
Chapter 2

Theoretical aspects of digital holography

2.1 Introduction

Holography is used to record sufficient information for three-dimensional imaging of 

an object. Conventional holography is generally regarded as a practical technique for 

imaging a 3D object [2.1-2.3]. The modem invention of digital megapixel sensors and 

a digital computer made digital holography possible [2.4-2.5]. Digital holography is 

thus referred to as the technique that uses a CCD camera to record holographic 

patterns and performing the reconstruction numerically using a computer by means of 

diffraction theory [2.6], These recorded intensity patterns or holograms contain 

amplitude and the phase information of the object. Moreover, these digitally recorded 

holograms have many advantages over conventional holography such as ease of 

transmission, faster processing and accuracy in analyzing. In recent years digital 

holography technique has been demonstrated to be a valuable method in different 

fields of optics like measurement of refractive index, particle size, digital holographic 

microscopy, deformation analysis and object contouring among others [2.7, 2.8], The 

most interesting aspect of digital holography is that numerical reconstruction provides 

whole field of the recorded wavefront. That is it yields the intensity distribution and 

the phase distribution of the wave field at any arbitrary plane located between the 

object and the recording plane.

The present chapter deals with the principles of the digital holography technique for 

numerical reconstruction of the complex wave field. The basic concept and procedure 

of wave field reconstruction using digital holography is discussed. In recent era of 

digital imaging, digital holography appears to be a stronger competitor in the field of 

optical metrology for measurement [2.9], Since digital holography is non-destructive 

and non-contact testing, it is preferred for measuring refractive index distributions and
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temperature mapping within transparent media, wavefront sensing, particle size 

measurement, applications in deformation analysis and profile measurement and for 

many other applications [2.10], Thus, by using digital holography, it is possible to 

achieve the spatial three dimensional profile measurements of many objects.

2.2 Interference

If light originating ]from a source get divided into two beams, the inherent fluctuations 

in those two beams are in general correlated, and the beams are said to be completely 

or partially coherent depending on whether full' or partial correlation exists. In light 

beams from two independent sources, the phase functions are usually uncorrelated 

and such beams are called incoherent beams. When coherent waves superpose, they 

produce visible interference effects because;their amplitudes combine constructively 

and destructively [2:11, 2.12]. Interference produced by incoherent waves varies too 
rapidly in time to be practically observed. 1 1 v

When two mutually coherent beams pass through a point, we, can observe the 

phenomena of interference between the wavefronts. The medium1 at that point is 

subjected to the total effect of the superposition; of the two vibrations, and under 
certain conditions, this superposition results in stationary waves, which can be 

observed as interference fringes. Consider the superposition of two monochromatic 
plane waves of complex amplitudes £/j and life ; of the same frequency and with 

different amplitudes. The result is a monochromatic wave of the same frequency and 

the complex amplitude is the sum of the individual complex | amplitudes, i.e.
‘ 1 j 1 1 ' iy

U=Ui+U2- The plane waves can be expressed in items of their intensities /[=|t/i| and
h=m2. ■ : '

i ; . ‘ i

Therefore the resultant intensity 7 of the interference pattern is

PiUfaUi+tyfaUif-qUif+UiUi+U'Ui i| (1)

where the asterisk denotes complex conjugation.'; ;
' ' ' i !

The individual waves can be also representedby .

Ul = and U2=4he%

and the resultant wave by
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/ = /j +J2 + 2y/j/2cos^ (2)

Eq. (1) is known as the interference equation and the term 2^/1/2cos^>is known as

the interference term. It contains information of the phases of the two beams. At 

different points in space, the resultant irradianee can be greater, less than or equal to 

I\+h depending on the value of the interference term, which in turn depends on phase 

difference (cp). Irradianee maxima and minima occur for q>=2mn and cp=(2m+l)jt 

respectively. The dark and bright zones that would be seen on a screen placed in the 

region of interference are known as interference fringes.

An interferometer is, in the broadest sense, a device that generates interference 

fringes. Interferometers can basically be classified into two types: wavefront splitting 

interferometers and amplitude splitting interferometers. Wavefront splitting 

interferometers recombine two different parts of a wavefront to produce fringes. 

Amplitude-splitting interferometers, on the other hand, divide the intensity of the 

beam (splitting the amplitude), which propagate through separate paths and are then 

recombined. Holograms are nothing but the interference pattern between the 

wavefront scattered by the object and a known background wavefront usually called 

the reference wavefront and follows Eq (2).

2.3 Coherence

Coherence is the most important property light should exhibit to be useful for 

holography purposes. It is very important in relation to the interference which has 

been already described in the previous section. It is therefore appropriate to explain 

what coherence is.

Waves are said to be coherent when they are either in same phase or have constant 

phase difference. For the interference to take place, it is essential that the superposing 

waves are coherent [2.13].

Coherence quantizes the ability of the light to form a visible diffraction pattern. It 

directly influences the quality and the visibility of the interference pattern which 

consists of areas with different degrees of constructive or destructive interference. The 

areas are usually referred to as fringes. The fringes are more distinct if two interfering
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waves are more coherent and they are less distinct if waves are less coherent. This 

visibility is quantified by the degree of coherence [2.14]. In other words, coherence 

determines the ability of two interfering waves to create total contractive or 

destructive interference. While perfectly coherent waves create clearly visible 

interference pattern the incoherent ones won't create visible interference fringe at all.

2.4 Hologram recording

Recording of hologram is an important step in the process of holography, as it 

provides three dimensional information of object [2.15]. Recording of holograms can 

be done on different photo-sensitive mediums. In conventional holography, recording 

is done on photosensitive materials like photographic plates. Electronic devices for 

capturing light intensity e.g. photo diodes have been also known for long time but the 

introduction of digital CCD cameras revolutionized this field of recording. In digital 

holography recording is done with the help of CCD cameras [2.7, 2.8],

Experimental setup for recording digital holograms using off-axis method is discussed 

and shown in Fig. 2.1. This setup is known as a Mach-Zehnder interferometer [2.16], 

This is the most commonly used hologram recording setup in the course of this work. 

The beam from a coherent source (Laser) is split into two. One of these beams passes 

through or scattered from the object under investigation and reaches the recording 

medium. This constitutes the object beam. The other wave called the reference beam 

is allowed to illuminate the recording medium directly. These two waves interfere at 

the recording medium to produce the hologram. The hologram is recorded on 

semiconductor arrays like CCD or CMOS [2.7-2. 9].

For an object wavefront with real amplitude distribution of o{£,t)') and phase 

distribution <p0(%,r]) the complex amplitude can be written as

0(^,r/) = o(4,T])e‘^‘^ (3)

The plane (x, y) is transverse to the probe beam. Similarly the complex amplitude of 

the reference with real amplitude ) and phase (pR ( £,rj) can be written as

R^,r1) = r^,T1)elM (4)
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The intensity at the hologram is the square of the .complex amplitude [16], which is 

now the addition of the object wave and reference wave complex amplitudes

l{%>v) = \0{£,ri) + R{Z,rif =(0{t;,Ti)+R{Z,ri)){o(£;,ri) + R{Z,ri)y (5)

= U(^V)l?*(#,7)+d(^7)0*(#,7) + 0(47)>(^7) + /?(#,7)cr(#>i7) 

Here * denotes complex conjugation.' 1

1

2.5 Hologram reconstruction

In a digital holography setup, a digital camera replaces the film [2.17], This not only 

offers a convenient and versatile setup, but also provides a detector that has much 

more linear response with respect to the incident intensity than a photographic film.

18



The recording setup is practically unchanged compared to the film-based version, but 

the reconstruction process is quite different. The digital hologram captured by the 

digital camera is processed by a computer program to extract the intensity and phase 

distributions corresponding to the object [2.18],

Fig. 2.2: Hologram reconstruction setup for transparent objects

The amplitude transmittance of the developed hologram is proportional to the 

recorded intensity of the fringe pattern; and is

h(%,rj) = helpTl(Z,ri) ' . (6)

where ft is a constant, t is the exposure; time and hQ is the amplitude transmission of 
the unexposed plate. |h($ rj) is also called the hologram function. In digital holography 

using CCDs as recording medium ho can be neglected.

Holograms are reconstructed by illuminating it with the reference wave (Fig. 2.2). For 

hologram reconstruction the amplitude transmission has to be multiplied with the 

complex amplitude 0f the reconstruction (reference) wave giving rise to
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R{&n)h{&n)=Ri^n)[h+^(^n)] (V

Using Eq. (3), Eq. (4) and Eq. (5). Eq. (7) can be modified to 

R(£,T])h(%,T]) =
R{^n)[h,+p-r{R{^n)R'{^ri) + 0(^,ri)0'(^,Ti) + 0{^T})R'(^,ri) + R(^,ri)O'{^r])\\

= [At+>ffr(rl + o2)]/?(#,>7) + /?Tr10(^7) + ^2(^7)0*(#,»7)

(8)

This equation represents the amplitude of the diffracted reference beam from the 

micro-interference structures of the hologram. There are three main terms. The first 

term is the reference wave multiplied by a constant. This is represents nothing but the 

un-diffracted reference wave transmitted from the hologram structures and does not 

contain any information about the object. The second term does contain object 

information. In fact it reconstructs the object exactly at the same position where the 

original object was placed. So this provides the virtual image of the object. The 

multiplicative constant just changes the brightness of the reconstructed virtual image.

Also it can be seen that since 0 (£, rj) is the complex amplitude of the object 

wavefront, it contains phase information about the object. Since phase is dependent on 

the path length, the reconstructed virtual image of the object contains the depth or 3D 

profile of the original object. This reconstructed wave is indistinguishable from the 

original object wave. An observer sees a three-dimensional image which exhibits all 

the effects of perspective and depth of focus. The third term produces a distorted real 

image of the object. For off-axis holography the virtual image, the real image and the 

undiffracted wave are spatially separated.

In digital holography, the digital hologram should be multiplied by the digital 

reference wave, which must be a replica of the experimental reference wave [2.19].

When the distance of propagation equals the optical path distance d between the 

object and the hologram plane in the recording process, the real image comes into 

focus.

Fig.2,3 illustrates the relationship between visual image and real image in the 

reconstruction process. In optical reconstructions, the virtual image appears at the 

position of the original object and real image is formed at an equal distance d but in 

the opposite direction.
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Virtual
image

Fig. 2.3: Holographic reconstruction showing the virtual and real images

2.6 Holographic Interferometry

Using holography \the coherent wave fields reflected from the two states (or two time 

instances) of the object can be compared to produce an image of the object on which 

interference fringes are superposed. This is called holographic interferometry. This 

method finds application in many areas like finding object deformations, mapping of 

refractive index variations, mapping temperature and density changes etc. This is a 

non-contact method with very high sensitivity that maps optical path length changes 

with resolutions of several nanometers.

To achieve holographic interferometry, the wavefront interacting with the two states 

of the object should be interfered. So the use of coherent radiation is necessary and 

lasers with high coherence length are the most commonly used as light sources in 

holography. In conventional holography, two methods can be used for achieving 

holographic interferometry. These are illustrated in Fig. 2.4. The first of the 

holographic interferometric technique involves recording the holograms of the two 

object states in the same photo-sensitive medium. This is called double exposure 

holographic interferometry. When the coherent reference beam impinges, the 

hologram, it gets diffracted from the microstructures. These microstructures can be 

imagined as randomly oriented diffraction grating. The reference beam so gets 

diffracted in the direction of the object location according to Eq. (8). But since the 

recorded double exposure hologram contains fringes due to two states of the object, 

the two diffracted object wavefront will result. One diffracted in the direction of the
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original object state and the second one propagating in the direction of the final state 

of the object. Since both were reconstructed using the same coherent source, these 

two will interfere to produce a set of interference fringes, superposed on the image of 

the object. The deformation or change in the optical path length could be determined 

from this interference fringes.

(a) (b)

Fig. 2.4: Holographic interferometry (a) Double exposure, (b} Real-time

The second technique for holographic interferometry is called real-time method 

[2.21]. Here the hologram of the initial state of the object is recorded on the photo­

sensitive medium. If it is a photographic plate, it is then developed and fixed at the 

original position. The original object and the object beam are not removed in this 

technique. The reference beam is now made to impinge the hologram. This produces 

an object wavefront propagating in the direction of the original object. This will 

interfere with the light from the object. This will produce a set of interference fringes 

on the original object itself, depending upon the amount of optical path length change 

between the holographic image and the original object.

In digital holography since the reconstruction is achieved numerically, the double 

exposure technique is applicable. Advantage of digital holographic interferometry is 

that due to availability of phase information due to numerical reconstruction, the
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phase change of the object wavefront between exposures is directly available, making 

the deformation analysis simple without the need for additional optics for phase 

stepping.

Let us find the mathematical relationship between the initial and final object states for 

holographic interferometry. Assuming the complex amplitude of the object wavefront 

in the initial state be

O, (x, y) = 4, exp [/$ (x, y)] (9)

where y) is the phase of the object wavefront in the initial state. Here it is 

assumed that the reflectivity of the object is same across its surface. Due to change in 

the object (which could be due to deformation, change in refractive index, change in 

temperature etc) the phase of the object wavefront changes from <ji{x, y) to $(x, y) + 

A$x, y). Here A$x, y) represents the change in phase due to the optical path length 

change and is called the interference phase. The new complex amplitude of the object 

wavefront can therefore be written as

Of (x,y) = 4, exp [i {$ (x, y)+A^ (x,y)}] (10)

The intensity of the holographic interference pattern is the absolute square of the sum 

of the complex amplitudes in Eq. (9) and Eq. (10).

I{x,y) = \0., (x,y) + Of (x,y)|‘ = [O. (x,y) + Of (x,y)]x[Oi(x,y) + Of (x,y)]

(11)

Substituting the exponential representation of <9, and <9/in Eq. (11) one gets

/(x,y) = 24,2[l+cosA^(x,y)] (12)

This provides the relationship between the intensity and the interference phase 

distribution [23]. As mentioned in conventional holography it is not possible to 

compute the phase distribution without phase stepping since ‘cos’ is an even function. 

But digital holography overcomes this problem by numerical reconstruction.

The relation between the optical path length and the obtained interference phase 

distribution for near normal illumination directions is
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(13)h(t>{x,y)=~^x,y)

It is assumed here that the propagation direction of the object beam along the z-axis. 

A {x, y) is the optical path length change along the z direction. So by knowing the 

phase change or the interference phase the optical path length change can be 

computed.

2.7 Numerical reconstruction of digital holograms

Conventional holograms recorded on photographic plates are reconstructed by 

illuminating it by the reference wave or they can be said as to be reconstructed 

optically. But in digital holography, the holograms are stored as digital images in a 

computer. So they have to be reconstructed numerically [24]. Numerical 

reconstruction of digital holograms is achieved by assumption of scalar diffraction 

theory [4, 5], Here the object wavefront is reconstructed by simulating the diffraction 

of the reference wavefront occurring at the microstructures of the hologram. This 

involves the use of diffraction integrals. In the course of this work, digital holograms 

were reconstructed using either Fresnel-Krichoff diffraction integral or Angular 

spectrum propagation diffraction integral. Both are based on the scalar diffraction 

theory [6],

2.7.1 Wave propagation

Wave propagation has always been a topic of common interest especially in acoustics 

and optics. Study of wave propagation in these fields requires sharing of common 

wave equation for scalar fields. Since light is considered to be a wave, one needs to 

simulate its propagation and understand the interaction mechanism with media. In 

most cases experiments need to be performed to verify the theory.

The mathematical derivations in these sections are important for presenting theoretical 

optical analysis in digital holography. It also permits approximation of the image 

plane by propagating the wavefront from the hologram to various distances. Further 

approximations of Kirchhoffs integral then lead to the classical Fresnel and 

Fraunhoffer diffraction integrals [2.6, 2.7], Although the intensity of the diffracted

24



field is the primary concern of many digital holography applications, emphasis is on 

both the amplitude and the phase of the diffracted field that are important for this 

work. The next section deals with the meaning of a scalar wave equation and the 

mathematical solution of the scalar wave equation by Green’s function that can lead 

to the well known Kirchhoff diffraction integral solution [2.6, 2.11],

2.7.2 The scalar wave equation

The first step to understand the object wave field propagation is to create a model of 

the processes involved, make reasonable assumptions and approximations and making 

it appropriate for a numerical propagation.

The explanation of propagation of light begins1 with the fundamentals of 

electromagnetism, Maxwell’s equations [2.11, 2.12]. Light being an electromagnetic, 

its behavior can be derived from Maxwell’s fundamental electromagnetic equations. 

Hence, if one attempt to take into account everything that takes place during the 

interaction of an object with a high frequency electromagnetic wave, one has to solve 

the Maxwell's equations.

The electromagnetic wave consists of the time varying electric and magnetic fields. In 

a homogeneous isotropic medium like free space or a lens with constant refractive 

index, the electric and magnetic field vectors form a right-handed orthogonal triad 

with the direction of propagation. The Maxwell’s equations bring together electric and 

magnetic fields. The simplified Maxwell's equations in vacuum can be written as

V • eE = 0 (Gauss’ law for electric field) (14)

V • jj.H = 0 (Gauss’ law for magnetic field) (15)

where E represents electric field and H represents magnetic field vector, ji and s 

are the permittivity and permeability respectively of the medium (in vacuum, they are

V x E --ji—~ (Faraday’s law)
dt

(16)

(Amperes’ circuital law with Maxwell’s correction) (17)
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represented by // o and s o). The permittivity and permeability of free space (vacuum)

is linked to the speed of light in a vacuum by the equation c = —j=—
V Ao <5-0

These equations explain the electric and magnetic field properties [2.24]. Although 

the field’s travel perpendicular to each other, they are in phase, travelling at the speed 

of light in vacuum.

The easiest approach to understand a scalar wave equation is to consider Maxwell’s 

vector wave equation in a linear, homogeneous, isotropic and non-dispersive medium 

like vacuum [2.25]. Maxwell's equations can then be used to derive a wave equation 

for both E and H fields.

J. &- n2 82F r
V2E--t— = 0 - (18)

c2 at2

V2H-
n1 d2fl 
c2 dt2 = 0 (19)

where n is the refractive index. All the three components of E, i.e Ex, Ey and Ez as 

well as the three components ofH, i.e. Hx, Hy and Hz obey the waVe equations. The 

relationship between the wave vectors and their components is

E = EJe. + Eyey + E_ez and H = HJr +Hyey+ Hze, (20)

where e ’s represent the unit vector. Since a linear, isotropic, homogenous and non- 

dispersive medium is considered, all of the scalar field components satisfy the wave 

equation and so the vector wave equation becomes a scalar wave equation [2.26]. 

Therefore for example Ex satisfies the scalar wave equation,

V2E = 0 (21)
x c2 se x 1

All the other components obey such wave equation. Therefore the behavior all the 

components can be expressed through a generalized scalar wave equation

V2«(P,t)
82u(P,t) 

dt2
= 0 (22)
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where u(P, t) represents any of the scalar fields [2.27]. For a linear, homogenous, 

isotropic, non-dispersive medium all the field components behave in similar manner 

and can be described by a single scalar wave equation. But this will not be case when 

a inhomogeneous, anisotropic, non-linear or dispersive medium is considered. But for 

our case we are going to consider propagation of light (electromagnetic radiation) in 

air and for large objects, so scalar wave equation will suffice.

If the disturbance (light) at position P and time t can be represented by a scalar 

function since we know that it satisfies the scalar wave equation. This can be written 

as

u(P,t) = Re[^(P)e,'WpH”')] . (23)

! ! 
where A(P) and $P) are the amplitude and;phase of the wave at position P, a> is the

angular frequency of the optical radiation and ‘Re’ represents the real part. This can 

further be written as

M(P,t) = Re[C/(P)e-to] (24)

where U(P) = A(P)dm ; (25)

is the complex amplitude. This optical disturbance should satisfy the scalar wave 

equation given by Eq. (22) at each source free point. Since we assume that the 
frequency of the radiation is known, U{P) can! will provide information about the 

disturbance at point P. So U(P) must then satisfy the time independent equation 

(Helmholtz equation)

V2U+k2U = 0 ! (26)

where k is the wave vector which depends upon the wavelength of the radiation.

. I

i ■ 1

2.7.3 Fresnel-Kirchoff diffraction integral

The solution of this equation gives the value of the amplitude and phase of the field 

anywhere in the space at a given moment of time,; provided that there are well-defined 

boundary conditions [2.28]. This equation is applicable to a linearly polarized 

monochromatic EM wave, which is being used i in the system under consideration.
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Howsoever simple the Helmholtz scalar equation might be compared to the Maxwell's 

equations; it is still difficult to find a solution, because this case deals with a surface 

EM distribution rather than volume distribution [2.29]. Making one more 

approximation and using Green's theorem the EM field anywhere in space can be 

expressed as a function of the EM field distribution on a finite surface as [2.30]

U Ufe (27)

where U(Pq) is the EM field at a particular point in space that has to be calculated 

provided the complex amplitude U at another plane and G is the corresponding 

8Green’s function, — denotes a directional derivative on the surface taken m the 
dn

k:.,

normal outward direction to the surface.

When light strikes an object, the scattered EM field is completely characterized by the 

illuminated surface. The Kirchhoff s formula of diffraction by a planar screen can be 

used to find the field at the point Po [2.31]. The planar screen is especially of 

importance in digital holography, since holograms can be considered as apertures on a 

planar screen. The diffraction from a planar aperture or screen is shown in Fig. 2.5. 

The closed surface S is chosen to consist of two parts. A plane surface Su lying 

directly behind the diffracting screen, joined and closed by a large spherical cap, Si, 

of radius R centered ,at the observation point P0.

Fig. 2.5: illustration of Kirchhoff formulation of diffraction by a plane screen
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The total closed surface S is simply the sum of Si and S2. The problem of diffraction 

of light can be illustrated by having an aperture in an infinite opaque screen. In Fig. 

2.5, a wave disturbance is assumed to impinge on the screen and the aperture from the 

left, and the field at the point Pq behind the aperture is to be calculated. Using as a 

unit amplitude expanding spherical wave as the Green’s function of the problem, 

assuming Sommerfeld radiation condition and adopting the assumptions that (i) the 

across the opening U and its normal derivative are same behind after the aperture and 

(ii) for the screen U and its normal derivative are zero, Eq. (27) reduces to

tftfh—rf—G-lrC/U <28>
An ,e v on .on J

For a point illumination source and Po large distance away from the planar screen, this 

formula reduces to ,

1 P i
u(p0)=—jjtf (/»)—-(i+cos eyjs

ia z r Z
(29),

where 9 is the angle between the normal to the aperture plane and r. This equation is 

known as the integral theorem of Helmholtz and Kirchhoff, which plays an important 

role in the development of the scalar theory of diffraction [33].

2.7.4 Numerical reconstruction of digital holograms by 
Fresnel Transform

The diffraction of a light wave at an aperture perpendicular to the incoming beam (or 

a hologram perpendicular to the incoming beam) as shown in Fig. 2.6 can be 

described by the Fresnel-Kirchhoff integral [2.7, 2.8].
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(30)
1 e'k' 1

U(x,y)=-T~\[h(%,T])R(Z,Ti)-----(1+cos d)d^drj
lA, h r 2.

h(£,,rj) is the hologram function or just the hologram and /?(£?/) is the complex 

amplitude of the reference wave and r is the distance between a point in the hologram 

plane and pciint in the reconstruction plane, which not necessarily be the image plane. 

For plane reference beam the R is nothing but an array of real numbers. The distance r 

can be written in terms of the co-ordinates of the two planes as

r = J(x-g)2+(y-r;f+z2 (31)

Fig. 2.6: .Coordinate system for digital hologram reconstruction using Fresnel-Kirchoff
diffraction integral.

The diffracted wavefront from the hologram plane is propagated to a plane which is 

situated at distance d from the hologram plane but parallel to it. This plane could be 

the image plane. It can be seen that propagation using diffraction integral involves a 

complex function. Numerical reconstruction yields the complex amplitude 'at the 

desired plane. It can then be used to determine the intensity or phase of the object 

wavefront. For large propagation distances compared to the hologram size, r can be 
replaced'by the first two terms of its Taylor series expansion.
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(32)r = d +
2d

, {y-v)1
2d

Also when d is large the angle 0 between the normal and r becomes very small so that 

cos(9) can be approximated by 1. Putting the value of r and cos(0) into Eq. (30) and 

re-arranging the terms yield

U (x, y) - -—exp (~zM) exp 
iXd

P

2 dK '

-i—(%2+TJ2) 2 d{ ’ exp

(33)
d^dr]

This is called the Fresnel approximation or Fresnel transformation [2.33]. From this 

equation it can be seen that it enables the reconstruction of the wave field at any plane 

behind the hologram by changing the reconstruction distance d. If one looks closely at 

the Eq. (33), it can be seen that it is nothing but the Fourier transform of the first three 

terms in the integral. This means that the numerical reconstruction using Fresnel 

transform could be implemented by the use of Fourier Transforms. Since we have 

propagated through a distance d behind the hologram, it basically reconstructs the real 

image of the object [2.34]. In conventional holography also the real image can be 

directly seen by placing a screen on the path of the diffracted beam. Virtual image that 

lies behind the hologram plane is a source of diverging wavefronts. Reconstruction of 

virtual image requires the use of a lens, like the eye of the observer. In digital 

holography also the reconstruction of virtual image can be achieved by using a digital 

lens with focal length equal to half the propagation distance placed just after the 

hologram to reconstruct the virtual image with unit magnification. This is represented 

in Fig. 2.7.
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Fig. 2.7: Reconstruction of virtual image in digital holography using Fresnel-Kirchoff
' i

integral and a digital lens

A converging lens which produces a unit magnification virtual image (d=2f, where/is 

focal length of the digital lens) can be mathematically represented as ;

L(£,T}) = exp (34)

So now at the complex amplitude at the imaging for the reconstructed virtual image is 

given by, .

U(x,y) = exp i-ikd) exp

?)exp

-/—(x2 + y2) 
,2dx ' J
k

2d 
. k 
l2d (f+4 expri- -

(35)

d£dr}'

Now digital imaging devices has discrete sized‘pixels along both /and tj directions. 

This requires a digitization of the Fresnel Trarisform. Noting that k=2n/X and using 

the following substitutions
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(36)v = — and u ■ 
Xd

. y 
Xd

Eq. (33) becomes

iXd
exp| -i^-dj&xp^-inXd^v1 + /r2)J

jjh(%,Tj)R(<*,Ti)exp -ijj(%2+rt2) cxp[i2z(4v + rjM)]d^dTj
(37)

The Fresnel transform can be digitized since the hologram function given by Eq. (6) 

in the case of digital holography is matrix of size N*N sampled at regular steps of A£ 

and At] in the' £ and rj axes. This makes the pixel sizes in the horizontal and vertical 

directions of the recording device A£ and At) respectively. Using the discrete values 

at the hologram plane, the integral equation can be converted into a sum

U (m, n) - exp —■■ d j exp [-izXd (m2 A v2 + n2 A// )]
iXd

N N

II*=1/-I
■£Zh(k,l)R(k,l)exp . n~lId (&2A£2 +/2A?72) exp[/2^-(kA^mAK + /A77n2A/r)]

(38)

The relationship between the sensor pixel size and the reconstructed image pixel size 

can be written as

Ax =
Xd

NA4
and Ay =

Xd
NAt]

(39)

Using these in Eq. (38)
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tjth{k,l)R(k,l)exp

-inXd m
N2A? N2Arf

-i-jLtfAf+PAT?) exp
..( km In ^ i2x\------- +—V N N )_

(40)

Eq. (40) represents the discrete Fresnel transform. The complex amplitude at the 

reconstruction plane; is calculated by taking the Fourier transform of the product of the 

digitized hologram function, the matrix representing the reference; beam and the 

exponential function. This can be implemented numerically using FFT algorithm 

[2.35]. ' . , :

2.7.5 Reconstruction using Angular Spectrum Propagation 
(ASP) integral
Angular spectrum method has many applications, but one of utmost importance is in 

the optical holography. Based on angular spectrum descriptions of the scattered field, 

E. Wolf provided the relationship between the detected scattered si gnal und the object, 

which later became the foundation of optical diffraction tomography [2.36, 2.37]. 
Angular spectrum propagation assumption of scalar diffraction theory used in this 

method is more appropriate for short distance non-paraxial propagation which occurs 

especially near the object. Since the angular spectrum of a complex; field is evaluated 

through' 2-D Fourier transform, it is natural to take advantage of the computation 

efficiency of Fast Fourier Transform (FFT) [2.35],

i
Provided the complex disturbance at any other point, the calculation of the complex 

disturbance U at any observation point in space is the core of the!,scalar diffraction 

theory. This could be accomplished in three ways, out of which two,employ the use of 

Green’s functions. These methods yield the Fresnel-Kirchoff diffraction formula and 
the Rayleigh-Sommerfeld diffraction formula [2.31-2.33]. These method also assumes 

that the field is observed at a distance much larger than the wavelength {k » Hr), 

where r is the distance between the aperture and observation point) from the aperture.

Another approach is to formulate the scalar diffraction theory from the framework of 

angular spectrum. The angular-spectrum representation of planewaves has been
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widely used to study the propagation properties of the wave fields in homogeneous 

media. If the complex field distribution of a monochromatic disturbance is Fourier- 

analyzed across any plane, the various spatial Fourier components can be identified as 

plane waves traveling in different directions away from that plane [2.37]. The field 

amplitude at any other point (or across any other parallel plane) can be calculated by 

adding the contributions of these plane waves, taking due account of the phase shifts 

they have undergone during propagation [2.38],

Suppose a wave is propagating along the positive z direction. Here (x,y) is the 

transverse plane. Let the complex amplitude be given by U(x, y, 0).at z = 0. The aim 

of the diffraction theory is to compute the complex amplitude U(x, y, z) at a point (x, 

y, z) at distance z to the right of the original plane (see Fig. 2.8).

Fig. 2.8: Propagation of wavefront using ASP diffraction integral

The Fourier transform of U(x, y, 0), i.e., its spectrum at z = 0 is given by

UifxJrl 0)= K\\u{x,yfi)e^{f^^dxdy ' (41)

where fx, fy are the spatial frequencies in the x and y directions respectively. 

Basically, Fourier transform decomposes [40] the complicated function into a series
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of simple complex functions. So, the inverse Fourier transform of Eq. (41) provides 

the complex amplitude at (x, y, 0).

U(x,y,0)= )\u{fxJy',0 )en^f^dfxdfY (42)

If the complex amplitude at a plane parallel to the (x, y) plane but a distance d from 

the (pc, y, 0) plane is known, then the angular spectrum at this plane is

U(fx,fy;d)=l lU(x,y,z)e^iHfxX+f^dxdy 1 (43)
—00

If the relationship between the angular spectrums at (x, y, 0) and (x, y, d) can be 

found, the effect of wave propagation on the angular spectrum can be determined. 

Now the complex amplitude at (x, y, d) can be written as

U{x,y,d)= f lU{fx,fY;d)ei2<f*x+f^dfxdfY (44)
-CO . ,

This complex amplitude should satisfy the Helmholtz equation (Eq. (15)). Using U 

given by Eq. (44) in Helmholtz equation gibe by Eq. (26)

(fx,f¥;d) + k2[\-A2/j~Z2tf]u{fxJY;d) = 0 : (45)

where Zfx and X/y are the direction cosines in the x and y directions respectively. A 

solution to the above equation may be written as

U {fXJY; d) = U(fx,fY; 0) .^ / (46)

When the direction cosines have the relationship l2/^' +^fY <1, the effect of 

propagation over a distance d is simply a change in the relative phases of the various 
components of the angular spectrum. Each plane wave component travels at a 

different angle and hence travels different distances between the parallel planes in 

introducing relative phase delays. When the direction cosines follow the
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relationship A2/^ + /l2/r >1> 4/x and Afy are no longer interpretable as direction 

cosines and Eq. (46) can then be written as

U(fxJY:d) = U{fx,fr;0)e-^ (47)

where // is a real number. So these wave components are rapidly attenuated by 

propagation phenomenon. These components are called evanescent waves. When the 

distance d is larger than several wavelengths, the evanescent components will not be 

present as they are attenuated rapidly. By inverse Fourier transforming Eq. (46) one 

gets

Therefore the disturbance observed at {x, y, d) can be written in terms of the initial 

angular spectrum and a phase factor called the free space propagation function. So by 

knowing the complex amplitude of the wavefront at any plane, the wavefront at any 

other plane can be obtained by propagating the angular spectrum using Eq. (48). This 

method has some advantages over Fresnel-Kirchoff integral such that there is no 

assumption on the propagation distance between the planes under consideration other 

than that the field should not be observed very near the aperture producing the 

diffraction [2.41], Whereas the Fresnel or paraxial approximation used in the Fresnel- 

Kirchoff diffraction integral needs the observation planes be appreciable distance 

apart. So the angular spectrum propagation (ASP) will be useful in the case where the 

distance between the hologram and image plane are small. For reconstruction of 

digital holograms using ASP integral the hologram the product of the matrix of 

hologram transfer function and the matrix representing the reference beam is Fourier 

transformed [2.42, 2.43]. This will provide the frequency spectrum of the scattered 

reference beam from the hologram micro-structures. As we have seen from Eq. (8), 

this will contain three terms corresponding to the un-diffracted reference beam, the 

virtual object and the real object. Since the frequency spectrum is available, it is 

possible to separate out the different beams and perform a filtering in the frequency 

space. The filtered spectrum containing the information about the object only can be 

obtained and propagated to the image plane. So in the reconstructions there will not 

be any overlap between the three beams. Numerical reconstructions in digital
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holography using ASP integral can be done by first Fourier transforming the product 

of the hologram function and the reference beam and then applying a frequency 

domain filter to extract information due to object along and then propagating it to the 

image plane. This can be written as

U(x,y,z) = 3-1 (49)

Here U(x,y,0) = R(x,y,Q)xh(x,y,0) (50)

2.8 Computing intensity and phase of the object wavefront

The complex amplitude obtained from the either Fresnel transform or angular 

spectrum integral, is an array of complex numbers. This can be used to determine 

either the intensity or the phase of the object wavefront [2.44]'.! The intensity is 

calculated from the absolute square of the Complex amplitude distribution of the 

object wavefront and can be written as

l(x,y) = \u{x,yf (51)

Phase distribution of the object wavefront is calculated from the angle that complex 

amplitude makes with the real axis

<p{x,y) = arctan—[—(52)

The value of the computed phase ranges from -7rto k and is called wrapped phase 

distribution. Unwrapping has to be applied' to obtain the cpntinuous phase 

distribution.

As described holographic interferometry is able to compare wavefront existing at two 

time instances. But digital holography [45] has an added advantage. It can directly 

compare the phase of the object wavefronts existing at two time ‘instances. This is 

done by reconstructing the object wavefront for the two states separately and 

computing the phase using Eq. (52). '; '

„,fcrf = arc.an^^| (53)
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<p2 (x, y) = arctan Imfc/akr)]
(54)

where U\ is the complex amplitude of the object wavefront in the first state and the U2 

is its complex amplitude distribution in t he second state and 9\ and d2 are the 

corresponding phases computed. The phase difference or the interference phase can 

then be computed using

Ad(r v^=Mx>y)-A(x’y)
^ ^ Mx’y)~Mx’y)+2^ ifMx>y)<A(x>y) (55)

From this equation, we can calculate interference phase directly from the digital 

holograms. The relationship of the phase change to the change in optical path length 

is given by

A0(x,y) y-A(x,y) (56)

This optical path length change could be brought about by object deformation Al(x, 

y), refractive index change A n(x, y), temperature change A T(x, y) etc. So from the 

interference phase information on these parameters can be obtained.

2.9 Codes for numerical reconstruction of holograms
• i

Digital holograms can be reconstructed using either the Fresnel transform or the 

Angular spectrum integral. Both involve taking Fourier transforms. Computer codes 

for hologram reconstruction using these approaches were written in MALAB. These 

were tested on several holograms for the reconstruction of object intensity and phase.
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Other than this MATLAB code for computation of phase difference was also 

developed. Other developed codes included tomographic inversion by Abel inversion.
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