Table	Name	Page
No.		No.
2.1	Nose-to-brain transport of drug molecules and possible pathways	35
2.2	Different intranasal delivery systems for brain targeting	52,53
2.3	Differences between emulsions and microemulsions	54
2.4	Rationale for developing and using medicated microemulsions	55
3.1	Experimental conditions for clobazam by UVmethod	112
3.2	Experimental conditions for clobazam by HPLC method	112
3.3	Experimental conditions for clopidogrel bisulphate by UV method	113
3.4	Experimental conditions for clopidogrel bisulphate by HPLC method	114
3.5	Absorbance of clobazam (zero order) at 230nm	114
3.6	Recovery test for accuracy of clobazam estimation by UV method	115
3.7	Intra-day precision & Inter-day precision of Inter-day precision of clobazam estimation by UV method	115
3.8	Absorbance of clobazam (second derivative curve) at 230nm	115
3.9	Calibration of clobazam by HPLC method	116
3.10	Recovery test for accuracy of clobazam estimation by HPLC method	117
3.11	Intra-day precision & Inter-day precision of Inter-day precision of_clobazam estimation by HPLC method	117
3.12	System suitability for clobazam estimation	118
3.13	Absorbance of clopidogrel bisulphate (zero order curve) at 270nm	118
3.14	Recovery test for accuracy of clopidogrel bisulphate estimation by UV method	119
3.15	Intra-day precision & Inter-day precision of Inter-day precision of clopidogrel bisulphate estimation by UV method	119
3.16	Absorbance of clopidogrel bisulphate (second derivative curve) at 277nm	120
3.17	Calibration of clopidogrel bisulphate by HPLC method	121
3.18	Recovery test for accuracy_of clopidogrel bisulphate estimation by HPLC method	122
3.19	Intra-day precision & Inter-day precision of Inter-day precision of_clopidogrel bisulphate estimation by HPLC method	122
3.20	System suitability for clopidogrel bisulphate estimation	122
4.1	Solubility of Clobazam in excipients	137

LIST OF TABLES

4.2	Solubility of Clopidogrel bisulphate in excipients	138
4.3	Clobazam system1: Capmul MCM, Acconan CC6: Tween 20	130
4.4	 (3:1), Distilled Water 3² Factorial design for optimization of CZME system1 	141
4.5	Effect of dilution on zeta potential and globule size measurement	142
4.6	Checkpoint batches for CZ system1	142
4.7	Muco adhesive microemulsion of clobazam system1	142
4.8	Clobazam system2: Capmul MCM, Tween 20: Transcutol P (3:1), Distilled Water	143
4.9	3 ² Factorial design for optimization of CZME system2	144
4.10	Checkpoint batches for CZ system2	145
4.11	Muco adhesive microemulsion of clobazam system2	145
4.12	Optimized clobazam formulations	146
4.13	Stability and solubility of clopidogrel bisulphate in buffers	146
4.14	Clopidogrel bisulphate system1: Capmul GMO, Tween 80: Transcutol P (2:1), Distilled water	148
4.15	3 ² Factorial design for optimization of CSME system1	149
4.16	Clopidogrel bisulphate system2: Capmul GMO, Tween 20: Transcutol P (2:1), Acetate Buffer (pH 5)	150
4.17	3 ² Factorial design for optimization of CSME system2	151
4.18	Checkpoint batches for CS system2	152
4.19	Muco adhesive microemulsion of clopidogrel bisulphate system2	152
4.20	Clopidogrel bisulphate system 3: Capmul GMO, Tween 20: PEG 200 (3:1), Acetate Buffer (pH 5)	153
4.21	3 ² Factorial design for optimization of CSME system3	154
4.22	Checkpoint batches for CS system3	155
4.23	Mucoadhesive microemulsion of clopidogrel bisulphate system3	155
4.24	Optimized clopidogrel bisulphate formulations	156
4.25	Stability study of clobazam microemulsions	159
4.26	Stability study of clopidogrel bisulphate microemulsions	160
4.27	Accelerated Stability Study	161
5.1	In vitro diffusion study of clobazam formulations	175
5.2	Diffusion coefficient and regression coefficients of CZ formulations	175
5.3	In vitro diffusion study of clopidogrel bisulphate formulations	177

5.5	Clobazam formulations	180
5.6	Clopidogrel bisulphate formulations	182
6.1	Effect of quantity of $SnCl_2$ on radiolabeling of clobazam formulations	189
6.2	Invitro stability of labeled complex (%)	189
6.3	Effect of DTPA on radiolabeling of clobazam formulations	189
6.4	Radiolabelling summary of clobazam formulations	189
6.5	Tissue/ organ distribution of ^{99m} Tc-CZS in Balb/c mice at predetermined time intervals post IV administration	190
6.6	Tissue/ organ distribution of ^{99m} Tc-CZS in Balb/c mice at predetermined time intervals post IN administration	190
6.7	Tissue/ organ distribution of ^{99m} Tc-CZME in Balb/c mice at predetermined time intervals post IN administration	191
6.8	Tissue/ organ distribution of ^{99m} Tc-CZMME in Balb/c mice at predetermined time intervals post IN administration	191
6.9	Distribution of 99m Tc-CZS _{IV} , 99m Tc-CZS _{IN} , 99m Tc-CZME _{IN} , 99m Tc-CZMME _{IN} in Balb/c mice at predetermined time intervals	192
6.10	Pharmacokinetics of 99m Tc-CZS _{IV} , 99m Tc-CZS _{IN} , 99m Tc-CZME _{IN} , 99m Tc-CZMME _{IN} in Balb/c mice	193
6.11	Brain targeting efficiency and Direct nose to brain transport percentage following intranasal administration of ^{99m} Tc-CZS, ^{99m} Tc-CZME and ^{99m} Tc-CZMME	193
6.12	Effect of quantity of SnCl ₂ on radiolabeling of clopidogrel bisulphate formulations	195
6.13	Invitro stability of labeled complex (%) of clopidogrel bisulphate formulations	195
6.14	Effect of DTPA on radiolabeling of clopidogrel bisulphate formulations	195
6.15	Radiolabelling summary of clopidogrel bisulphate formulations	195
6.16	Tissue/ organ distribution of ^{99m} Tc-CSS in Balb/c mice at predetermined time intervals of post IV administration	196
6.17	Tissue/ organ distribution of 99mTc-CSS in Balb/c mice at predetermined time intervals of post IN administration	196
6.18	Tissue/ organ distribution of ^{99m} Tc-CSME in Balb/c mice at predetermined time intervals of post IN administration	197
6.19	Tissue/ organ distribution of ^{99m} Tc-CSMME in Balb/c mice at predetermined time intervals of post IN administration	197
6.20	Distribution of 99m Tc-CSS _{IV} , 99m Tc-CSS _{IN} , 99m Tc-CSME _{IN} , 99m Tc-CSMME _{IN} in Balb/c mice at predetermined time intervals	198
6.21	Pharmacokinetics of ^{99m} Tc-CSS _{IV} , ^{99m} Tc-CSS _{IN} , ^{99m} Tc-CSME _{IN} , ^{99m} Tc-CSMME _{IN} in Balbs/c mice	199

6.22	Brain targeting efficiency and Direct nose to brain transport percentage following intranasal administration of ^{99m} Tc-CSS, ^{99m} Tc-CSME and ^{99m} Tc-CSMME	199
6.23	Effect of quantity of $SnCl_2$ on radiolabeling of insulin like growth factor1	201
6.24	Effect of pH on radiolabeling of insulin like growth factor1	201
6.25	Invitro stability of labeled complex (%) of Insulin like growth factor 1	201
6.26	Effect of DTPA on radiolabeling of IGF-1 formulations	201
6.27	Radiolabelling summary of Insulin like growth factor 1 formulations	201
6.28	Tissue/ organ distribution of ^{99m} Tc-IGF 1 Solution in Balb/c mice at predetermined time intervals of post IV administration	202
6.29	Tissue/ organ distribution of ^{99m} Tc-IGF 1 Solution in Balb/c mice at predetermined time intervals of post IN administration	202
6.30	Tissue/ organ distribution of ^{99m} Tc-IGF 1 Gel in Balb/c mice at predetermined time intervals of post IN administration	203
6.31	Distribution of 99m Tc-IGF1S _{IV} , 99m Tc-IGF1S _{IN} , 99m Tc-IGF1G _{IN} in BALA/c mice at predetermined time intervals	203
6.32	Pharmacokinetics of ^{99m} Tc-IGF1S _{IV} , ^{99m} Tc-IGF1S _{IN} , ^{99m} Tc-IGF1S _{IN} , ^{99m} Tc-IGF1G _{IN} in BALA/c mice	204
6.33	Brain targeting efficiency and Direct nose to brain transport percentage following intranasal administration of ^{99m} Tc-IGF1S and ^{99m} Tc-IGF1G	205