LIST OF TABLES

Tables	Title	Page No.
Chapter 1	Introduction	
1.1	Permissible Limits of Different Metal Ions for Potable	38
	Water (in mg/L)	
Chapter 2		I,
2.1	metal removal and adsorption isotherm studies	70
2.1	% removal of metal ions with time for unfunctionalized nanotubes	70
2.2	% removal of metal ions with time for acylated nanotubes	71
2.3	% removal of metal ions with time for amide functionalized nanotubes	72
2.4	% removal of metal ions with time for azide	73
~ ~	functionalized nanotubes	
2.5	Comparative study of different MWNTs	74
2.6	Values of ln(1-Ut) for unfunctionalized nanotubes at various times	75
2.7	Values of ln(1-Ut) for acylated nanotubes at various times	77
2.8	Values of ln(1-Ut) for amide functionalized nanotubes at various times	78
2.9	Values of ln(1-Ut) for azide functionalized nanotubes	79
	at various times	
2.10	Comparative study of different MWNTs	80
2.11	% Removal of metal ions with dosage of functionalized nanotubes	84
2.12	Showing Xe, Qe, Ce, 1/Xe, 1/Qe, 1/Ce, Log Qe, Log Ce for different initial concentrations of Cr+6 solution when their adsorption was studied onto amide CNTs, to study Langmuir and Freundlich isotherms	86
2.13	Showing Xe, Qe, Ce, 1/Xe, 1/Qe, 1/Ce, Log Qe, Log Ce for different initial concentrations of Cr+6 solution when their adsorption was studied onto azide CNTs, to study Langmuir and Freundlich isotherms	87
2.14	The regression equations parameters Qo, K, R2 and 1/n for functionalized CNTs	92
Chapter 3	Comparative study of surface cleaning and modification of MWNT's using various oxidizing agents	0 n
3.1	ID/IG ratios for differently oxidized MWNT's samples	110
3.2	Carbonyl group concentration for differently oxidized MWNT's samples	112

Chapter 4	Preparation of MWNT/PSf composite membranes and	
	its effect on metal removal	
4.1	Variation of the pore size with amount of amide	134
	functionalized CNT's	
4.2	Variation of the smallest pore diameter (micron) and	135
	required pressure (MPa) with weight % of CNT's	
4.3	Values of Zeta potential developed at the surface of	137
	PSf/ % carboxylated CNT composite membranes when	
	in contact with an electrolyte solution	
4.4	Values of Zeta potential developed at the surface of	138
	PSf/ % amide functionalized CNT composite	
4.5	membranes when in contact with an electrolyte solution	1.40
4.5	Permeate flow for different membranes at different	140
AC	pressures	1 4 0
4.6	Removal studies of metal ions at pH 2.6 for amide	143
	functionalized MWCNT/PSf. at pressure of 0.49MPa and 0.882MPa	
4.7	Removal studies of metal ions at pH 2.6 for azide	144
4./	functionalized MWCNT/PSf. at pressure of 0.49MPa	1.4-4
	and 0.882MPa	
4.8	Removal studies of toxic metal ions at pH 2.6 for	149
	oxidized MWCNT/PSf at pressure of 0.49MPa	112
4.9	Removal studies of toxic metal ions at pH 2.6 for amide	150
	functionalized MWCNT/PSf at pressure of 0.49MPa	
4.10	Removal studies of toxic metal ions at pH 2.6 for azide	151
	functionalized MWCNT/PSf at pressure of 0.49MPa	
Chapter 5		
	Nanotubes	
5.1	Various sets performed to obtain polymers	161
5.2	% conversions, weight average molecular weights and	180
	polydispersities for different sets where Monomer(M) =	
	MMA (methyl-methacrylate), Catalyst(C) = CuCl,	
	Ligand(L) = 2,2' bipyridyl, Initiator(I) = acetyl chloride,	
5 7	Surfactant= Brij 98, Solvent = water	104
5.3	Kinetic study of ATRP of PMMA at 60°C using acetyl chloride as initiator	184
5.4	Kinetic study of ATRP of PMMA at low surfactant	187
5.4	concentration (PMLS) using acetyl chloride as initiator	107
5.5	Kinetic study of ATRP of PS at room temperature using	190
J.J	acetyl chloride as initiator	170
5.6	Kinetic study of ATRP of PS at high temperature	191
0.0	$(60^{\circ}C)$ using acetyl chloride as initiator	