LIST OF TABLES

3.1	Raw material summary	37
3.2	Technical specifications of SMR 20	39
3.3	Technical specification of SBR1502	40
3.4	Technical specification of SSBR Buna VSL 5025-0	41
3.5	Microstructure and macrostructure of S-SBR	41
3.6	Technical specification of functionalized SSBR	42
3.7	Polybutadiene rubber – micro and macrostructure	42
3.8	Technical specification of BR	43
3.9	Technical specification of NBR/XNBR .	44
3.10	Treatment/properties of Clay	42
3.11	Typical dry particle sizes: (microns, by volume)	45
3.12	Grades and properties of carbon black	45
3.13	Physico-chemical properties of Ultrasil 7000GR	46
3.14	Physico-chemical properties of Si 69®	47
3.15	Properties of 6PPD	47
3.16	Properties of TBBS	48
3.17	Properties of DPG	49
3.18	Technical specifications of rhombic sulfur	50
3.19	Technical specifications of zinc oxide	51
3.20	Technical specifications of stearic acid	51
3.21	SBR/BR nanocomposite formulation-variation carboxyl group in XNBR	57
3.22	SBR/BR nanocomposite formulation - different mixing method	57
3.23	SBR/BR -gum vulcanizates and nanocomposite formulations	57
3.24	SBR/BR nanocomposite formulation-clay and XNBR dosages optimization	58

3.25	SBR/BR compound formulations- "dual filler" nanocomposites (phr) ^a	58
3.26	Control compound formulations (phr)	59
3.27	NR/BR clay nanocomposites formulations (phr)	59
3.28	Compound formations: NR/BR "dual filler" nanocomposites	60
3.29	Rubber sample vulcanization conditions	61
3.30	PCR rolling resistance (RR) test conditions	67
4.1	Compound codes and brief descriptions	70
4.2	Rheometric properties (MDR; 160 ^o C/ 20 min)	71
4.3	Organoclay and XNBR dosages optimization- formulations, rheometric and mechanical properties	76
4.4	Mechanical properties of gum compounds and SBR/BR-organoclay nanocomposites	76
4.5	Dynamic mechanical properties of gum compounds and SBR/BR- organoclay nanocomposites	77
4.6	Compounds code and descriptions	83
4.7	Rheometric properties of dual filler nanocomposites	84
4.8	Mechanical properties of dual filler nanocomposites	87
4.9	Viscoelastic properties ($tan\delta$) at different temperatures of dual filler nanocomposite	88
4.10	Payne's effect of Control compounds and nanocomposites	90
5.1	Compound codes and brief descriptions	99
5.2	Rheometric properties at 150°C for 30 minutes in MDR	99
5.3	Effect of carboxyl % in XNBR on physical properties	100
5.4	Effect of different mixing techniques on physical properties	102
5.5	Effect of clay dosages on physical properties	102
5.6	Compound descriptions (NR/BR: 70/30)	107
5.7	Compound rheometric properties (MDR 150°C/30 minutes)	109
5.8	Mechanical properties of nanocomposites	111
5.9	Payne's effect	114

5.10	d-spacing (nm) in XRD study	115
7.1	Mechanical properties of nanocomposite	136
7.2	Yeoh's hyperelastic material constant	137
7.3	Rolling resistance of tire with Control compounds at RR m/c	139
7.4	Rolling resistance by simulation of organoclay –carbon black nanocomposites and Control-1	141
7.5	Rolling resistance by simulation of organoclay -silica nanocomposites and Control-2	141
7.6	Mechanical properties of nanocomposites	144
7.7	Rolling resistance of tire with Control-3 compound measured at pulley wheel machine	146
7.8	Rolling resistance of 10.00r20 TBR tire predicted by simulation	151
7.9	Rolling resistance of 295/80r22.5 TBR tire predicted by simulation	151
7.10	Rolling resistance of 315/80r22.5 TBR tire predicted by simulation	151