±0.05	0.282 ± 0.02	0.247±0.04	0.1903+0.01	101	0.04
	0.043 ± 0.01	0.048 ± 0.002	0.045±0.015	0.034±0.001		
IGF1S _{IN} Blood	0.119 ± 0.011	0.162 ± 0.02	0.143 ± 0.01	0.109 ± 0.005		
Brain	0.032 ± 0.002	0.068 ± 0.01	0.059 ± 0.01	0.047 ± 0.013	0.0456 ± 0.01	-
IGF1G IN Blood	0.095 ± 0.01	0.1849 ± 0.03	0.1713 ± 0.01	0.146 ± 0.01	-	2 0.0149 ±0.004
Brain	0.074 ± 0.002	0.078 ± 0.004	0.0721 ± 0.02	0.0646 ± 0.01	0.0472 ± 0.01	0.0084 ±0.002
IGF1S _{IV} Brain/ Blood	0.1185	0.1688	0.1798	0.1778	3 0.1503	0.0795
IGF1S _{IN} Brain/ Blood	0.2689	0.4197	0.4126	0.4311	0.5010	0.2304
IGF1G _{IN} Brain/ Blood	0.7789	0.4218	0.4209	0.4443	0.6431	0.5637

*Mice were administered with the radiolabeled complex of insulin like growth factor1(equivalent to $20.02\mu g/kg$ BW)

203

6. Pharmacokinetic study

154 A

ŧ.

	Biodistributi	Biodistribution of IGF in blood			Biodistribution of IGF in brain	IGF in brain	
0.0 0.1 0 mg/y/ivity60 of tissue 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14++	- IGF solniv	olniv solnin in	%radioactivity/gm of tissue			- IGF solniv - IGF Solnin - IGF Gin
0	5 10	15 20 2	25 30	0	5 10 15	15 20	25 30
		time(hours)			time (hours)	nours)	
able 6.32 Pha	rmacokinetics	Table 6.32 Pharmacokinetics of ^{99m} Tc-IGF1S _{IV} ,	^{99m} Tc-IGF1	^{99m} Tc-IGF1S _{IN} , ^{99m} Tc-IGF1G _{IN} in BALB/c mice	_{IN} in BALB/c m	ice	
Formulation	Organ	C _{max} (%	T _{max}	T I		$T_{1/2}$	Nasal
		rauro activity/g) †	(SINOII)	radioactivity		(sinon)	DIOAVAIIADIIILY (%)
IGF1S _{IV}	Blood	3.6174*	1	s/ 5.0383	0.0690	10.039	-
	Brain	0.048 ± 0.01	1.0	0.2058	0.0983	7.0522	ł
IGF1S _{IN}	Blood	0.162 ± 0.02	1.0	0.6455	0.0942	7.3573	12.8119
	Brain	0.068 ± 0.002	1.0	0.2354	0.0879	7.8773	114.3828
IGF1G IN	Blood	0.1849 ± 0.03	1.0	0.6625	0.1096	6.3277	13.1493
	Brain	$0.078\pm0.004^{\$}$	1.0	0.3514	0.0925	7.4958	170.7483

6. Pharmacokinetic study

Formulation	Route of administration	Brain targeting efficiency (DTE(%))	Direct nose to brain transport percentage (DTP(%))
IGF1S IGF1G	Intranasal Intranasal	36.4679 53.0415	88.7983
	activity in brain Activity in liver	activity in brain	rain -
	Activity in bladder		944 1944 - 1944 1944 - 1944

6. Pharmacokinetic study

6.8 DISCUSSION

6.8.1 CLOBAZAM:

Clobazam formulations (CZS, CZME, CZMME) were radiolabeled by direct labeling method. The radiolabeling was optimized by taking three factors in consideration, amount of stannous chloride, incubation time/ invitro stability of the radiolabeled complex and pH. The pH was adjusted ranging from 6 -8.5 and the amount of stannous chloride for optimum labeling (Theobald 1990; Saha 1993 & Saha 2005) was studied and the results were shown in Table 6.1. The stability studies of ^{99m}Tc-CZS/CZME/CZMME were carried out in vitro using normal saline and mice serum by ascending ITLC (Garron et al 1991). The stability of the complexes for 24hours was assessed and the results were shown in Table 6.2. The bonding strength of ^{99m}Tc-CZS/CZME/CZMME was assessed by DTPA (Diethylene triamine penta acetic acid) challenging test (Babbar et al 2000; Saha 2005). The effect of different molar concentrations of DTPA on ^{99m}Tc-CZS/CZME/CZMME and percent transchelation were studied and given in Table 6.3. The clobazam formulations were labeled successfully and their radio chemical purity/ labeling efficiency were found to be more than 90%. The radiolabeled 99mTc-CZS/CZME/CZMME complexes were found to be stable in normal saline and mice serum only with 10% degradation over 24 hours. The percent transchelation of 99mTc-CZS/CZME/CZMME were found to be less than 4% with 4mM DTPA.

Biodistribution of ^{99m}Tc-CZS following i.v. and ^{99m}Tc-CZS/CZME/CZMME following i.n. administration in Balb/c mice were performed and the radioactivity was estimated at predetermined time intervals up to 24hours. The results obtained are recorded in Table 6.5-6.8. The brain/blood ratio of drug at all time points for different formulations were calculated and recorded in Table 6.9. The biodistribution of clobazam in blood and brain following i.v of ^{99m}Tc-CZS and i.n. of ^{99m}Tc-CZS/CZME/CZMME were shown in Graph 6.1. The pharmacokinetic parameters C_{max} , T_{max} , AUC, terminal elimination rate constant, half life and nasal bioavailability were calculated using standard pharmacokinetic principles and given in Table 6.10. Lower T_{max} values were observed for i.n. CZME and CZMME. This may be attributed by preferential nose to brain transport following nasal administration. The brain/blood ratios of drug at all time points were found to be higher following i.n. administration

of the formulations than i.v solution. This further confirms direct nose to brain transport (Illum 2000; Lianli et al 2002). The higher T_{max} and lower C_{max} of clobazam in brain following i.n. CZS can be better explained by the rapid nasal ciliary clearance of the solution from the site of administration and high lipophilicity of the drug that renders more bioavailable in brain by i.v route of administration. The higher concentration of clobazam in brain following i.n administration of CZME and CZMME demonstrates the suitability/ capability of microemulsion as an effective delivery system across the nasal membrane (Lawrence and Rees 2000) and a larger extent of selective transport of clobazam from nose to brain. This is in agreement with many scientists who believe in this unique connection between the nose and brain and drug transport to brain circumventing the BBB after i.n. administration (Illum 2000; Lianli et al 2002; Vyas et al 2006a). The enhancement of AUC in brain followed by i.n. CZME and CZMME are in congruence with the observations reported by Lianli et al 2002 and Zhang et al 2004 that microemulsion enhances the transport of drug across nasal mucosa. CZMME was shown to have significantly higher Cmax and AUC of CZMME demonstrated the importance of the mucoadhesive agent in prolonging the contact time of the formulation with the nasal mucosa and thereby enhancing rate and extent of absorption of drug (Ugwoke et al 2001; Luessen et al 1995). The nasal bioavailability of clobazam in brain following i.n. of ^{99m}Tc-CZS /CZME / CZMME was 51.62 %, 158.93 % and 196.32 % respectively. The brain targeting efficiency of CZ formulations were calculated by the indices %DTE (Drug targeting efficiency) and %DTP (Direct nose-to-brain transport) and recorded in Table 6.11. Among all the three nasally administered formulations, CZMME showed highest %DTE and %DTP values followed by CZME and CZS. These findings demonstrated the mucoadhesive microemulsion has higher brain targeting efficiency by the virtue of bioadhesion and lipophilicity of the delivery system (Vyas et al 2005 and 2006).

Gamma scintigraphy imaging of rabbits administered with i.v of ^{99m}Tc-CZS and i.n. of ^{99m}Tc-CZS/CZME/CZMME were performed in order to confirm drug localization in brain. The gamma scintigraphy images of rabbits 30 min post i.v. and i.n. administrations were shown in Figure 6.1. The presence of radioactivity in the esophagus and GIT may be due to possible ingestion of formulation by the animal while i.n. administration. Accumulation of radioactivity in the rabbit brain following different formulations and route of administration was observed and found that CZMME showed significantly high radioactivity in the brain. The scintigraphy images were consistent with the findings of the biodistribution studies.

6.8.2 CLOPIDOGREL BISULPHATE:

Clopidogrel bisulphate formulations (CSS, CSME, CSMME) were radiolabeled by direct labeling method with reduced technetium. The radiolabeling was optimized by taking three factors in consideration, amount of stannous chloride, incubation time/ invitro stability of the radiolabeled complex and pH. The pH was adjusted ranging from 6 - 7 and the amount of stannous chloride for optimum labeling (Theobald 1990; Saha 1993 & Saha 2005) was studied and the results were shown in Table 6.12. The stability studies of ^{99m}Tc-CSS/CSME/CSMME were carried out invitro using normal saline and mice serum by ascending ITLC (Garron et al 1991). The stability of the complexes for 24 hours was assessed and the results were shown in Table 6.13. The bonding strength of ^{99m}Tc-CSS/CSME/CSMME was assessed by DTPA (Diethylene triamine penta acetic acid) challenging test (Babbar et al 2000; Saha 2005). The effect of different molar concentrations of DTPA on ^{99m}Tc-CSS/CSME/CSMME and percent transchelation were studied and given in Table 6.14. The clopidogrel bisulphate formulations were labeled successfully and their radio chemical purity/ labeling efficiency were found to be more than 92%. The radiolabeled ^{99m}Tc-CSS/CSME/CSMME complexes were found to be stable in normal saline and mice serum only with 12% degradation over 24 hours. The percent transchelation of ^{99m}Tc-CSS/CSME/CSMME were found to be less than 3% with 4mM DTPA.

Biodistribution of ^{99m}Tc-CSS following i.v. and ^{99m}Tc-CSS/CSME/CSMME following i.n. administration in Balb/c mice were performed and the radioactivity was estimated at predetermined time intervals up to 24hours. The results obtained are recorded in Table 6.16 - 6.19. The brain/blood ratio of drug at all time points for different formulations were calculated and recorded in Table 6.20. The biodistribution of clopidogrel in blood and brain following i.v of ^{99m}Tc-CSS and i.n. of ^{99m}Tc-CSS/CSME /CSMME were shown in Graph 6.2. The pharmacokinetic parameters C_{max}, T_{max}, AUC, terminal elimination rate constant, half life and nasal bioavailability were calculated using standard pharmacokinetic principles and given in Table 6.21. Lower T_{max} values were observed for i.n. CSME and CSMME. This may be attributed to preferential nose to brain transport following nasal administration. The brain/blood ratios of drug at all time points were found to be higher following i.n. administration of the formulations than i.v solution. This further confirms direct nose to brain transport (Illum 2000; Lianli et al 2002). The higher T_{max} and lower C_{max} of clopidogrel bisulphate in brain following i.n. CSS can be better explained by the rapid nasal ciliary clearance of the solution from the site of administration and dissociation of drug at nasal pH. The higher concentration of clopidogrel in brain following i.n administration of CSME and CSMME demonstrates the suitability/ capability of microemulsion as an effective delivery system across the nasal membrane (Lawrence and Rees 2000) and a larger extent of selective transport of drug from nose to brain. This is in agreement with many scientists who believe in this unique connection between the nose and brain and drug transport to brain circumventing the BBB after i.n. administration (Illum 2000; Lianli et al 2002; Vyas et al 2006a). The enhancement of AUC in brain followed by i.n. CSME and CSMME are in congruence with the observations reported by Lianli et al 2002 and Zhang et al 2004 that microemulsion enhances the transport of drug across nasal mucosa. CSMME was shown to have significantly higher C_{max} and AUC of CSMME demonstrated the importance of the mucoadhesive agent in prolonging the contact time of the formulation with the nasal mucosa and thereby enhancing rate and extent of absorption of drug (Luessen et al 1995; Ugwoke et al 2001). The nasal bioavailability of clopidogrel in brain following i.n. of ^{99m}Tc-CSS /CSME / CSMME was 47.75%, 117.77% and 170.31% respectively. The brain targeting efficiency of CS formulations were calculated by the indices %DTE (Drug targeting efficiency) and %DTP (Direct nose-to-brain transport) and recorded in Table 6.22. Among all the three nasally administered formulations, CSMME showed highest %DTE and %DTP values followed by CSME and CSS. These findings demonstrated the mucoadhesive microemulsion has higher brain targeting efficiency by the virtue of bioadhesion and lipophilicity of the delivery system system (Vyas et al 2005 and 2006).

Gamma scintigraphy imaging of rabbits administered with i.v of ^{99m}Tc-CSS and i.n.of ^{99m}Tc-CSS/CSME/CSMME were performed in order to confirm drug localization in brain. The gamma scintigraphy images of rabbits 30 min post i.v. and i.n. administrations were shown in Figure 6.2. The presence of radioactivity in the esophagus and GIT may be due to possible ingestion of formulation by the animal while i.n. administration. Accumulation of radioactivity in the rabbit brain following different formulations and route of administration was observed and found that CSMME showed significantly high radioactivity in the brain. The scintigraphy images were consistent with the findings of the biodistribution studies.

6.8.3 INSULIN LIKE GROWTH FACTOR -1:

Insulin like growth factor -1 was radiolabeled by direct labeling method. The radiolabeling was optimized by taking three factors in consideration, amount of stannous chloride, incubation time/ invitro stability of the radiolabeled complex and pH. The pH was adjusted ranging from 3 -7.5 and the amount of stannous chloride for optimum labeling (Theobald 1990; Saha 1993 & Saha 2005) and pH was studied and the results were shown in Table 6.23 and 6.24. Radiolabeled IGF-1 was incubated with the gel and the stability of IGF1 in solution and gel was studied. The stability studies of ^{99m}Tc-IGF1S/ IGF1G were carried out in vitro using normal saline and mice serum by ascending ITLC (Garron et al 1991). The stability of the complexes for 24hours was assessed and the results were shown in Table 6.25. The bonding strength of ^{99m}Tc-IGF1S/ IGF1G was assessed by DTPA (Diethylene triamine penta acetic acid) challenging test (Babbar et al 2000; Saha 2005). The effect of different molar concentrations of DTPA on ^{99m}Tc-IGF1S/ IGF1G and percent transchelation were studied and given in Table 6.26. The formulations were labeled successfully and their radio chemical purity/ labeling efficiency were found tobe more than 90%. The radiolabeled ^{99m}Tc- IGF1S/ IGF1G complexes were found tobe stable in normal saline and mice serum only with 15% degradation over 24 hours. The percent transchelation of ^{99m}Tc- IGF1S/ IGF1G were found to be less than 3% with 4mM DTPA.

Biodistribution of ^{99m}Tc-IGF1S following i.v. and ^{99m}Tc- IGF1S/ IGF1G following i.n. administration in Balb/c mice were performed and the radioactivity was estimated at predetermined time intervals up to 24hours. The results obtained are

recorded in Table 6.28-6.30. The brain/blood ratio of drug at all time points for different formulations were calculated and recorded in Table 6.31. The biodistribution of clobazam in blood and brain following i.v of ^{99m}Tc- IGF1S and i.n. of ^{99m}Tc- IGF1S/ IGF1G were shown in Graph 6.3. The pharmacokinetic parameters C_{max} , T_{max} , AUC, terminal elimination rate constant, half life and nasal bioavailability were calculated using standard pharmacokinetic principles and given in Table 6.32.

The brain/blood ratios of drug at all time points were found tobe higher following i.n. administration of the formulations than i.v solution. This confirms direct nose to brain transport of IGF-1. (Xin-Feng Liu et al 2001a, 2001b, Throne et al 2004). The low bioavailability of IGF-I in brain following i.v. was due to the limitation of IGF-1 to pass through BBB (Loddick et al 1998). The lower C_{max} of IGF-1 solution can be better explained by the rapid nasal ciliary clearance of the solution from the site of administration. The higher concentration of IGF-1 following i.n administration of IGF1S / IGF1G demonstrates the effective delivery across the nasal membrane (Xin-Feng Liu et al 2001a, 2004 and Abdolhossein Rouholamini2004) and a larger extent of selective transport of drug from nose to brain. This is in agreement with many scientists who believe in this unique connection between the nose and brain and drug transport to brain circumventing the BBB after i.n. administration (Illum 2000; Lianli et al 2002; Vyas et al 2006a). The enhancement of AUC in brain followed by i.n. of IGF1S / IGF1G is in congruence with the observations reported by Xin-Feng Liu et al 2004 and Vig et al 2006. The substantial increment in Cmax and brain concentrations following IGF-1G demonstrated the importance of the mucoadhesive agent in the delivery system. The muco adhesive polymer carbopol and HPMC were shown to prolong the contact time of the formulation with the nasal mucosa and thereby enhancing rate and extent of absorption of drug (Luessen et al 1995; Ugwoke et al 2001). The nasal bioavailability of IGF-1 in brain following i.n. of ^{99m}Tc- IGF1S / IGF1G were 114.38% and 170.75 % respectively. The brain targeting efficiency of IGF-1 formulations were calculated by the indices %DTE (Drug targeting efficiency) and %DTP (Direct nose-to-brain transport) and recorded in Table 6.33. Among the solution and nasal gel, IGF-1 Gel showed higher %DTE and %DTP values than IGF-1 solution. These findings

demonstrated the mucoadhesive nasal gels are suitable delivery system for high molecular weight candidate drugs like peptides.

Gamma scintigraphy imaging of rabbits administered with i.v of ^{99m}Tc-IGF-1S and i.n.of ^{99m}Tc- IGF-1S / IGF-1G were performed in order to confirm drug localization in brain. The gamma scintigraphy images of rabbits 30 min post i.v. and i.n. administrations were shown in Figure 6.3. The presence of radioactivity in the esophagus and GIT may be due to possible ingestion of formulation by the animal while i.n. administration. Accumulation of radioactivity in the rabbit brain following different formulations and route of administration was observed and found that IGF-1G showed significantly high radioactivity in the brain. The scintigraphy images were consistent with the findings of the biodistribution studies.

6.9. REFERENCES

- Abdolhossein Rouholamini Najafabadi, Payam Moslemi, Hosnieh Intranasal bioavailability ofiInsulin from carbopol-based gel spray in rabbits. *Drug Delivery* 2004; 11(5): 295 – 300.
- Babbar AK, Singh AK, Goel HC, Chauhan UPS, Sharma RK. Evaluation of ^{99m}Tc labeled Photosan-3, a heamatoporphyrin derivative, as a potential radiopharmaceutical for tumor scintigraphy. *Nucl Med Biol* 2000; 27: 419–426.
- Capala J, Barth RF, Bailey MQ et al, Radiolabeling of epidermal growth factor with 99m Tc and invivo localization following intracerebral injection into normal and glioma bearing rats. *Bioconjug Chem* 1997;8: 289-295.
- Eckelman WC. Radiolabeling with technetium-99m to study high-capacity and low-capacity biochemical systems. *Eur. J. Nucl. Med.*1995;22:249–263.
- Garron JY, Moinereau M, Pasqualini R, Saccavini JC. Direct 99mTc labeling of monoclonal antibodies: radiolabeling and in-vitro stability. *Int J Rad Appl Intru* 1991; 18: 695-703.
- Illum L. Transport of drugs from the nasal cavity to central nervous system. Eur J Pharm Sci 2000; 11: 1–18.
- Jung BH, Chung BC, Chung S. and Shim C. Prolonged delivery of nicotine in rats via nasal administration of proliposomes. *J Contolled Release*.2000; 66: 73-79.
- Lawrence MJ, Rees GD, Microemulsion based media as novel drug delivery system. *Adv Drug Delivery Rev.* 2000; 45, 89- 121.
- Lianli, Indranil Nandi and Kim KH. Development of an ethyl laurate-based microemulsion for rapid-onset intranasal delivery of diazepam. Int J Pharmaceutics 2002; 237(1-2): 77-85.
- Loddick SA, Xin-Jun Liu, Zi-Xian Lu, Changlu Liu, Behan DP, Chalmers DC, Foster AC, Vale W, Nicholas Ling and De Souza EB. Displacement of insulin-like growth factors from their binding proteins as a potential treatment for stroke. *Proc Natl Acad Sci USA* 1998; 95:1894–1898.
- Luessen HL, Verhoef JC, Lehr CM, Borchard G, deBoer AG and Junginger HE, Bioadhesive polymers for peroral peptide drug delivery. II. Carbomer and

polycarbophil are potent inhibitors of intestinal proteolytic enzyme trypsin. *Pharm Res* 1995; 12: 1293-1298.

- Saha GB. Fundamentals of Nuclear Pharmacy, 5th edition, New York: Springer-Verlag; 2005.
- Saha GB. Methods of radiolabeling. In: Saha GB, ed. *Physics and Radiobiology of Nuclear Medicine*. New York, NY. Springer-Verlag: 1993; 100-106.
- Theobald AE. Theory and practice. In: Sampson C, Editor. *Text book of radiopharmacy*. New York, NY: Gorden and Breach.1990; 127-128.
- Ugwoke MI, Verbeke N and Kinget R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. *J Pharm Pharmacol* 2001;53: 3–21.
- Vyas TK, Babbar AK, Sharma RK, Misra Ambikanandan, Preliminary Braintargeting Studies on Intranasal Mucoadhesive Microemulsions of Sumatriptan. *AAPS Pharm SciTech* 2006; 7.(8) E1-E9.
- Vyas TK, Babbar AK, Sharma RK, Misra Ambikanandan. Intranasal mucoadhesive microemulsions of zolmitriptan: Preliminary studies on braintargeting *J Drug Targeting* 2005; 13(5): 317-324.
- Xin-Feng Liu, John R Fawcett, Hanson LR, William H Frey II. The window of opportunity for the treatment of focal cerebral ischemic damage with noninvasive intranasal insulin like growth factor-1 in rats. *J Stroke and Cerebrovascular Diseases* 2004; 13(1):16-23.
- Zhang Q, Jiang X, Xiang W, Lu W, Su L, Shi Z. Preparation of nimodipineloaded microemulsion for intranasal delivery and evaluation of the targeting efficiency to brain. *Int J Pharm* 2004; 275: 85-96.
- Zhao Y, Yue P, Tao T, Chen QH. Drug brain distribution following intranasal administration of Huperzine A insitu gel in rats. *Acta Pharmacologicaa sinica* 2007; 28(2): 273-278.