LIST OF FIGURES

Figures	Title	Page No.
Chapter 1	Introduction	
1.1	Bucky ball Fullerene and cylindrical nanotubes	2
1.2	Rolling of graphene sheet along different directions to get	4
	different nanotubes	
1.3	Double-walled carbon nanotubes	6
1.4	Torus	8
1.5	High Pressure Carbon Monoxide Method	12
1.6	Arc discharge method	14
1.7	Laser ablation Process	17
1.8	Chemical vapor deposition (CVD) process	19
1.9	Availability of renewable fresh water in India	36
Chapter 2	Nanotube cleaning, functionalization, characterization,	
	metal removal and adsorption isotherm studies	
2.1	SEM image of commercially available Pristine CNTs	48
2.2	Schematic representation of functionalization of nanotubes	- 51
2.3	Raman spectra (a) Pristine (b) Purified CNTs	54
2.4	TEM images (a) Pristine (b) Oxidized (c) Acylated (d) Amide (e) Azide functionalized CNTs	56
2.5	FT-IR spectras (a) Pristine (b) Oxidized (c) Acylated (d)	58
	Amide (e) Azide functionalized CNTs	
2.6	EDS spectras (a) Pristine (b) Oxidized (c) Azide functionalized CNTs	60
2.7	XRD spectra of oxidized and functionalized CNTs	62
2.8	Thermo-gravimetric studies of Purified CNT's and various functionalized CNT's	64
2.9	Plots of (a) % Removal of metal ions v/s time (b,c) ln(1- Ut) v/s Time(h) for removal of heavy metals by unfunctionalized CNTs	66
2.10	Plots of (a) % Removal of metal ions v/s time (b,c) ln(1- Ut) v/s Time(h) for for removal of heavy metals by acylated CNTs	67
2.11	Plots of (a) % Removal of metal ions v/s time (b,c) ln(1- Ut) v/s Time(h) for for removal of heavy metals by amide functionalized CNTs	68
2.12	Plots of (a) % Removal of metal ions v/s time (b,c) ln(1- Ut) v/s Time(h) for for removal of heavy metals by azide functionalized CNTs	69

2.13	Removal of Cr+6 ions at diff. pH by (a)amide and (b) azide functionalized CNTs	82
2.14	Freundlich and Langmuir adsorption isotherm of	89
	Chromium onto amide functionalized CNTs	
2.15	Freundlich and Langmuir adsorption isotherm of	90
	Chromium onto azide functionalized CNTs	
Chapter 3	Comparative study of surface cleaning and modification	
	Of MWNT's using various oxidizing agents	
3.1	Effect of washing on the behavior of nanotubes towards magnetic needle	97
3.2	SEM images of MWNT's (a) pristine (b) H ₂ SO ₄ /HNO ₃	100
	treated (c) Base piranha treated (d) Acid piranha treated	
	(e) KMnO ₄ /CH ₃ COOH treated in absence of PTC (f)	
	KMnO ₄ /CH ₃ COOH treated in presence of PTC	
3.3	Pictures of the dispersion of the MWCNTs (10 mg) in	102
	water (10 ml). 1-H ₂ SO ₄ /HNO ₃ -treated MWCNTs; 2-	
	KMnO ₄ -PTC treated MWCNTs; 3-base piranha treated	
	MWCNTs; 4-acid piranha treated MWCNTs; 5-Pristine	
	MWNT's. Samples were kept for 100 days. MWCNTs	
	were dispersed in water by sonication for 1h	
3.4	FT-IR spectra of MWNT's (a) Purified (b) H ₂ SO ₄ /HNO ₃	104
	treated (c) Base Piranha treated (d) Acid Piranha treated	
	(e) KMnO ₄ /CH ₃ COOH treated in presence of PTC	
3.5	TGA curves of the MWCNT samples: (a) MWCNT-	106
	HNO_3 , (b) MWCNT- NH_4OH/H_2O_2 , (c) MWCNT-	
	H ₂ SO ₄ /H ₂ O ₂ , (d) MWCNT–KMnO ₄ -PTC	
3.6	Raman spectra of the MWCNT samples: (a) MWCNT-	108
	HNO_3 , (b) MWCNT- NH_4OH/H_2O_2 , (c) MWCNT-	
	H ₂ SO ₄ /H ₂ O ₂ , (d) MWCNT–KMnO ₄ -PTC	
3.7	Raman spectra of differently oxidized MWCNT samples	109
Chapter 4		
	its effect on metal removal	100
4.1	FT-IR scans of MWNTs (a) carboxylated MWNT and	120
10	(b) azide functionalized MWNTs	100
4.2	Hydrogen bonding between the possible arrangement of	122
4.2	functional groups on nanotubes and polysulfone	105
4.3	Charge development on surface of membrane or	125
A A	dispersed particle in a dispersion medium	109
4.4	FESEM images of CNT/PSf composite membranes (a)	128
A	0.0% (b) 0.1% (c) 1% functionalized MWNTs	120
4.5	FT-IR of (a) oxidized CNT/PSF (b) amide functionalized	130
	CNT/PSF blend membranes	

4.6	TGA data composite polysulfone membranes with different percentages of amide functionalized MWNTs	132
4.7	Flow rate at different pressures for different amide	141
	MWCNT/PSf membranes at acidic pH 2.6	
4.8	%Removal of metal ions at different pressure (a)	145
	%amide CNT/PSf (b) %azide CNT/PSf composite	
	membranes at pH 2.6	
4.9	Removal studies of Cr+6 ions at different pH for (a)	147
	oxidized (b) amide (c) azide functionalized	
	MWCNT/PSf. at pressure of 0.49MPa	
Chapter 5	ATRP using a Novel Initiator :Acetyl Chloride/Acylated	
F	nanotubes	
5.1	Schematic presentation of general mechanism of	154
	controlled radical polymerization (CRP) method	
5.2	Reaction scheme employed in the process where K_a , K_p ,	159
	K_t are rate coefficients for activation, propagation and	
	termination	
5.3	FTIR of (a)PMMA (b) Styrene initiated from acetyl	163
	chloride/acylated nanotubes	
5.4	NMR of acetylchloride/acylated nanotubes initiated	165
	PMMA	
5.5	¹³ C NMR of PMMA obtained from labeled acetyl	166
	chloride used as initiator	
5.6	¹³ C NMR of Polystyrene obtained from acetyl chloride	168
	used as initiator	
5.7	Thermogravimetric analysis of PMMA, obtained by (a)	170
	acetyl chloride (b) acylated nanotubes as initiator	
5.8	Thermogravimetric analysis of Polystyrene by acylated	171
	nanotubes as initiator	
5.9	DSC curve for PMMA (glass transition	173
	temperature:135°C)	
5.10	DSC curve for PS (glass transition temperature:109°C)	174
5.11	SEM images of polymer PMMA depict the foamy fibrous	176
	texture of the polymer	
5.12	SEM images of polymer PMMA initiated by acylated	177
	CNT	
5.13	SEM images of polymer PS initiated by acylated CNT	178
5.14	SEC curves for different sets S1, S2, S3, S4 depicting the	181
	peak apex and weight average molecular weight	
5.15	SEC curves for different sets PMNS and PMVLS	182
	depicting the peak apex and weight average molecular	
	weight	

5.16	(a) SEC curve for acetyl chloride initiated ATRP of MMA depicting 2.83 x 10^5 and 2.84 x 10^5 as peak apex and weight average molecular weight respectively (b) PD and Mn as a function of monomer conversion; reaction conditions: Temperature = 60° C and [M] _o /[M _t ^s X] _o /[L] _o /I _o = [PMMA] _o /[Cu(1)Br] _o /[2,2' bipyridyl] _o /[CH ₃ COCl] _o =100:0.5:1:0.625 and surfactant	185
5.17	(Brij-98)concentration =1.64gm/10 mL of distilled water (a) SEC curve for acetyl chloride initiated ATRP of MMA depicting 8.0 x 10^5 and 7.2 x 10^5 as peak apex and weight average molecular weight respectively (b) PD as a function of %Conversion(c) ln[M] ₀ /[M] versus time and (d)Mn as a function of %Conversion; reaction conditions: Temperature = 28° C and [M] ₀ /[M _t ^s X] ₀ /[L] ₀ /I ₀ = [PMMA] ₀ /[Cu(1)Br] ₀ /[2,2' bipyridyl] ₀ /[CH ₃ COCl] ₀ =100:0.5:1:0.625 and surfactant	188
5.18	(Brij-98)concentration =0.82gm/10 mL of distilled water (a) Mn as a function of %Conversion (b) PD as a function of %Conversionfor polystyrene at room temperature (c) Mn as a function of %Conversion (b) PD as a function of %Conversionfor polystyrene at high temperature: [M] _o /[M _t ^s X] _o /[L] _o /I _o = [PS] _o /[Cu(1)Br] _o /[2,2' bipyridyl] _o /[CH ₃ COCl] _o =100:0.5:1:0.625 and surfactant (Brij-98)concentration =1.64gm/10 mL of distilled water	192
5.19	Activation energies for decomposition acyl radicals and formation of acyl radical	194
5.20	Action of acyl radical on double bond(a) and subsequent propagation to help in polymerization of ethene(b)	194

.

.

.

xii