Nomenclature

s Time in seconds

LOI Limiting Oxygen Index

 I_p Pyrolysing length V_p Flame spread rate

 $V_{p\infty}$ Pyrolysis constant spread rate

β Coefficient of thermal expansion (k⁻¹)

V Vertical flame spread
d Flame spread distance
T Time of spread of flame

FR Flame Retardant

H_b Heat of burning in air

H_r Rate of heat generation per unit sample width
 H_c Heat of combustion in oxygen bomb calorimeter

H_L Percent of H_c liberated by burning in air.

LPG Liquid petroleum gas

Ω Injury factor/ burn damage integral ΔE Activation energy (6.28 x 10 8 J/k mol)

P Pre-exponential term: used for injury factor (3.1x10⁹⁸s⁻¹)

T Absolute temperature in K

R Stefan Boltzmann constant (1.986 cal/mole K)

BHPT Burn Hazard Potential Tester

T₁, T₂, T₃ Timing devices

T₄ Temperature display tutor

D1 Distance from the bottom line of the specimen to the micro burner tip at the

vertical centre of the specimen

D2 Distance between micro burner tip and specimen face

T_{ig} Time for ignition

FPR Flame Propagation Rate

BR Burning Rate

H_a Heat absorbed (cal/cm²)
Q_i Incident Heat Flux (cal/cm²s)

AIHF60 Average Incident Heat Flux for initial 60 Seconds

TBSA Total Body Surface Area
x Total depth of the skin

y,z Depth of skin in y and z directions x_1 Depth at base of epidermis(80 μ m) x_2 Depth at base of dermis(1920 μ m)

x₃ Depth at base of hypodermis (5000 μm)

ρ₁ Density of epidermis (1150 kg/m³)

Density of dermis (1200 kg/m³) ρ_2 Density of hypodermis (1000 kg/m³) ρ_2 Specific heat of epidermis (3600 °kJ/kg) C_1 Specific heat of dermis and (2400 °k J/kg) C_2 Specific heat of hypodermis (3000 °k J/kg) C_3 Specific heat of silver plate (0.056 cal/c/gm) C_s C_b Specific heat of blood (4000 °C J/kg) T_c Temperature of core of skin at base of hypodermis (37°C) T, Temperature at the surface of the skin Thermal conductivity of epidermis (0.209 ° k W/m) k1 Thermal conductivity of dermis (0.380 ° k W/m) k_2 Thermal conductivity of hypodermis (0.210 ° k W/m) kз External incident heat flux (k W/m²) Q_i Q_m Volumetric metabolic heat flux. (420 W/m³) T_1 Temperature of epidermis T_{2} Temperature of dermis Temperature of hypodermis T_3 Cross sectional area between epidermis-dermis (cm²) A_1 Cross sectional area between dermis-hypodermis (cm²) A_2 Length of epidermis (mm) Li Length of dermis (mm) L_2 Blood profusion rate (0.5 kg/m³s) W_b T_a Artrial temperatute(37°C) T_r Room temperature Q_{1-2} Conduction Heat transfer relation between epidermis and dermis Q_{2-3} Conduction Heat transfer relation between dermis and hypodermis SA1-SA10 Saree fabrics (Ten types of fabric material: 1 to 10) PL Petticoat fabrics (light) PH Petticoat fabrics (heavy) В Bra fabric UV Underwear fabric Blouse fabric (cotton) B(C) B(PC) Blouse fabric (polyester:cotton) B(P) Blouse fabric (polyester) C-H Carbon hydrogen bond