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CHAPTER 1

INTRODUCTTION

During the course of last four to five decades
considerable progress has been made in the investigation
of molecular spectra. Among fpe various means for °
investigating thé structurg and intringic properties of
molecules, spectroscopic study occupies a unique position,
Since 1936 the study and interpretation 6f molecular
speqtra has undergone a rapid progress and has proved to
be a very important tool. From the spectra various discrete

energy levels of a moleculefcan be derived directly, from

which one can obtain detailed information about the motion



of the electrons and the vibration and rotation of the

nuclei in the molecules. In the case of atemic spectra,

the total energy of an_atoﬁ in a given state is almost
.entirely electronic. While iq a molecule it is regarded

as sum of electronic, vibrational and rotational of which

. the electronic energy is‘much more greater than the other
two,. It is the vibrational and rotational transitions
superposed on the Qlectronic transitioh which give rise

to molecular spectrum. Transitions ﬁétween an upper anﬁ

a low-lying electronic state of a molecule give rise to

the band spectra., The studyiof electronic motibns has

led to a theoretical understanding of chemiégl valénce,

Heat of dissociation of moelecules can bé calculated with
gfeat accuracy from theﬂvibrational frequencies. The forces T
between the atoms in the molecules can also be determined, '
From the rotational frequencies one can obtain accurate
information about tﬁe geometrical arrangement of, the nuciei

in the molecule andwin paiticular, extrem;?& accurate values
of the internuclear distances. Hence the~study of ban&
spectra is of great importance to getb€a1uah1e information

v

regarding the molecules.

Since 1925, with the application of quantum mechanics,

the theory of band spectra of diaﬁ@mic molecules, has undergone



very rapid development. - It has helped much in understanding
the problem of the electronic structure of molecules and the

products of dissociation.

The most probable electron configurations for lighter
diatomic molecuies and order of their electron binding have
been determined by Malliken (1932). However no such systematic
scheme has yet been formulated for heavier diatomic molecules
as they involve greater number of electrons and molecular
orbitals having approximatély equal energy. The molecules

-

whose structure can best be interpreted are H, and He, (Heitler

and London, 1927). This interpretation has provided a secure
féundation with which the successive additiod of an glectron

to the configuration of H, and He,
. the electron configurations of the lighter molecules. A

has enabled to determine

successful utilization of -this method of approach depends
entirely on the exist&hca of accurate molecular data derived
mainly from spectroséoPic studies involving the vibrational
and rotational analyseszof the‘spectra of molecules and also
on the studies on ionization po%ential. Comparatively few
band systems have been studied in detail for heavy molecules
and the molecular constants of many of them are nmot known
accurately. Therefore an& additional experimental data on

the spectra of heavy diatomic molecules will be helpful in



the construction of an improved electronic scheme for

these molecules.

A .systematic investigation on the molecular constants
for a group of related molecules'such as the halides of the
elements of a column of the periodic table or a group of
molecules with the same number of electrons provides much
useful information about the electronic Qtates involved and -
in the interpretation in terms of their electron cbnfigurations.
This procédure can be used to compare various molecular
constants derived and theird@§endandé on the energy levels
of the constituent atoms can be iﬁves@igated. This will also

. help in the search for missing analogous band systems.

A detailed investigation of the rotational structure
of the band system is of great significance in understanding
some of the properties of the nuclei of the constituent atoms

of the molecule.

The theory and methods of analysing glectronic spectra‘
have been well established over several years ago and are
discussed—in detail by Mulliken (1930, 1931, 1932), Jevons
(1932), J ohnson (1949), Gaydon (1953), Herzberg (1950),

Barrow (1962), Walker and Straw (1962), King (1964) and
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Kovac's (1969)., In order to make the thesis self-contained

a brief theoretical account related to the present study of

band system will be given.

The possible energy values of a diatomic molecule
can be expressed as functions of certain quantum numbers
agssociated with motions of the electrons and nuclei. These

quantum numbers can be divided into three groups:

(a) A group which defines the energy depending on the
electronic motions, which the molecule,would have

if the nuclei could be held stationary.

(b) A single quantum number 'v' which defines the

vibration of the nuclei.

(c¢) A group of quantum numbers associated with the
rotation of the nuclei and with the finer details
of the electronic motions. In the scheme of /7
quantum numbers belonging to this group the inter- (
actions between electron motions and nuclear

€

rotations must be takenm into account,

The wave number 2 of any line in the spectrum
can be obtained by taking the difference of two terms,

one of higher energy F' and other of lower energy F%,



2 = F' - p"

.;. { - " | ”
(Fél Fgl) + (FV FV) + (Fr, Fr)

DD+ D : , (1)
The bands of a band system with 2 , # O are

electronic bands.

Usually, 7> 23,5> ., corresponding to the
reiafive\energy level sp;cing of Fel,'Fv and Fr‘ . All the
spectrum lines associated with a definite pair of electronic
states are collectively called 'a band system, These lines
of a band system are again divided into limited groups of
lines called bands, each band being associated with a definite

pair of vibrational states bélonging to the two different

electronic states involved in the transition.

VIBRATIONAL STRUCTURE OF A BAND SYSTEM

The total quantizable energy of a molecule can be

considered as made up of three parts viz electironic,

vibrational and rotational and is usually represented as
E=Ee+EV+Er_

In other words, the emitted or absorbed frequencies

may be given as the sum of three constituent parts



= b3
2 .ve+:uv+ r

For a given band, »r varies for each of iits rotational
line while (De + :vv) is éonstant and defines the  band
origin. For a given band system, 2 varies from band

to band, ‘?Je being constant and defir,iés,) the system origin.
The energy difference for the electronic states is such
that the energy absorbedior émitted in a trhansitien between
them will lie within the visible to the ultraviolet region

of the spectrum.

F‘or a given electronic transition 2)e is a comstant
and rotational energy 2, 1is so0 small compared to Dv'that
it can be safely disregarded for the instant. If now the
vibrational energy Ev is expressed by the following
equation: ‘

E, = we(v+%)hc —wexe(v+%)2hc + QeYe(v+%)3hc - e
)

Then the equation (1) can be written as

/ ' ' ]
D o= [we(v’-r%) - wx(vi+d)®e Wrr(vied)d- ]
' [ ’ " 1
- [@e(v%%) - xe(vred)? + @ yn(vnad)d - ] (2)

where the single-primed letters refer to the upper state

‘and double-primed letters refer to the lower state. In



equation (2) .v' and v" are the vibratiﬁnal quantum

numbers of the upper and lower states respectively, LO;

~and w: being the vibrational :Erequencie‘s‘ of the molecule

in these states and c{:x‘; and w;'xg , the anharmonicity
constants. This equation represents all possible transitions
between &ifferent vibrational levels of the two participating
electfcnic states. There is no strict selection rule for

the vibéational guantum number ? and hence transition
between each vibrational level of upper electronic state

can take place with any vibrational level of the lower

electronic state. Equation (2) may also be written as

N

' ! / 2 3
- f - Yyt . ' ., —
2 = 2)00 + (wov woxov + woyo v! ceeee)

" " 2 " 3
- "o Nt -
(wov tdoxov + u)oygv" crens)

where Voo is a term independent of v' and v" and is
usaally known as (0,0) band as it corresponds to the

transition v! O to v" = 0, By substituting the values

of v! = 0 and v" = O in the equation (2), it will be

V=D, + (39 - Fux! + 1/8wy)

[/} 1
- (3w - %a;exg + 1/8weyg) e e e .. (3)



Usually cdbye is small and it is neglected. From

equation (3), the value of 2, can be calculated and
substituted in equation (2). In fact equatien (2) refers

to the band origins but in the usual practice the positions
of the band heads are measured as it is difficult to
determine thé band origins without detailed analysis of

the rotational structure., However, as the separgtion between
v and

head is usually small, the error in the

vibrational constants derived from the band head measurements

!
origin

is often negligible. The error can be minimised by taking
the measurements of Q heads if they are observed as they

lie very near to the band origins.

To analyse a band system the usual procedure
(Herzberg, 1950) is to arrange the wave numbers of various
bands in a tablé called the "Deslandres table" in such a

)way that the difference of frequencies in adjacegt columns

or rows is approximately constant and varies uniformly and
regularly. Thus the differences betwegn the wave numbers in
the columns in the table‘gives the spacing between vibrational
levels in the iower electronic state and the differences
between wave numbers in the rows give the spacing between

the vibrational levels in the upper electronic state. The

group of bands when arranged in such a Deslandres table,

1]
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having a constant value of Av = v'-v" is called a
sequence whereas the different bands in the same horizontal
row or in the same vertical column having the same V' or v"
ane Aot (B Jorm v/or v ,
Aprogressions respectively. Neglecting the cubic terms the

separation of the successive vibrational levels -for a group -

of bands is given by the first difference.

ZSGv+%‘= G(v+t) - G(v)

where G(v) = E /he is called the term value., In the
above equation the cubic terms have been neglected, u%Ye

being very small,
The second difference has constant value

226 =A

v+l Gysa/2 —86 = —20X (4)

v+E e e

The vibrational constants coe and coe;xe for the upper and
the lower states and i;hesystem origin .zne " can thus be

determined from the observed position of the band heads.,

INTENSITY DISTRIBUTION IN A BAND SYSTEM

A theoretical interpretation of the observed intensity

distribution is given by Franck (1925) and by Condon (1926,



1928). The relative intensities of bands depend upon

the initial distribution of the molecules as well as on

the relative transition probabilities as a function of

vibrational quantum numbers., The intensity distribution

in a band syétem can be interpreted with the help of

potential curves of electronic states involved.

to Franck-Condon principle the electronic transition in a

molecule takes pléce so rapidly compared with the vibra-

tional motion of the nuclei that the internuclear distance

can be regarded as fixed during the transition., The

following types‘of disfributions are generally observed:

n Lot
(a) When r!ozr! (and w! »© ), the most probable

()

(e)

* along the diagonal of the v' and v" array.

transitions are those where v' = v" and the Condon

parabola consists of two almost ceincident branches

When the difference in re values is not too large
Condon parabola with moderately separated branches

will be observed.

m ’
If rl<<r! (and\w'e;i)we), the (0,0) band may

not be observable and the bands in its neighbourhood

According

11

will be generally weak in intensity. The twoe branches

of the Condon parabola will be qliite open and the '

intensity in this case tends te follow the progressions

-



(a)
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rather than the sequences.

it ré >>‘r; (and wé <<cag), the intensity distribution

will be similar to that of (c).

The estimation of the relative intensities of the

bands in an extensive system is rather inaccurate on account

of the variation of the spectral sensitivity of the photo-

graphic plates and the .transmittance of the filters used.

General practice is to make visual estimates of the relative

intensities of the bands on a scale of ten. This data is

only of the importance just to provide a guess about the

presence or absence of each band under certain cenditions

of excitation but such estimates nevertheless provide certain

general indications which have received simple theoretical

interpretations.,

ISOTOPE EFFECT IN'A BAND SYSTEM

L4

The shift of vibrational energy levels due to the

two isotopic molecules can be given by,

6Hv) = 6(v) = (P-1) @(v+d) - (PP-i) oz (wh)? + ...

(5)

The displacement of the corresponding band is thus

expressed by



13

av=2' -
- (p-1) [wy(v1ed) -wi(vned) ]

- (?2-1)[wé‘xé({r'+%)2 —ngg(vu%)z] (6)

In above equations the superscrift 'i' refers to
the isotopic molecule having more abundance and e::JZZ;
where o is the reduced mass. Frog thié expression it is
evident that the separations of the bands corresponding to
the lighter of the two isotoPié molecules from the origin
is‘more as compared to that for the corresponding heavier
isotopic molecule. The intenéity of the‘isotopie bands
depends upon the relative abundance of the isotopic masses
of the constituent atoms. The sfudy of isotopic effect in
a band system provides an important check on the correctness

of the vibrational analysis and helps to decide the career

of a band system,

STRUCTURE OF INDIVIDUAL ELECTRONIC BAND
3 v v > >
In a single band 1%1 and v are fixed while 23r
varies. Equation (1) can be written as

V= 24 F(JT) - Fr(Jn) . (7)

"where F'(J') and F"(J") are the rotational terms of the
upper and iower stéteé respectively, zﬂ)is calléd the band

origin or the zero line.
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Among a non-rigid vibrating symmetric top model
for a diatomic melecule the equation for rotational term

values can be written in the following form:

; 2 2
F (J) = B J(J+1) - DI7(J+1)" + (8)
Equation (7) can be written as

2 2
o b I Y
=+ B",J'(J'+1) D!J’ (J'+1)° + .....

- BnI(Imer) 4 DravR(anen)? 4 Ll (9)

Applying selection rules AJ = J'-J" = 0, +1, three
series of lines in a band are expected. Lines corresponding
to AJ = +1,0,-1 are said to belong to R, Q and P branches

respectively.

If one neglects the small term D_ in equation (9)

the following formuléigive the wave numbers of R, Q and P

branches

2 -2 4 2B + (3B'-B")J + (B'-B")J2 (10)
R o v v v v

2D = 1 _Rp" t_pu 2 ;
Q =2, + (BV B;,)J + (BV, B;,)J (11)

2
2 = 2 - ! ! '.pn
b = D (By+By)J + (B -By)J (12)

i



where d represénts the rotational quantum number of the
lower state,

i

The P and R branches can be represented by a

single equation

2
D=+ (B;,+Bg)m + (B"’-B;)m (13)

where m = -J for the P branch and m = J+1 for the R branch.
Owing to the quadratic‘term in equation (13) one of the two
branches turms back forming a band head. A head is formed

in the R branch if B!-B! is negativé and lies on the
short waveléngth side of the zero line and the band is shaded ,

towards the red. 1f B&~B3 is positive, head is formed by

P branch and the band is degraded towards the violet.

The 'm' - value corresponding to the band head can
be obtained by putting d¥/dm = O in the equation of head

forming branch and is given by

t " . .
Bhead © 2?;'+-B§“) ‘ \ (14)
v v

The equation for separation of head to origin can also be

derived and is

O - = -
head z%rigin, 4(3&-335 (13)



In Q branch the head is formed at the begihning

"of the Q branch and liés‘very near to the origin,

The rotational constagts B;, D; and By, D; for
the upper and lowér states are usually evaluated from
combination differences. In a simple gand where P and R
branches are present there is to every line in the P
brénch a\corresponding line in the R branch with the same
upper state., The wave number difference of these two lines
ié eq&al to the separation of one of the lower-state o

rotational levels from the next but one viz. z&zF"(J).

Thu s i’

R(J-1) - P(J+1). = Fi(J+1) - F;(J-1) =A,F(J) (16)
Similarly, the difference between the wave numbers
of the two lines with a common lower state is equal to the
separation of one of the upper state rotational levels. from °

the next but one viaz. AzF'(J). ,
R(J) - P(J) = F{,(Ju) - F"r(J—i) =A2F'(J) (17)

Combination relations beftween R, Q and P branch

lines can be derived in similar way and are
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R(J) - Q(3) = Fr(J+1) - F!(J) = A F(I)
Qd+1)-P(J+1) = F"I(J+1) - F"I(J) = A\iF'(J)
o (18)
R{(J) ~Q(J+1) = F;;(J-u) - F;(J) = AiF"(J)
Q(d) -P(J+1) = F;;(J+1) - F;;(J) = AlF“(J)

Here z&iF(J) refers to the separation of successive
rotational levels. If the expression (8) for FV(J)

neglecting the term D, is substituted for AZF(J) then,

AZF(J) = FV(J+1) - FV(J-i) = BV(J+1)(J+2) - BV(J~1)J

X
4BV(J+2 )

and

AIF(J)

i

F (J+1)-F (J) = B (J+1)(J+2) - B (J+1)d

]

ZBV(J-H.)

It is seen that combination differences to a first
approximation are a linear function of the rotational

quantum number J,

By plotting the combination difference versus J a
straight line is obtained. From the slope of the graph,

the value of rotational censtant Bv can be obtained,
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If two or mere bands with the same vVv' are studied
the combination differences, ZkzF'(J), for the upper state
of the two bands must agree exactly i;respectivé,of
perturbations. - The'agreement between corresponding combi-
nation differences for bands wifh’the same lower or the
same upper vibrational stafes provides én important sensitive

check on the correctness of a rotational analysis.

4

If the term D_ in equdtion (8) is not neglected

then ZSZF(J) is given by ‘
1) - 8D (Jg+4)3
A F(3) = (4B,-6D )(J+%) - 8D (J+3)"

The plot of A, F(J)/(J+}) versus (3+%)2 gives a
straight line with siope‘ 8D, . The plot zﬁzF(J)/(J+%)
versus (J+4)2 serves as a criterion for the correctness
of numbering to the branches., If there is misnumbering
the straight line will deviate for lower,évalues of J

(Ydungngr and Winans, 1960),

Standard methods to assign correct numbering to the
different branch lines in bands have been described by

Herzberg (1950).

The value of rotational constant B and D will

be different for different vibrational states of an electronic



13

state, Bv value decreases almost linearly with the

increagsing v and is represented by the following equation

13

B, = B, - Cxe(v+§

The constant B, can be said to be belonging to

completely vibrationless state.

In the similar way the variation in D is represented

by the expression‘
D = De + Pe(v""]ﬁ:) \"" s s e @

The constants D Be\andwﬂe are related by the

e’

folldwing relation

SPIN SPLITTING ‘ ,
The effect of electron spin can be clearly observed

2

in transitions like :%; - 22. 22 states always belong

strictly to Hund's case (b) and selection rule AK = +1
holds. The separation of two sub-levels with J ; K+% and

J = K-4 for a given K is, in general very small. However,
with larger resolutién éach line of P and R branches splits

into three components according to the selection rule

AJ = 0,41, J = O holds if AJ is unequal to AK; and
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# -

intensity of these components falls off rapidly. Therefore,

in practice, there is a doublet P and a doublet R branch,

If we distinguish the term components having J = K+3
with the subscript 1 and those having J = K-% with subscript

2, we obtain‘for the four main branches

Ri(K) =2 + Fi(K—ei) -’FX(K)
| By(K) =2 + Fi(K+et) - Fy(K)
P,(K) =2 + Fi(K-1) - Fj(K)"
Pz(K) =2 + F‘é(K~1) - Fg(K)‘

In the case of 22: states rotational term values are

given by

F, (X)

and F2(K)

BVK( K+1) + 3¥K

BVK(K+1) - $¥(K+1)

\

where Y 1is spin splitting constant.

The line splitting in P and B branches is

A2 ,(r)

and . ZSJiz(R)

P -Py= (F'-g") - (H'+¢")
R _.Rz: (11_3:});& + %(31:_-311)

1

Thus splitting increases linearly with K. The combination

difference must be formed either between R1 and P

4

1 or R2 and

Py



A 2F1(K)

Aze(K)

]

4BV(K + 5)+ ¥

4BV(K + %) -
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