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CHAPTER I

I N T ROBUCTION

During the course of last four to five decades 

considerable progress has been made in the investigation 

of,molecular spectra. Among the various means for 

investigating the structure and intrinsic properties of 

molecules, spectroscopic study occupies a unique position. 

Since 1930 the study and interpretation of molecular 

spectra has undergone a rapid progress and has proved to 

be a very important tool. From the spectra various discrete 

energy levels of a molecule can be derived directly, from 

which one can obtain detailed information about the motion
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of the electrons and the vibration and rotation of the 

nuclei in the molecules. In the case of atomic spectra, 

the total energy of an atom in a given state is almost 

entirely electronic. While in a molecule it is regarded 

as sum of electronic, vibrational and rotational of which 

the electronic energy is much more greater than the other 

two. It is the vibrational and rotational transitions 

superposed on the electronic transition which give rise 

to molecular spectrum. Transitions between an upper and 

a low-lying electronic state of a molecule give rise to 

the band spectra. The study of electronic motions has 

led to a theoretical understanding of chemical valence.

Heat of dissociation of molecules can be calculated with 

great accuracy from the vibrational frequencies. The forces Ji
between the atoms in the molecules can also be determined.

From the rotational frequencies one can obtain accurate 

information about the geometrical arrangement of,the nuclei 

in the molecule and in particular, extremely accurate values 

of the internuclear distances. Hence the study of band 

spectra is of great importance to get valuable information 

regarding the molecules.

Since 1925, with the application of quantum mechanics, 

the theory of band spectra of diatomic molecules, has undergone
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very rapid development. It has helped much in understanding 

the problem of the electronic structure of molecules and the 

products of dissociation.

The most probable electron configurations for lighter 
diatomic molecules and order of their electron binding have 
been determined by Mulliken (i932). However no such systematic 

scheme has yet been formulated for heavier diatomic molecules 

as they involve greater number of electrons and molecular 

orbitals having approximately equal energy. The molecules 
whose structure can best be interpreted are H2 and He2 (Heitler 

and London, 1927). This interpretation has provided a secure 

foundation with which the successive addition of an electron 

to the configuration of H2 and He2 has enabled to determine 

the electron configurations of the lighter molecules. A 
successful utilization of this method of approach depends 

entirely on the existence of accurate molecular data derived 
mainly from spectroscopic studies involving the vibrational 

and rotational analyses of the spectra of molecules and also 

on the studies on ionization potential. Comparatively few 
band systems have been studied in detail for heavy molecules 
and the molecular constants of many of them are not known 
accurately. Therefore any additional experimental data on 
the spectra of heavy diatomic molecules will be helpful in
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the construction of an improved electronic scheme for 
these molecules.

A systematic investigation on the molecular constants 
for a group of related molecules such as the halides of the 
elements of a column of the periodic table or a group of 
molecules with the same number of electrons provides much 
useful information about the electronic states involved and 
in the interpretation in terms of their electron configurations. 
This procedure can be used to compare various molecular 
constants derived and theird^gendance on the energy levels 
of the constituent atoms can be investigated. This will also 
help in the search for missing analogous band systems.

A detailed investigation of the rotational structure 
of the band system is of great significance in understanding 
some of the properties of the nuclei of the constituent atoms 
of the molecule.

The theory and methods of analysing electronic spectra 
have been well established over several years ago and are 
discussed in detail by Mulliken (1930, 1931, 1932), Jevons 
(1932), Johnson (1949), Gaydon (1953), Herzberg (1950),
Barrow (1962), Walker and Straw (1962), King (l964) and



Kovae’s (1969)., In order to make the thesis self-contained 

a brief theoretical account related to the present study of 

band system will be given.

The possible energy values of a diatomic molecule 

can be expressed as functions of certain quantum numbers 
associated with motions of the electrons and nuclei. These 
quantum numbers can be divided into three groups;

(a) A group which defines the energy depending on the 

electronic motions, which the molecule would have 

if the nuclei could be held stationary.

(b) A single quantum number 'vf which defines the 

vibration of the nuclei.

(c) A group of quantum numbers associated with the 

rotation of the nuclei and with the finer details
of the electronic motions. In the scheme of ^

quantum numbers belonging to this group the inter­

actions between electron motions and nuclear
crotations mast be taken into account.

The wave number JD of any line in the spectrum 
can be obtained by taking the difference of two terms, 
one of higher energy P* and other of lower energy F".
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21 m F' - P”
= (f;x - FSl) ♦ (f; - F») - (f- - f;)

- '“el + "v * ar

The bands of a band system with ^ 0 are

electronic bands.

Usually, 2> x^» &T, corresponding to the
relative, energy level spacing of F j , Fv and Fr. All the 
spectrum lines associated with a definite pair of electronic 
states are collectively called a band system. These lines 
of a band system are again divided into limited groups of 
lines called bands, each band being associated with a definite 
pair of vibrational states belonging to the two different 
electronic states involved in the transition.

VIBRATIONAL STRUCTURE OF A BAND SYSTEM

The total quantizable energy of a molecule can be 
considered as made up of three parts viz electronic, 
vibrational and rotational and is usually represented as

E = E +• E +e v r
In other words, the emitted or absorbed frequencies 

may be given as the sum of three constituent parts

*

U)
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2) = + X)e v + 2> r

For a given band, 2>r varies for each of its rotational
line while (» . *T) is constant and defines the band
origin. For a given band system, varies from band
to band, 2} being constant and defines,, the system origin. ©
The energy difference for the electronic states is such 
that the energy absorbed or emitted in a transition between 
them will lie within the visible to the ultraviolet region 
of the spectrum.

For a given electronic transition is a constant 
and rotational energy is so small compared to ii^'that
it can be safely disregarded for the instant. If now the 
vibrational energy ly is expressed by the following 
equation:

and double-primed letters refer to the lower state. In

I

Then the equation (l) can be written as

oD

where the single-primed letters refer to the upper state
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equation (2) . v’ and v" are the vibrational quantum

numbers of the upper and lower states respectively, 03^

and Lo" being the vibrational frequencies of the molecule 
© !

# Jt
in these states and UX' and (£>X" , the anharmomcity

G G © G

constants. This equation represents all possible transitions 

between different vibrational levels of the two participating 

electronic states. There is no strict selection rule for 

the vibrational quantum number v and hence transition 

between each vibrational level of upper electronic state 

can take place with any vibrational level of the lower 

electronic state. Equation (2) may also be written as

2) = 2) + (to v * - x1 v'2 + tt> y' v*2 - .....)00 v 0 00 oJo ’

- (u>*vn - n3"x''v”2 + -..........)

where is a term independent of v' and v" and is

usually known as (0,0) band as it corresponds to the 

transition v' = 0 to v" = 0, By substituting the values 

of v' = 0 and vM = 0 in the equation (2), it will be

^00 = ^e + (H - Hxe +

- - ifijx* + 1/8toy«) (3)
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Usually to y is small and it is neglected. From 
equation (3), the value of SO can be calculated and 
substituted in equation (2). In fact equation (2) refers 

to the band origins but in the usual practice the positions 

of the band heads are measured as it is difficult to 

determine the band origins without detailed analysis of 
the rotational structure. However, as the separation between

. and . is usually small, the error in theorigin head ’
vibrational constants derived from the band head measurements 

is often negligible. The error can be minimised by taking 
the measurements of Q heads if they are observed as they 
lie very near to the band origins.

To analyse a band system the usual procedure 
(Herzberg, 1950) is to arrange the wave numbers of various

t.bands in a table called the "Deslandres table" in such a 

way that the difference of frequencies in adjacent columns 
or rows is approximately constant and varies uniformly and 

regularly. Thus the differences between the wave numbers in 

the columns in the table gives the spacing between vibrational 

levels in the lower electronic state and the differences 
between wave numbers in the rows give the spacing between 

the vibrational levels in the upper electronic state. The 
group of bands when arranged in such a Deslandres table,

#
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having a constant value of Av = v'-v" is called a

sequence whereas the different hands in the same horizontal

row or in the same vertical column having the same v» or vw 
Ojlg_ ^ecCd. lu V-'Cr\V-n
progressions respectively. Neglecting the cubic terms the 

A.
separation of the successive vibrational levels -for a group - 

of bands is given by the first difference.

•A&i = G(v+l) - G(v)
V+^g

= ti> - 2U3X - 2UIv 
e e e e e

where G(v) = Ev/he is ealled the term value. In the

above equation the cubic terms have been neglected, Y
© ©

being very small.

The second difference has constant value

^2G . =AG o/o -AG i = -2WX (4)
v+1 v+3/2 v-t-f e e ' '

The vibrational constants and £0 X for the upper and 

the lower states and the system origin can thus be

determined from the observed position of the band heads.

INTENSITY DISTRIBUTION IN A BAND SYSTEM '

A theoretical interpretation of the observed intensity 

distribution is given by Franck (1925) and by Condon (1926,
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1928). The relative intensities of bands depend upon 
the initial distribution of the molecules as well as on 
the relative transition probabilities as a function of 
vibrational quantum numbers. The intensity distribution N 
in a band system can be interpreted with the help of 
potential curves of electronic states involved. According 
to Franck-Condon principle the electronic transition in a 
molecule takes place so rapidly compared with the vibra­
tional motion of the nuclei that the internuclear distance 
can be regarded as fixed during the transition. The 
following types of distributions are generally observed:

.11(a) When r' C2 r" (and U> ) the most probablee e e e
transitions are those where v* = v" and the Condon 
parabola consists of two almost coincident branches 
along the diagonal of the v’ and v" array.

(b) When the difference in r values is not too large 
✓ 6

Condon parabola with moderately separated branches 
will be observed.

(c) If *•'<£< r” (andvto'>;>t£> ), the (0,0') band may
6 8 6 6

not be observable and the bands in its neighbourhood 
will be generally weak in intensity. The two branches 
of the Condon parabola will be quite open and the 
intensity in this case tends to follow the progressions
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rather than the sequences.

(d) If r'»rw (and CO* ««*>"), the intensity distribution
G © G ©

will be similar to that of (c).

The estimation of the relative intensities of the 
bands in an extensive system is rather inaccurate on account 
of the variation of the spectral sensitivity of the photo­
graphic plates and the transmittance of the filters used. 
General practice is to make visual estimates of the relative 
intensities of the bands on a scale of ten. This data is 
only of the importance just to provide a guess about the 
presence or absence of each band under certain conditions 
of excitation but such estimates nevertheless provide certain 
general indications which have received simple theoretical 
interpretations.

ISOTOPE EFFECT IN A BAND SYSTEM
f

The shift of vibrational energy levels due to the 
two isotopic molecules can be given by,

G1(v) - G(v) = (P-l)'co(v+i) - (P2-l) h3xe(v+i)2 +.....
■ ' (5)

The displacement of the corresponding band is thus 
expressed by



13

AVzzX1 -2)

* (f-l)jw;(v'+i) -<0”(v"+f)]

- (p2-i)[u>;x;(v»+i-)2 -w»x^(v”+i)2] (e)

In above equations the superscript 1 i’ refers to 

the isotopic molecule having more abundance and f = 

where is the reduced mass. From this expression it is 

evident that the separations of the bands corresponding to 

the lighter of the two isotopic molecules from the origin 
is more as compared to that for the corresponding heavier 

isotopic molecule. The intensity of the isotopic bands 

depends upon the relative abundance of the isotopic masses 

of the constituent atoms. The study of isotopic effect in 
a band system provides an important check on the correctness 
of the vibrational analysis and helps to decide the career 

of a band system,

STRUCTURE OF INDIVIDUAL ELECTRONIC BAND

In a single band and »„ are fixed while° el v r
varies. Equation (l) can be written as

*-> = + F*U’) - F"(J") (7)

where F'(J') and F"(J") are the rotational terms of the 

upper and lower states respectively. is called the band

origin or the zero line.
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Among a non-rigid, vibrating symmetric top model 

for a diatomic molecule the equation for rotational term 

values can be written in the following form:

FV(J) = BvJ(J+i) - DvJ2(J+1)2 + (8)

Equation (7) can be written as

*> =aJ + B'J'U'+l) - D'J'2(J'+1)2 +

- B£J"(d"+l) + D£J"‘Hj"+l)‘i + (9)

Applying selection rules Aj = J'-J” = 0, +1, three 

series of lines in a band are expected. Lines corresponding 

to AJ = +1,0,-1 are said to belong to R, Q and P branches 

respectively.

If one neglects the small term Dv in equation (9)
6the following formula^give the wave numbers of R, Q and P 

branches

^R = + 2Bv + (3B'-B«)J + (B^-B«)J‘

23 = 23Q 0
+ (b;-b«)j + (b;-b«)j‘

(10) 

(il)

23 = 23P 0
(B«+B")J + (B'-B")^

V V V V7
(12)
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where J represents the rotational quantum number of the 

lower state.

I

The P and R branches can be represented by a 

single equation

where m = -J for the P branch and m = J+l for the R branch. 

Owing to the quadratic term in equation (13) one of the two 

branches turnts back forming a band head. A head is formed 

in the R branch if IP-B* is negative and lies on the 

short wavelength side of the zero line and the band is shaded 

towards the red. If is positive, head is formed by

P branch and the band is degraded towards the violet.

The ' m' value corresponding to the band head can 

be obtained by putting d^/dm = 0 in the equation of head 

forming branch and is given by

^ + (B;+B”)m + (B;-B«)m2 (13)

(14)

The equation for separation of head to origin can also be

derived and is

(EP+B£)2
(15)head
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In Q branch the head is formed at the beginning 

of the Q branch and lies very near to the origin.

The rotational constants B* , D» and Bn , B" for 

the upper and lower states are usually evaluated from 

combination differences. In a simple band where P and R 

branches are present there is to every line in the P 

branch a corresponding line in the R branch with the same 

upper state. The wave number difference of these two lines 

is equal to the separation of one of the lower-state *

rotational levels from the next but one viz. A2F"(j).

Thus

R(J-1) - P(J+1).= F«(j+l) - F»(j-l) =A2F"(J) (16)

Similarly, the difference between the wave numbers 

of the two lines with a common lower state is equal to the 

separation of one of the upper state rotational levels from 

the next but one viz. A2F'(j).

R(J) - F(J) = F;(J+1) - F^(J-I) = A>F* (J ) (17 )

Combination relations between R, Q and P branch 

line's can be derived in similar way and are
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R(J) - Q(J) = F^(J+l) - F|(J) * A1F,(J)

q(J+l )-p{J+l) a f;(j+i) - F^(J) = A1F»(J)

(18)
B(J) -Q( J+i) = F"(j+l) - F«(j) = A1F"(J)

Q(J) -P(J+1) = F»(J+l) - F”(J) = ^1F»(J)

Here A^FlJ) refers to the separation of successive 

rotational levels. If the expression (8) for Fy(J) 

neglecting the term Dy, is substituted for A2F(j) then,

A2F(J) a Fv(j+l) - FV(J-1) = Bv(J+1)(J+2) - By(J-l)J 

= 4Bv(J+’§)

and

A1F(j) = Fy(j+l)-Fy(j) = By(j+l)(j+2) - By(j+l)j 

= 2By( J+i)

It is seen that combination differences to a first 

approximation are a linear function of the rotational 

quantum number J.

By plotting the combination difference versus J a 

straight line is obtained. From the slope of the graph, 

the value of rotational constant By can be obtained.
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' If two or more bands with the same v* are studied 

the combination differences, A2F*(j), for the upper state 

of the two bands must agree exactly irrespective of 

perturbations. The agreement between corresponding combi­

nation differences for bands with the same lower or the 

same upper vibrational states provides an important sensitive 

check on the correctness of a rotational analysis.

If the term Dv in equation (8) is not neglected 

then A2F(J) is given by

A2p(j) = (4Bv-6Dv)(j+i) - 8DV(J+|-)3

A

The plot of A2F(j)/(j+i) versus (j+-§) gives a 

straight line with slope 8Dv. The plot A2F(j)/(j+i)
A

versus (J+’l) serves as a criterion for the correctness 

of numbering to the branches. If there is misnumbering 

the straight line will deviate for lower„values of J 

(Youngner and Winans, 196’G).

Standard methods to assign correct numbering to the 

different branch lines in bands have been described by 

Herzberg (1950).

The value of rotational constant B and D will
v v

be different for different vibrational states of an electronic
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state. By value decreases almost linearly with the

increasing v and is represented by the following equation
0

B = B - CX (v+-|) 
v e e '

The constant B can be said to be belonging to 
. 6

completely vibrationless state.

In the similar way the variation in Dv is represented 

by the expression

D = D + 6 C v+"jf) + . •. • 
v e re T

The constants D , B and are related by the
e e e

following relation

e

SPIN SPLITTING

The effect of electron spin can be clearly observed
2 2 2in transitions like g 2> X. "£ states always belong 

strictly to Bund’s ease (b) and selection rule AK = +i
t

holds. The separation of two sub-levels with J = and 

J = K-f for a given K is, in general very small. However, 

with larger resolution each line of P and R branches splits 

into three components according to the selection rule 

AJ = 0,+i« J = 0 holds if AJ is unequal to A K; and
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intensity of these components falls off rapidly. Therefore, 

in practice, there is a doublet P and a doublet R branch.

If we distinguish the term components having J = K+g- 
with the subscript 1 and those having J = K--|- with subscript 

2, we obtain for the four main branches

»1(K)
R2(k)
P1(K)

p2(k)

= ^ ♦ F*(B*l) 

= + P^( K+l )
= + F|(K-l)

- F«(K)

- F«(K)

F»(K)

F|(E)

In the case of Z states rotational term values are 

given by

F1(K) = BvK(K+l) + i-*K 

and F0(K) = B K(K+l) - ^(K+l)
A V

where H is spin splitting constant.

The line splitting in P and R branches is

A^2(P) = P1-P2* (i'-**") - a^+v)
and AO>2(r) * R±-E2- U'-TJ")K+ i(3r-T)

Thus splitting increases linearly with K. The combination 

difference must be formed either between R. and P. or R„ and, X X
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A 2Fi(K) = 4By(K + i) + t 

A2F2(K) = 4By(K + i) - "V


