
Chapter 3

Testing of wavefront from lenses

3.1 Introduction
Wavefront-sensing techniques provide a perfect method for quantitative as well as 

qualitative understanding of the wavefonts emanating from optical systems. The 

measurement of the wavefront parameters will provide a means for proper selection of 

optical components depending upon the application needs.

Lens if one of the most important optical component used for wavefront 

manipulations. The measurements of lens parameters such as focal length, radius of 

curvature, and refractive index of the lens material as well as. the shape of the 

wavefront provided by a lens are important for their proper selection in various 

applications. Many applications not only demand enhanced quality, but also require 

exact specification of lens-characteristics. In particular, an accurate knowledge of the 

refractive index of the glass materials can provide one with information about the 

materials’ reflectance and transmittance. There are many methods for the 

determination of these lens parameters. These include liquid immersion methods and 

optical interferometric methods using shearing plates and gratings [3.1-3.17]. The 

interferometric methods compare the wavefront from the test lens with a reference 

plane wavefront for the determination of its flatness. Recently a method using 

Michelson interferometer was proposed [9]. This method has the advantage that the 

focus and radius of curvature of the lens were determined from positions of the lens, 

which resulted in a uniform field of view (single fringe corresponding to constant 

phase difference). But all the above-mentioned methods require a comparison with a 

physical plane wavefront, which may introduce some errors if this wavefront is not 

really uniform (plane) or does have some aberrations. In digital holography, the 

holograms recorded using a light-sensitive detector array could be reconstructed 

numerically, yielding both the amplitude and the phase of the signal wavefront [3.18,
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3.19]. One of the greatest advantages of digital holographic interferometry is that one 

can compare the digitally reconstructed signal wavefront with any synthetically 

generated (computer-generated) wavefront during the reconstruction process. This 

means that the signal wavefront can be compared with an ideal wavefront rather than 

a physical one. This will improve the measurement accuracy of wavefront properties 

such as curvature and aberrations. This aspect of digital holography has already been 

used for a surface shape measurement [3.20]. Here digital holography is used as a 

single shot method for determination of various lens parameters as well as to 

investigate wavefronts produced by lenses [3.14, 3.15]. The signal wavefront from the 

test lens is compared with a synthetically generated reference plane wavefront for 

parallelism to determine the focal length and radius of the curvature of lenses. These 

parameters are then used in the thin lens formula for the determination of the 

refractive index of the lens material. The wavefront curvature as well as amount of 

deviation of test lens from coliimation position is also determined by comparing the 

shape of the wavefront produced by the lens with an ideal plane computer generated 

wavefront. Here the method is presented for testing of thin bi-convex lenses. But the 

method could be extended to test any simple lens or a lens system.

3.1. Measurement of parallelism of the wavefront

The experimental geometry for the determination of the focal length of lenses is 

shown in Fig. 3.1. Light from a laser source is expanded using a spatial filtering 

assembly, which could be an optical fiber. This expanded beam is passed through the 

collimating lens. The collimating lens is so adjust that reconstructed the phase at the 

detector plane corresponds to a plane wave. The collimated beam is split into two 

using a beamsplitter. One of the two beams is then focused and passed through a pin­

hole. The test lens is kept at a position nearly equal to its focal length from the pin­

hole. The test lens is mounted on a translation table so that it can be moved along its 

optic axis. The wavefront from the test lens interferes with a slightly off-axis plane 

reference wavefront at the detector or hologram plane employing Mach-Zehender 

geometry. The microinterferogram (hologram) is recorded by a CCD camera and 

stored in a PC. The coordinate system for the recording process is shown in Fig. 3.2.
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The complex amplitude of the interference pattern at the hologram plane according to 

Fresnel-Kirchoff diffraction integral is given by
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where Ui(x, y) is the complex amplitude of the wavefront at a tangential plane just 

after the back surface of the lens, d is the distancehetween the lens and the hologram 

plane, and is the wavelength of the light used. The second term on the right-hand side 

is complex amplitude of a plane wavefront of amplitude A incident an angle 9 with 

the x axis. The interferogram is recorded as an intensity pattern with its intensity as 

the square of the absolute of complex amplitude in Eq. (58).

Spatial filter

Fig. 3.1: Experimental setup for exact measurement of focal length of lens using 
digital holography. Test lens was mounted on a translation stage.
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Fig. 3.2: Coordinate system of the recording as well as reconstruction geometry. The 
wavefront due to a lens placed just inside the focus is also shown. The y and p axes 

are into the plane of the paper.

During the reconstruction process, the hologram is illuminated with a conjugate of the 

reference wavefront, and the complex amplitude UL(x, y) of the original signal 

wavefront from the test lens can be computed numerically either by using the Fresnel 

transform or Angular Spectrum Propagation approach. As mentioned earlier the main 

advantage of the digital holographic process is the direct computation of phase from 

the computed complex amplitude. The phase of the wavefront at a plane tangent to the 

back surface of the test lens is

d„, = arctan
1x0 foi (*>?)]

Rett/, (x,y)]
(59)

This phase depends upon the radius of curvature of the wavefront after the test lens. 

This radius of curvature of the wavefront Rw depends upon the amount of deviation 

from collimation position (AJ) and focal length of the lens/and is given by [3.7]

(60)

The phase at the plane tangent to the back surface of the test lens can also be written 

as (see Fig. 3.2 for details)
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(61)

It can be seen that the phase depends upon the A/'and hence the radius of curvature of 

the wavefront passing through the test lens, and when the beam is exactly collimated 

this phase is constant across the plane. Digital holograms of the wavefront from the 

test lens at various positions of the lens from the point source are recorded. Fig. 3.3 

shows one of the simulated holograms using a test lens with a focal length of 50 mm 

and A/= 0.1 mm. The hologram was simulated considering a CCD array of 

1024x1024 pixels of 9.8 pm size and an 8 bit dynamic range; the reference wave was 

introduced at an angle of 1° with respect to the £, axis (see Fig. 3.2) taking into 

consideration the spatial frequency limitation. The distance from the test lens to.:, the 

hologram plane was 0.5 m. Only a portion of the hologram of 512x512 pixels is 

shown. The phase of the signal wavefront from the lens is computed using the 

Angular spectrum propagation integral.

The computed phase of the wavefront from the test lens is then compared with the 

phase of a synthetic plane wavefront used as a reference. The reference phase </ir(x, y) 

introduced digitally. The interference phase between the computed phase of the signal 

from the test lens y) and the digitally input plane wavefront $r{x, y) is directly 

obtained by subtraction.

Fig. 3.3: Simulated hologram for a test lens of 50 mm focal length and Af=0.1 mm.
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It can be seen that the phase map will contain concentric circles, with each 2% phase 

change representing a depth change of X, when the beam is not perfectly collimated. 

When the beam is perfectly collimated the phase map will yield a single fringe 

corresponding to the constant phase difference between the two wavefronts. Therefore 

by moving the lens along the optic axis and comparing the computed phase with the 

phase of a plane wavefront, the position where a single fringe results can be found. 

This is the collimation position, and this position gives the focal length of the lens. 

Fig. 3.4 shows the change in the radius of curvature of the wavefront with when test 

lens is moved from inside focus to focus to outside focus. Fig. 3.5 shows the phase 

maps computed from the simulated holograms and the digitally introduced plane 

wavefront for a test lens with a focal length of 50 mm as it is shifted from its 

collimation position by different amounts. It can be seen that as the lens:;is moved 

from inside focus the fringes in the phase map decrease, become single fringe at 

focus, and start to appear again as the lens is moved outside focus.

Fig. 3.4: Change of the radius of curvature of the wavefront with defocusing of the
test lens.
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Fig. 3.5: Simulated phase maps for different defocusing for a test lens with a focal 
length of 50 mm. (a) 0.5 mm inside focus, (b) 0.1 mm inside focus, (c) 0.02 mm inside 

focus, (d) at focus, (e) 0.02 mm outside focus, (f) 0.1 mm outside focus, and (g) 0.5
mm outside focus.

Experiments were conducted with a test lens of effective focal length 50.2mm having 

a clear aperture of 25.4mm. The lens was mounted on a manual translation stage with 

10pm resolution. Holograms were recorded for various positions of the lens as it was 

moved from inside focus to focus to outside focus. A CCD chip having 580x760 

pixels with 9.8pm pixel pitch and 8-bit dynamic range was kept 15cm from the test 

lens as the recording device. Fig. 3.6 shows the recorded hologram for a defocusing of 

A/=6mm (Af=f-zs, where zs is the distance of the lens from the point source). The laser 

source used had a vacuum wavelength of 633nm.
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Fig, 3.6: Experimentally recorded hologram for a test lens of focal length 50.2mm 
and clear aperture of 25.4mm and A/=6mm.

The reconstructed phase maps were used to determine the parallelism of the 

wavefronts from the lens. Fig. 3.7 shows the reconstructed phase maps for different 

lens positions. It can be seen that as distance between the lens and the point source 

nears f, the number of phase fringes decrease, indicating better parallelism. The 

wavefront is perfectly collimated when this distance is exactly/as indicated by fringe 

free phase map shown in Fig. 3.7c.

The sensitivity of the focal length measurement depends upon the least detectable Af, 

which in turn depends upon the minimum detectable phase difference. Considering 

that a minimum phase variation of n radians across the phase map is necessary to 

detect the deviation of lens from collimation position, the sensitivity of the system can 

be decided. The change in sensitivity of the system for testing of wavefront 

parallelism with the change in focal length of the test lens is plotted in Fig. 3.8.
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Fig. 3,7: Experimentally observed phase maps for different A/for a test lens with a 
focal length of 50.2 mm. (a) 4.5 mm inside focus, (b) 0.65 mm inside focus, (c) at 

focus, (d) 0.8 mm outside focus, (e) 4.3 mm outside focus.
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Fig. 3.8: Change in sensitivity in the measurement of wavefront parallelism.

3.2 Measurement of wavefront radius of curvature
The radius of curvature (Rw) the emerging wavefront from the lens is measured 

directly from the reconstructed phase.1 The continuous phase distribution at a 

tangential plane after the lens ^ is obtained after unwrapping. The line along the 

center y-direction passes through the point of maximum phase change (Fig. 3.9). It 
can be seen from Fig. 3.9 that the radius of curvaiure of the wavefront can be directly 

obtained by determining the change in phase of the wavefront from the maximum

Fig. 3.9: Phase change at the tangential plane after the lens. From the change in 
phase the change in height of.the wavefront can be calculated.
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From Fig.3. 9, the change in height of the wavefront with position depends on the 

obtained phase through

Sz = (b —d> fjc)Twtnax Tw \ J

In:
(62)

The radius of curvature of the wavefront can then be written in terms of the change in 

height and x-position as

R.=
■JSx1 + Sy1 

2 sin a
(63)

When angular spectrum propagation is used for reconstructions the pixel size at the 

reconstructed plane is same as the sensor pixel size. So Sx is just the product of the 

number of pixels N and pixel size in x-direction A (&=.¥* A).
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Fig. 3.10: (a) Simulated phase map for the wavefront exiting from a 50m focal length 

bi-vonvex lens and A/=2.5mmthefe byiproviding an expanding wavefront (b) 
Continuous phase distribution after unwrapping Fig. 10a, (c) Phase change along the

central x-direction.
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Fig. 3.11: (a) Experimentally obtained phase map for a test lens of focal length 
50.2mm and A/=6.Q5mm. (b) The continuous phase distribution corresponding to 

Fig. 11a obtained after unwrapping, (c) Profile of the wavefront along the central x- 
direction (solid line in Fig. lib). The calculated radius of curvature of the wavefront 

from this line profile was 417.89mm, which is close to the expected value of
416.53mm.

Fig. 3.10 shows the simulated phase map for a 50mm focal length lens for A/=2.5mm 

and the obtained continuous phase distribution after unwrapping. The line profile of 

the phase change along the central x-direction is shown in Fig. 3.10c.

Calculated radius of curvature Rw from the line plot for the expanding wavefront in 

Fig. 3.10 was 999.997mm, which matches with the value obtained using Eq. (61). 

Experimentally obtained phase profile for a test lens of focal length 50.2mm with 

A/=6.05mm is shown in Fig. 3.11a. The three dimensional profile of the wavefront 

after unwrapping is shown in Fig. 3.11b. The profile of the wavefront along the 

central x-direction (along the solid line shown in Fig. 3.11b) is plotted in Fig. 3.11c.
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Curvature of the wavefront was computed using Eq. (63). The computed value was 

417.89mm which is very close to expected value of 416.53mm calculated using Eq. 

(61). Several points on the wavefront profile were used for Rw calculation and the 

average of these will give the best approximation. The method was tested for several 

A/(for conversing as well as diverging wavefronts) and the average error in finding 

the radius of curvature of the wavefront was estimated to be less than 0.8%.

3.3 Measurement of focal length of test lens
Focal length of the test lens can be measured from the distance at which exact 

collimation results, which is basically the distance of the point source from test lens 

when the phase map does not contain any fringes. A better estimation of the focal 

length of the test lens could be obtained from the change in radius of curvature of the 

exiting wavefront for different deviations from the collimation position (A/). The 

equations for the radius of curvature of the wavefront exiting from the test lens of 

focal length/placed Af and A/) away frorh the collimation position are given by,

R...
¥

Rw2 =/L

(64)

(65)

Subtracting Eq. (64) from Eq. (65) and re-arranging the terms

a/2-a/; = £=/2
v KA2

(66)

/ =
v ¥

(67)

where 8 is the difference between the de-collimation positions, which is readily 

available from the translation stage reading. From the phase maps at two de- 

collimation positions (A/i and A/)) the radius of curvatures Rwi and Rw2 can be 

determined and by using this in Eq. (67), focal length of the lens is obtained.

Fig. 3.12 shows the simulation results for measurement of lens focal length. The test 

lens had a focal length of 50mm. The test lens was kept at two de-collimation
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positions Dfl=5mm and Df2=2.5mm. The obtained phase maps are shown in Fig. 

3.12a and 3.12b respectively. Fig. 3.12c represents the variation in phase along the 

central x-direction for the two cases. The calculated radius of curvatures using the 

phase data were 500.001mm and 999.997m respectively compared to theoretical 

results calculated using Eq. (61) of 500mm and 1000mm respectively. The focal 

length calculated using these two radiuses of curvature values comes out to be 

50.002mm. The average error in focal length determination from simulations was less 

than 0.005%.

Fig. 3.12: Simulation results for measurement of wavefront curvature to determine 
focal length of test lens (a) Reconstructed phase of the wavefront When test lens is 
de-collimated by 5mm, (b) Phase profile when the de-collimation was 2.5mm, (c) 

Profile of phase along the center x-direction for both de-collimations. The change in
curvature is clearly visible.
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Experiments were carried out on a 50.2mm focal length test lens de-collimated by 

various distances. Fig. 3.13a and 3.13b shows the experimental results for two de- 

collimation positions A/i=6.05mm and A/2=3.83mm respectively. The profile of the 

phase along the center x-direction for both these de-collimations is shown in Fig. 

3.13c. The computed curvature of the wavefront for these two de-collimation position 

were 417.89mm and 660.24mm respectively compared to theoretical values of 

0.416m and 0.658m respectively, computed using Eq. (61). The calculated focal 

length using these values of de-collimation and radiuses of curvature was 50.24mm, 

which is quite comparable with the value specified by the manufacturer, taking into 

account the source wavelength.

Fig. 3.13: Experimental results for focal length measurement of test lens with 
/=50.2mm. (a) Reconstructed phase of the wavefront when test lens is de-collimated 

by 6.05mm, (b) Phase profile when the de-collimation was 3.83mm, (c) Profile of 
phase along the center x-direction for both de-collimations. Computed focal length

using this data was 50.27mm
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Table 3.1 gives the computed radius of curvature for different de-collimation of the 

test lens. The measured Rw for various de-collimations were used for finding the focal 

length of test lenses. This is tabulated in Table 3.2. Average value of focal length 

from various de-collimation distances was found to be 50.27±0.21mm. The error in 

determination of focal length depends upon the error in determination of radius of 

average in determination of focal length was less than 0.8%.

Table 3.1: Radius of curvature of wavefront

Sr. A/ Theroretical Rw Experimental Rw
No. (mm) (mm) (mm)

1 6.05 416.53 417.89

2 4.47 563.77 565.39

3 4.02 626.88 629.47

4 3.83 657.97 660.24

Table 3.2: Focal length of test lens (manufacturer specified/=50.2mm)

Sr. A/ Rw Focal length

No. (mm) (mm) (mm)

1 Wi 6.05 417.89
50.31

A/2 4.47 Rw?, 565.39

2 A/i 6.05 417.89
50.23

a/2 4.02 R,2 629.47

3 ¥i 6.05 R*i 417.89
50.27

A/2 3.83 Rw2 660.24

4 A/i 4.47 Rwi 565.39
49.99

a/2 4.02 R-,2 629.47

5 A/! 4.47 Rw i 565.39
50.19

A/ 2 3.83 Rwl 660.24

6 A/i 4.02 R»i 629.47
50.65

A/2 3.83 R\v2 660.24

Average focal length 50.27±0.21mm
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3.4 Measurement of lens radius of curvature
The radius of curvature is also determined using a similar technique but with a 

different experimental setup. The experimental setup is shown in Fig. 3.14. A 

collimated beam is focused by a large focal length lens LA on to the front surface of 

the test lens. Lens LA acts as an autocollimator. The wavefront reflected from the front 

surface of the test lens will be collimated by this autocollimator only at two positions 

of the test lens. One is when the beam from LA focuses on the center of curvature of 

the test lens and the other when it focuses on its front surface (both these positions are 

shown in Fig. 3.14). At these two positions since the wavefront emanating from LA is 
collimated the phase map will contain only a single fringe. The radius of curvature of 

the test lens is therefore determined by moving the test lens along its optic axis. The 

reflected light from the lens surface interferes with an off-axis plane wavefront to 

form the hologram. The radius of curvature of the front surface of the test lens Ri is 
determined from the positions where a single fringe phase map results using the 

formula (see Fig. 3-.14 for details)

R,=21-zl (68)

Spatial filter

Fig. 14: Experimental setup for lens radius of curvature measurement using digital 
holography. The auto-collimating lens has a larger focal length than the test lens.
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It is obvious that the focal length of the auto-collimating lens should be longer than 

that of the test lens. Fig. 3.15 shows the simulation results for a bi-convex test lens of 

focal length 50mm made up of BK7 glass. The radius of curvature calculated using 

thin lens equation is 51.5mm. The auto-collimating lens considered had a focal length 

of 100mm. It can be seen that the at two points the wavefront from the auto- 

collimating lens become parallel, one when it focuses the beam to the center of 

curvature of the front surface of the test lens and second when it focuses the light on

to the front surface of the test lens.

Fig. 3.15: Obtained phase maps from simulations for various positions of the test 
lens (focal length of 50 mm) from the auto-collimating lens, (a) 47 mm, (b) zx =48.5 
mm, (c) 52mm, (d) z2 =100 mm. Radius of curvature of the test lens is obtained from 

the difference in the two positions providing a fringe free phase map and is Rf-Zt

Zi=51.5mm.
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Experiments were carried out on a 50.2mm focal length bi-convex lens using an auto- 

collimating lens of focal length 100mm. Reconstructed phase profiles for different 

positions of the test lens is shown in Fig. 3.16. Single fringe phase maps were 

observed at position zi=48.22mm and Z2=99.96mm. The computed radius of curvature 

of the front surface of the test lens is then 51.74mm, which is 0.5% outside the

theoretically calculated value of 51.5mm. The radius of curvature of the back surface 

was also determined using the same procedure.

Fig. 3.16: Experimentally obtained phase maps for various positions of the test lens 
(focal length of 50.2 mm) from the auto-collimating lens of focal length 100mm. (a) 
45 mm, (b) Z\ =48.22 mm, (c) 55mm, (d) z2 =99.96mm. Radius of curvature of the 
front surface of the test lens is obtained from the difference in the two positions 

providing a fringe free phase map and is R/=z2-Zi=51.74mm.

3.5 Determination of the Refractive Index
The refractive index is determined by using the lens equation with thin lens 

approximation. It is given by,

63



n — 1h—
/

RnRn
KRn ■R„

(69)

where Rn and Rq are the radii of curvature of the two surfaces of the test lens, and/is 

the measured focal length. Ra is negative by sign convention for a biconvex lens. The 

error in measurement of refractive index depends upon the error in measurement of 

the focal length as well as the radius of curvature of the lens surfaces. The error in the 

measurement is found by differentiating Eq. (69) partially with respect to Ri and f 

Therefore the error in measurement can be written as !

dn = ± Rr.
\Rn ' R,

+dR,.
‘/i/

X,i
KRn ' ■R,■i i /

(,n-l)df
f

(70)

where dn is the error in measurement of the refractive index, n is the measured 

refractive index, dRs are the errors in the measurement of the radii of curvature of the 

two surfaces of the test lens, and df is the error in measurement of the focal length. 

The error in the measurement of the refractive index depends upon the error in the 

focal length measurement and the radius of curvature measurement, and the error in 

the measurement of the radius of curvature depends only on the focal length of the 

auto-collimating lens. For a;biconvex lens i?/2=-R/i, and Fig. 3.17 plots the change in 

the error of measurement in the refractive index as a function of focal length of the 

test lens (biconvex) for various focal lengths of the auto-collimating lens (lenses made

Fig. 3.17: Error in the determination of the refractive index. The differences of focal 
lengths between the test lens and the'auto-collimating lens were (A) 10 mm and (B)

50 mm.
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It can be seen that when an auto-collimating lens of focal length just greater than the 

focal length of the test lens is used, the error is the least (curve A). This is because the 

minimum detectable defocusing increases with the focal length of the auto- 

collimating lens. Therefore the error in measurement of the radius of curvature of the 

test lens will be the smallest when an auto-collimating lens, with a focal length just 

longer than the test lens, is used. As the focal length difference between the test lens 

and the auto-collimating lens increases, the error increases (as indicated by curve B). 

Therefore by choosing an auto-collimating lens of proper focal length the 

measurements could be made more accurate.

With the measured focal length and radius of curvature values using auto-collimating 

lenses of various focal lengths, the refractive index of the lens material was found to 

be 1.51471±0.00012 which comes very close to the literature value of 1.51509 at 

632.8nm for BK7 glass material [3.21].

3.6 Discussions and Conclusion
Some of the possibilities offered by the digital holography in the field of optical 

testing were illustrated by using it for complete characterization of simple lenses and 

wavefront produced1 by them. The digital reconstruction process involved in digital 

holography makes it a versatile tool to obtain rapidly from a single hologram a wide 

range of information on the wavefronts produced: by lenses, which can be used to 

determine their different parameters like focal length, lens radius of curvature as well 

as the refractive index of the lens material.

The method can be used to test the parallelism of the wavefronts. Since the method 

can be used to determine the amount and sign of the curvature of the wavefront, it 

could be used for the exact determination of the collimation position for a lens. Focal 

length of the lens is obtained from measuring the change in curvature; of the wavefront 

from lens. This is achieved directly from the computed phase of the wavefront from 

numerical reconstruction of holograms. Since the three dimensional profile of the 

wavefront so becomes available, focal length measurement becomes very simple, by 

comparing the wavefront curvatures for different de-collimation positions. The 

determination of the radius of the curvature involves a slightly more complex process 

of using an auto-collimating lens to determine the two positions where a perfectly
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collimated wavefront results. The distance between these two positions directly yields 

the radius of curvature of the lens surface.

The technique can also be used to determine the refractive index of simple thin lenses 

accurately from the measured focal length and radius of curvature values. Here 

simulations and experiments were done for the case of biconvex lenses. But the 

method can be used for the parameter measurement of other types! of lenses as well. 

For example, in the case of a concave lens, the focal length could be determined using 

the experimental setup shown in Fig. 1.1, using the concave lens in combination with 

a convex lens and finding the effective focal length. The focal length of the concave 

lens can be determined from the prior knowledge of the focal length of the convex 

lens. The procedure for the determination of the radius of curvature is the same as that 

for the convex lens. The method could also be extended to test the curvature and 

deviations from the plane nature of mirrors as well as other optical elements.
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