#### CHAPTER VI

#### ROTATIONAL ANALYSIS OF THE A - X SYSTEM OF

#### InI MOLECULE,

From the vibrational analyses of the A - Xand B - X systems of InI molecule carried out during the present investigation, the common lower state - Xwith frequency 176.9 cm<sup>-1</sup> and the A - state with frequency 157.8 cm<sup>-1</sup> and the B - state with frequency 146.7 cm<sup>-1</sup> were identified. Since the systems were also observed in absorption by Wehrli (1934) and 98

Wehrli and E. Mischer ( 1934 ), the lower state - X involved in the transition probably could be the ground state of the molecule.

In order to understand the exact nature of the electronic states involved in the transition of A = X and B = X system of InI molecule, three bands 0,0; 0,1 and 1,0 of a = A = X system and one band viz 0,0 of B = X system were photographed at high dispersion to study the rotational structure of the bands if they could be resolved.

In this chapter rotational analysis of 0,0; 0,1 and 1,0 bands of A - X system is discussed. Since 0,0 band of B - X system could not be adequatly resolved into separate branches, the rotational constants for the band have been evaluated from observed values of the second differences of wavenumbers of poorly resolved lines by standard methods ( Herzberg 1950 ).

The 0,0; 0,1 and 1,0 bands of A - X system of InI molecule were photographed in the seventh order of a two meter plane grating spectrograph ( Carl - Zeiss ) at a reciprocal dispersion of 0.35A°/mm and at a resolution of  $3 \times 10^5$  with a slit width of fifteen microns. The time of exposure was about five hours to record the spectra of satisfactory intensity. The 0,0 band of B - X system was photographed at reciprocal dispersion of 0.43 A°/mm with a slit width of fifteen microns in the seventh order of a plane grating spectrograph giving an exposure of about four hours. Ilford N-40 plates were used to record the spectra. Measurements were made on Abbe comparator using iron arc standards. The eror in the measurements of sharp and well resolved lines does not exceed  $\pm$  0.05 cm<sup>-1</sup>. For unresolved and overlapping lines, it may be a little more.

100

# 6,1 ROTATIONAL ANALYSIS OF THE 0,0; 0,1 and 1,0 BANDS of A - X SYSTEM :

In the spectrogram taken with a slit width of fifteen microns at a reciprocal dispersion of 0.35 A°/mm, the 0,0; 0,1 and 1,0 bands degraded to violet revealed the presence of single P and R branches of which P is the head forming branch.

The 0,0 band at 4098.5 A° has been clearly resolved showing the presence of single P and R branches of which P forms the band head. The spectrogram is reproduced in plate 8 (a,b). The most intense branch near the head was identified as P branch. The returning part of the P branch was faint and less extensive. The R branch lines corresponding to low J values were less intense and their intensity increased towards high J values. The splitting of the branch lines is clearly seen as we shift away from the head. The vacuum wavenumbers and J assignments of rotational lines of 0,0 band are given in Table 14. The



.

r

## TABLE 14

VACUUM WAVENUMBERS AND J ASSIGNMENTS FOR THE ROTATIONAL LINES OF THE 0,0 BAND OF A - X SYSTEM OF INI MOLECULE

| J           | R(J) cm <sup>-1</sup> | P(J)cm <sup>-1</sup> | J   | $R(J) \text{ cm}^{-1}$ | P(J)cm <sup>-1</sup> |
|-------------|-----------------------|----------------------|-----|------------------------|----------------------|
| 115         | 24413.30              | 24395,92             | 130 | 24417,90               | 24398,35             |
| 116         | 13,58                 | 96°,07               | 131 | 18,24                  | 98.51                |
| 117         | 13.89                 | 96 * 22              | 132 | 18,55                  | 98 <b>.67</b>        |
| 118         | 14,18                 | 96,38                | 133 | 18 <b>:88</b>          | 98,84                |
| 119         | 14,50                 | 96,56                | 134 | 19.18                  | 99.03                |
| 120         | 14.79                 | 96,69                | 135 | 19,53                  | 99,19                |
| 121         | 15.08                 | 96,85                | 136 | 19.87                  | 99,36                |
| 122         | 15.40                 | 97.00                | 137 | 20,17                  | 99,54                |
| 123         | 15.71                 | 97.16                | 138 | 20 <b>.54</b>          | 99 <b>.</b> 70       |
| 124         | 16.01                 | 97.36                | 139 | 20,84                  | 99.89                |
| 125         | 16.33                 | 97 <b>.</b> 56       | 140 | 21.21                  | 24400,10             |
| 126         | 16.65                 | 97.73                | 141 | 21.57                  | 0030                 |
| 12 <b>7</b> | 16,95                 | 97,90                | 142 | 21.88                  | 00+55                |
| 128         | 17,25                 | 98,04                | 143 | 22.21                  | 00.74                |
| 129         | 17,58                 | 98,18                | 144 | 22,46                  | . 00,93              |

.

| J   | R(J)cm <sup>-1</sup> | P(J)cm <sup>-1</sup> | J            | R(J) cm <sup>-1</sup> | p(J)cm <sup>-1</sup> |
|-----|----------------------|----------------------|--------------|-----------------------|----------------------|
| 145 | 24422.78             | 24401.12             | 162          | 24428.84              | 24404,58             |
| 146 | 23.12                | 01.32                | 163          | 29,30                 | 04.79                |
| 147 | 23, 50               | 01.52                | 164          | 29.64                 | 05.03                |
| 148 | 23,83                | 01,72                | 165          | 29.98                 | 05.25                |
| 149 | 24.19                | 01.91                | 166          | 30,34                 | 05.49                |
| 150 | 24,51                | 02,10                | 167          | 30,73                 | 05.63                |
| 151 | 24.88                | 02.31                | 168          | 31.10                 | 05,92                |
| 152 | 25.26                | 02.51                | 169          | 31,48                 | 06,28                |
| 153 | 25.60                | 02,68                | 170          | 31,88                 | 06.53                |
| 154 | 25,96                | 02.82                | 171          | 32,26                 | 06.75                |
| 155 | 26,30                | 03.00                | 172          | 32,63                 | 06.98                |
| 156 | 26,66                | 03.25                | 173          | 33.01                 | 07.24                |
| 157 | 27,07                | 03,47                | 1 <b>7</b> 4 | 33,36                 | 07, 57               |
| 158 | 27,41                | 03,66                | 175          | 33 <b>*77</b>         | 0 <b>7</b> .,73      |
| 159 | 27,61                | 03.91                | 176          | 34.16                 | 08.01                |
| 160 | 28,13                | 04,09                | 177          | 34, 55                | 08,27                |
| 161 | 28.49                | 04.34                | 178          | 34,96                 | 08,49                |

,

Table 14 (contd..)

.

| J   | R(J)cm <sup>-1</sup> | P(J)cm <sup>-1</sup> | J           | R(J) cm <sup>-1</sup>      | P(J)cm <sup>-1</sup> |
|-----|----------------------|----------------------|-------------|----------------------------|----------------------|
| 179 | 24435,35             | 24408,65             | 196         | 24442.11                   | 24413 10             |
| 180 | 35 <b>.</b> 72       | 08,90                | 197         | 42, 53                     | 13.44                |
| 181 | 36.13                | 09,14                | 198         | 42.97                      | 13.70                |
| 182 | 36,51                | 09,36                | 199         | 43,35                      | 13.91                |
| 183 | 36,90                | 09,59                | 200         | 43.75                      | 14.11                |
| 184 | 37,29                | 09,81                | 201         | 44.16                      | 14.32                |
| 185 | 37.70                | 10-01                | 202         | 44,57                      | 14.50                |
| 186 | 38.05                | 10.23                | 203         | 44,99                      | 14.72                |
| 187 | 38,47                | 10,55                | 204         | <b>4</b> 5 <sup>+</sup> 43 | 14,91                |
| 188 | 38,88                | 10.86                | 205         | 45,83                      | 15,18                |
| 189 | 39,29                | 11.13                | 206         | 46,21                      | 15.51                |
| 190 | 39,68                | 11.39                | 20 <b>7</b> | 46`+63                     | 15.85                |
| 191 | 40.08                | 11.68                | 208         | 47.07                      | 16.15                |
| 192 | 40 <sub>*</sub> 50   | 11.95                | 209         | 47.50                      | 16,44                |
| 193 | 40.89                | 12.24                | 210         | 47.89                      | 16 <b>.7</b> 8       |
| 194 | 41.32                | 12,50                | 211         | 48,29                      | 17.15                |
| 195 | 41.72                | 12,79                | 212         | 48.73                      | 17.39                |
|     |                      |                      | 213         | 49,14                      | 17.72                |
|     |                      |                      | 214         | 49,55                      | 18.04                |

Table 14 (contd..)

103

rotational analysis of 0,0 band was carried out by the scheme suggested by Herzberg ( 1950 ) and Youngner and Winans ( 1960 ). The combination. differences  $\Delta_2 F'(J) = R(J) - P(J)$  and  $\Delta_2 F''(J) =$ R(J) = 1) = P(J + 1) for the upper and lower states involved in the band were determined and are listed in: Tables 15 and 16 respectively. The absolute J numbering was assigned using the plots of  $\frac{\Delta_2}{J+\frac{1}{2}}$  against  $(J+\frac{1}{2})^2$ ; fig.67, and  $\frac{\Delta_2 F''(J)}{J+\frac{1}{2}}$  against  $(J+\frac{1}{2})^2$ ; fig.70 for the upper and lower states respectively. The graphs were St. lines even for low J values. Rotational constants derived from the intercept and the slope of the graphs ( Fig.6-7 and 8 ) are given in Table 19. The criterion suggested by Youngner and Winans ( 1960 ) was applied to check the correctness of J assignments i.e., a marked deviation from the st. lines was observed for low J values when the absolute numbering was changed by  $\pm 1$ .

126

106

. .



Fig. 6



Fig. 7

The spectrograms revealing rotational structure of 0,1 and 1,0 bands are reproduced in plates 9 and 10 respectively. The vacuum wavenumbers and J assignments of rotational lines of 0,1 and 1,0 bands are given in Table 17 and 18. Rotational analyses of 0,1 band at 4128.4 A° and 1,0 band at 4072.7 A° were carried out by comparing the combination differences of the lower states of 0,0 and 1,0 bands and those of the upper states of 0,0 and 0,1 bands for the same (J evalue. The upper state combination difference  $\Delta_2$  F'(J) and lower state combination difference  $\Delta_2 F''(J)$  for 0,1 and 1,0 bands respectively : are listed in Tables 15 and 16. The rotational constants for 0,1 and 1,0 bands are determined from the graphs shown in figures 89, 10, 11 and 12. The rotational constants obtained are collected in Table 19.

The vibration - rotation interaction constant  $\sim_{e}$  and vibrational quantum  $\Delta_{G_{12}}$  for the upper and lower states were determined graphically for A - X system from fig.12,13 and 14. For this purpose the

Ĵ





| COM         | BINATION                               | DIFFERENCES $\Delta_2$                 | F'(J)        | FOR THE                                                                                                         | UPPER           | STATES                        | OF                                          |
|-------------|----------------------------------------|----------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------|---------------------------------------------|
| 0,0         | AND 0,1                                | BAND OF A -                            | <u>x sys</u> | TEM OF                                                                                                          | Inī I           | MOLECUL                       | E                                           |
| <del></del> | Δ <sub>2</sub> F'(J)<br>0,0 bar        | $R(J) - P(J) cm^{-1}$<br>nd $O_1$ band | J            | $\Delta_2 F'(J)$<br>0,0 band                                                                                    | =R(J)-1<br>d 0, | P(J)cm <sup>-</sup><br>l band | 1                                           |
| 70          | ************************************** | 10.58                                  | 84           | 1999 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - | 12.             | •63                           | r han an a |
| 71          |                                        | 10.72                                  | 85           |                                                                                                                 | 12              | <b>.</b> 77                   |                                             |
| <b>7</b> 2  | •                                      | 10.87                                  | 86           |                                                                                                                 | 12              | <b>.</b> 89                   |                                             |
| 73          |                                        | 11.02                                  | 87           |                                                                                                                 | 13              | .05                           |                                             |
| 7 <u>4</u>  |                                        | 11.14                                  | 88           |                                                                                                                 | 13              | •22                           |                                             |
| <b>7</b> 5  |                                        | 11.26                                  | 89           |                                                                                                                 | 13              | <b>"</b> 33                   |                                             |
| 76          |                                        | 11,41                                  | 90           |                                                                                                                 | 13              | .47                           |                                             |
| 77          |                                        | 11.57                                  | 91           |                                                                                                                 | 13              | .61                           |                                             |
| <b>7</b> 8  |                                        | 11.74                                  | 92           |                                                                                                                 | 13              | <b>.</b> 76                   |                                             |
| 79          |                                        | 11,88                                  | 93           |                                                                                                                 | 13              | .89                           |                                             |
| 80          |                                        | 12.08                                  | 94           |                                                                                                                 | 14              | °04                           |                                             |
| 81          |                                        | 12.21                                  | 95           |                                                                                                                 | 14              | .16                           |                                             |
| 82          |                                        | 12,50                                  | 96           |                                                                                                                 | 14              | •35                           |                                             |
| 83          |                                        | 12,60                                  | 97           |                                                                                                                 | 14              | • 6Q                          |                                             |

# TABLE 15

.

•

•

-

.

,

108

.

-

.

.

109

| J   | $\Delta_2 F^*(J) = R($                          | J)-P(J)cm <sup>-1</sup> | J   | $\Delta_2 F'(J) = R($                                                                                          | $J)-P(J)cm^{-1}$ |
|-----|-------------------------------------------------|-------------------------|-----|----------------------------------------------------------------------------------------------------------------|------------------|
|     | 0,0 band                                        | 0,1 band                |     | 0,0 band                                                                                                       | 0,1 band         |
| 98  | LEISE DIE MILLER ANNUELE ANNUELE ANNUELE ANNUEL | 14.8İ                   | 114 | ngan di kangang angan di Kang angan di Kang di | 16.96            |
| 99  |                                                 | 14.90                   | 115 | 17.38                                                                                                          | 17.08            |
| 100 |                                                 | 15,07                   | 116 | 17,51                                                                                                          | 17.19            |
| 101 |                                                 | 15,26                   | 117 | 17.67                                                                                                          | 17.26            |
| 102 |                                                 | 15.40                   | 118 | 17,80                                                                                                          | 17.49            |
| 103 |                                                 | 15,47                   | 119 | 17.94                                                                                                          | 17,74            |
| 104 |                                                 | 15,59                   | 120 | 18,10                                                                                                          | 18,06            |
| 105 |                                                 | 15,75                   | 121 | 18,23                                                                                                          | 18.13            |
| 106 |                                                 | 15,97                   | 122 | 18.40                                                                                                          | 18.24            |
| 107 |                                                 | 16.07                   | 123 | 18.55                                                                                                          | 18.43            |
| 108 |                                                 | 16.21                   | 124 | 18,65                                                                                                          | 18,58            |
| 109 |                                                 | 16,38                   | 125 | 18,77                                                                                                          | 18,75            |
| 110 |                                                 | 16.46                   | 126 | 18.92                                                                                                          | 18.93            |
| 111 |                                                 | 16.59                   | 127 | 19.05                                                                                                          | 19,07            |
| 112 |                                                 | 16.76                   | 128 | 19.21                                                                                                          | 19.19            |
| 113 |                                                 | 16.80                   | 129 | 19.40                                                                                                          | 19.36            |

Table 15 (contd..)

.

1

110

,

:

-

| TABLE | 15 | (contd: | ¥ | ) |
|-------|----|---------|---|---|
|       |    |         |   |   |

.

,

| J   | $\Delta_2 F'(J) = R(0,0)$ band | $J)-P(J)cm^{-1}$<br>O,1 band | J   | $\Delta_{2}F'(J) = R(J) \sim P(J) \text{ cm}^{-1}$<br>0,0 band 0,1 band |
|-----|--------------------------------|------------------------------|-----|-------------------------------------------------------------------------|
| 130 | 19,55                          | 19,52                        | 146 | 21.80                                                                   |
| 131 | 19.73                          | 19.69                        | 147 | 21.98                                                                   |
| 132 | 19,88                          | 19.88                        | 148 | 22,11                                                                   |
| 133 | 20.04                          | 20,05                        | 149 | 22,28                                                                   |
| 134 | 20,15                          | 20.08                        | 150 | 22,41                                                                   |
| 135 | 20.34                          | 20,35                        | 151 | 22.57                                                                   |
| 136 | 20.51                          |                              | 152 | 22.75                                                                   |
| 137 | 20,63                          |                              | 153 | 22.92                                                                   |
| 138 | 20.84                          |                              | 154 | 23.14                                                                   |
| 139 | 20,95                          |                              | 155 | 23,30                                                                   |
| 140 | 21.11                          |                              | 156 | 23,41                                                                   |
| 141 | 21,27                          |                              | 157 | 23.60                                                                   |
| 142 | 21.33                          |                              | 158 | 23.75                                                                   |
| 143 | 21,47                          |                              | 159 | 23.85                                                                   |
| 144 | 21,53                          |                              | 160 | 24.04                                                                   |
| 145 | 21,66                          |                              | 161 | 24.15                                                                   |

.

÷

.

| J            | $\Delta_2 F^1(J) = R($ | $J)-P(J) cm^{-1}$ | J             | $\Delta_2 F'(J) = R(J)$ | (J)-P(J) cm <sup>-1</sup> |
|--------------|------------------------|-------------------|---------------|-------------------------|---------------------------|
|              | 0,0 band               | 0,1 band          |               | 0,0 band                | 0,1 band                  |
| 162          | 24.26                  |                   | 178           | 26、4 <b>7</b>           |                           |
| 163          | 24,51                  |                   | 1 <b>7</b> 9  | 26.70                   |                           |
| 164          | 24,61                  |                   | 180           | 26,82                   |                           |
| 165          | 24.73                  |                   | 181           | 26.99                   |                           |
| 166          | 24,85                  |                   | 182           | 27.15                   |                           |
| 16 <b>7</b>  | 25.10                  |                   | 183           | 2 <b>7</b> .31          |                           |
| 168          | 25,18                  |                   | 184           | 27,48                   |                           |
| 169          | 25,20                  |                   | 185           | 2 <b>7</b> .69          |                           |
| 170          | 25.35                  |                   | 186           | 27,82                   |                           |
| 171          | 25,51                  |                   | ′ 18 <b>7</b> | 27.92                   |                           |
| 1 <b>7</b> 2 | 25.65                  |                   | 188           | 28.02                   |                           |
| 173          | 25 <b>.77</b>          |                   | 189           | 28,16                   |                           |
| 174          | 25, 79                 |                   | 190           | 28,29                   |                           |
| 175          | 26.04                  |                   | 191           | 28.40                   |                           |
| 176          | 26.15                  |                   | 192           | 28,55                   | ,                         |
| 177          | 26,28                  |                   | 193           | 28,65                   |                           |

Table 15 (contd..)

.

i

112

- (

| Table | 15 | (contd) |
|-------|----|---------|
|       | •  |         |

| J           | $\Delta_2 F'(J) = R(J) - P(J) cm^{-1}$ | J   | $\Delta_2 F'(J) = R(J) - P(J) cm^{-1}$ |
|-------------|----------------------------------------|-----|----------------------------------------|
|             | 0,0 band 0,1 band                      |     | 0,0 band 0,1 band                      |
| 194         | 28,82                                  | 210 | 31.11                                  |
| 195         | 28,93                                  | 211 | 31.14                                  |
| 196         | 29.01                                  | 212 | 31,34                                  |
| 197         | 29.09                                  | 213 | 31.42                                  |
| 198         | 29 <b>.</b> 2 <b>7</b>                 | 214 | 31.51                                  |
| 199         | 29.44                                  |     |                                        |
| 200         | 29.64                                  |     |                                        |
| 201         | 29.84                                  |     |                                        |
| 202         | 30.07                                  |     |                                        |
| 203         | 30.27                                  |     |                                        |
| 204         | 30,52                                  |     |                                        |
| 205         | 30.65                                  |     |                                        |
| 206         | <b>30</b> .70                          |     |                                        |
| 20 <b>7</b> | 30.78                                  |     |                                        |
| 208         | 30,92                                  |     |                                        |
| 209         | 31.06                                  |     |                                        |

.

•

# 113

٠

. .

;

|      |                                      | TABLE 16                     | 5                          |                        | ۲.                                        |
|------|--------------------------------------|------------------------------|----------------------------|------------------------|-------------------------------------------|
| COME | SINATION DIFF                        | PERENCES $\Delta_{2}F''(J)$  | ) FOR TH                   | E LOWER S              | TATES OF                                  |
| 0,0  | AND 1,0 E                            | BANDS OF A - X               | SYSTEM                     | OF InI                 | MOLECULE                                  |
| J    | $\Delta_2 F''(J) = R(J)$<br>0,0 Band | ]- 1)-P(J + 1)cr<br>1,0 Band | n <sup>1</sup> J; <b>/</b> | 2F"(J)=R()<br>),0 Band | J -1)-P(J +1)cm <sup>-1</sup><br>1,0 Band |
| 115  | 16.93                                |                              | 127                        | 18.77                  | 18,76                                     |
| 116  | 17.08                                |                              | 129                        | 18,90                  | 18.96                                     |
| 117  | 17.20                                |                              | 130                        | 19.07                  | 19.06                                     |
| 118  | 17.33                                |                              | 131                        | 19.23                  | 19.24                                     |
| 119  | 17,49                                |                              | 132                        | 19,40                  | 19.38                                     |
| 120  | 17.65                                | 17.56                        | 133                        | 19.52                  | 19.49                                     |
| 121  | 17.79                                | 17.73                        | 134                        | 19.69                  | 19.63                                     |
| 122  | 17.92                                | 17.87                        | 135                        | 19.82                  | 19 <b>.7</b> 2                            |
| 123  | 18.04                                | 18.04                        | 136                        | 19,99                  | 19,88                                     |
| 124  | 18,15                                | 18.14                        | 137                        | 20.17                  | 20.01                                     |
| 125  | 18.28                                | 18.33                        | 138                        | 20.28                  | 20.13                                     |
| 126  | 18.43                                | 18.41                        | 139                        | 20.44                  | 20.32                                     |
| 127  | 18.61                                | 18.64                        | 140                        | 20.54                  | 20.54                                     |

.

Table 16 Contd....

.

| J   | $\Delta_2 F''(J) = R(J - $ | $1)-P(J + 1)cm^{-1}$ | J 4      | $\Delta F''(J) = R(J -$ | $1)-P(J + 1)cm^{-1}$ |
|-----|----------------------------|----------------------|----------|-------------------------|----------------------|
|     | 0,0 Band                   | 1,0 Band             | -1.5-575 | 0,0 Band                | 1,0 Band             |
| 141 | 20,66                      | 20.71                | 158      | 23,16                   |                      |
| 142 | 20.83                      | 20.86                | 159      | 23,32                   |                      |
| 143 | 20,95                      | 20,98                | 160      | 23,42                   |                      |
| 144 | 20.09                      | 21.08                | 161      | 23,55                   |                      |
| 145 | 21.14                      | 21.23                | 162      | 23.70                   |                      |
| 146 | 21.26                      | 21.36                | 163      | 23,81                   |                      |
| 147 | 21.40                      | 21.46                | 164      | 24.05                   | ,                    |
| 148 | 21,59                      | 21.62                | 165      | 24.15                   |                      |
| 149 | 21.73                      | 21.76                | 166      | 24.35                   |                      |
| 150 | 21.88                      | 21.97                | 167      | 24.42                   |                      |
| 151 | 22.00                      |                      | 168      | 24.45                   |                      |
| 152 | 22.20                      |                      | 169      | 24, 5 <b>7</b>          |                      |
| 153 | 22,44                      |                      | 170      | 24.73                   |                      |
| 154 | 22.60                      | r                    | 171      | 24,90                   |                      |
| 155 | 22.71                      |                      | 172      | 25.02                   |                      |
| 156 | 22.83                      |                      | 173      | 25.06                   |                      |
| 157 | 23.00                      |                      | 174      | 25.28                   |                      |

115

| J   | $\Delta_{\mathbf{Z}} F''(J) = R(J-1) - P(J + 1) cm^{-1}$<br>O,O Band 1,O Band | J   | <b>∆_F"(J)=R(J-1</b><br>0,0 Band | $()-P(J + 1)cm^{-1}$<br>1,0 Band        |
|-----|-------------------------------------------------------------------------------|-----|----------------------------------|-----------------------------------------|
| 175 | 25.35                                                                         | 191 | 27.73                            | 99999-000-000-000-000-000-000-000-000-0 |
| 176 | 25,50                                                                         | 192 | 27.84                            |                                         |
| 177 | 25.6 <b>7</b>                                                                 | 193 | 28.00                            |                                         |
| 178 | 25.90                                                                         | 194 | 28.10                            |                                         |
| 179 | 26.06                                                                         | 195 | 28.22                            |                                         |
| 180 | 26.21                                                                         | 196 | 28.28                            |                                         |
| 181 | 26.36                                                                         | 197 | 28,41                            |                                         |
| 182 | 36,54                                                                         | 198 | 28.62                            |                                         |
| 183 | 26.70                                                                         | 199 | 28,86                            |                                         |
| 184 | 26.89                                                                         | 200 | 29,03                            |                                         |
| 185 | 27.06                                                                         | 201 | 29.25                            |                                         |
| 186 | 27.15                                                                         | 202 | 29,44                            | ,                                       |
| 187 | 27,19                                                                         | 203 | 29.66                            |                                         |
| 188 | 27.34                                                                         | 204 | 29.81                            |                                         |
| 189 | 27.49                                                                         | 205 | 29.92                            |                                         |
| 190 | 27.61                                                                         | 206 | 29,98                            |                                         |

Table 16 Contd.....

.

116

•

.

,

Table 16 Contd.....

· ·

|   | J (         | ∆ <sub>2</sub> F"(J)=R(J-1<br>0,0 Band | .)-P(J + 1)cm <sup>-1</sup><br>1,0 Band |
|---|-------------|----------------------------------------|-----------------------------------------|
| , | 20 <b>7</b> | 30.06                                  |                                         |
|   | 208         | 30.19                                  |                                         |
|   | 209         | 30.29                                  |                                         |
|   | 210         | 30,35                                  |                                         |
|   | 211         | 30,50                                  |                                         |
|   | 212         | 30,57                                  |                                         |
|   | 213         | 30.69                                  |                                         |
|   | 214         | 30.82                                  |                                         |
|   |             |                                        |                                         |

.

-

#### TABLE 17

VACUUM WAVENUMBERS AND J ASSIGNMENTS FOR THE ROTATIONAL BAND OF SYSTEM OF INI MOLECULE LINES OF THE 0,1 A - X $R(J) cm^{-1}$  $P(J) \text{ cm}^{-1}$ R(J) cm<sup>-1</sup> J J P(J)cm 70 24227,82 24217,24 84 24231.23 24218,60 71 28.04 17.32 31,47 18,70 85 72 28.27 17.40 18.79 31,68 86 17,48 18,88 73 28.50 87 31.93 18.97 74 28,70 17.56 32,19 88 32.39 19.06 75 28.91 17.65 89 19,15 76 29.14 17.73 90 32.62 19,23 29,38 17,81 32,84 77 91 17.89 33.07 19,31 29,63 78 92 33.28 19.39 29,86 17,98 79 93 33,53 19.49 80 30,13 18.05 94 33.75 19.59 18.14 95 30,35 81 30,73 18,23 96 34.03 19.68 82 19.78 30,95 34.38 18.35 97 83

,

(

| J   | R(J) cm <sup>-1</sup> | P(J)cm <sup>-1</sup> | J   | R(J)cm <sup>-1</sup> | P(J)cm <sup>-1</sup> |
|-----|-----------------------|----------------------|-----|----------------------|----------------------|
| 98  | 24234.69              | 24219,88             | 115 | 24239,36             | 24222.28             |
| 99  | 34,91                 | 20.01                | 116 | 39,56                | 22,37                |
| 100 | 35,22                 | 20.15                | 117 | 39.81                | 22,45                |
| 101 | 35,54                 | 20.28                | 118 | 40,03                | 22,54                |
| 102 | 35.84                 | 20,44                | 119 | 40.36                | 22,62                |
| 103 | 36,10                 | 20,63                | 120 | 40 <b>.7</b> 8       | 22,72                |
| 104 | 36.41                 | 20,82                | 121 | 41.05                | 22.92                |
| 105 | 36.74                 | 20,99                | 122 | 41,37                | 23.13                |
| 106 | 37.13                 | 21.16                | 123 | 41.72                | 23,29                |
| 107 | 37,40                 | 21.33                | 124 | 42.06                | 23,48                |
| 108 | 37,71                 | 21,50                | 125 | 42,43                | 23,68                |
| 109 | 38,06                 | 21,68                | 126 | 42 <b>.7</b> 8       | 23.85                |
| 110 | 38,28                 | 21,82                | 127 | 43.13                | 24.06                |
| 111 | 38,51                 | 21.92                | 128 | 43,46                | 24,27                |
| 112 | 38.78                 | 22.02                | 129 | 43,85                | 24,49                |
| 113 | 38,90                 | 22.10                | 130 | 44,18                | 24,66                |
| 114 | 39.16                 | 22.20                | 131 | 44.54                | 24.85                |

Table 17 (contd..)

.

.

. .

. .

.

6

.

.

Table 17 (contd..)

x

ť

| J   | R(J) cm <sup>-1</sup> | P(J)cm <sup>-1</sup> | 5 |
|-----|-----------------------|----------------------|---|
| 132 | 24244.96              | 24225.08             |   |
| 133 | 45,25                 | 25.20                |   |
| 134 | 45, 59                | 25,51                |   |
| 135 | 46.01                 | 25,66                |   |

| VACUU | M WAVENUMBI          | ers and J            | ASSIGNM      | ENTS FOR TI           | HE ROTATIONAL        |
|-------|----------------------|----------------------|--------------|-----------------------|----------------------|
| LINES | OF THE 1,            | O BAND OF            | <u>A - X</u> | SYSTEM OF             | InI MOLECULE         |
| J     | R(J)cm <sup>-1</sup> | P(J)cm <sup>-1</sup> | J            | R(J) cm <sup>-1</sup> | P(J)cm <sup>-1</sup> |
| 120   | 24569, 54            | 24551,48             | 136          | 24574,15              | 24553,84             |
| 121   | 69,84                | 51.71                | 137          | 74.44                 | 53,96                |
| 122   | 70.11                | 51.81                | 138          | 74, 73                | 54.14                |
| 123   | 70.38                | 51.97                | 139          | 75.03                 | 54,31                |
| 124   | <b>7</b> 0.68        | 52.07                | 140          | 75,33                 | 54.41                |
| 125   | <b>7</b> 0.92        | 52.24                | 141          | 75,63                 | 54                   |
| 126   | 71,24                | 52.35                | 142          | 75,95                 | 54.62                |
| 127   | 71.50                | 52.51                | 143          | 76.24                 | 54,77                |
| 128   | 71.81                | 52.60                | 144          | 76 <sub>°</sub> 56    | 54,97                |
| 129   | <b>7</b> 2,10        | 52 <b>, 74</b>       | 145          | 76,86                 | 55,16                |
| 130   | 72.39                | 52,85                | , 146        | 77,15                 | 55,33                |
| 131   | 72.69                | 53.04                | 147          | 77,46                 | 55.50                |
| 132   | 72.99                | 53.15                | 148          | 77,78                 | 55.69                |
| 133   | 73,25                | 53.31                | 149          | 78.10                 | 55,84                |
| 134   | <b>7</b> 3,56        | 53.50                | 150          | <b>7</b> 8,39         | 56.02                |
| 135   | 73.84                | 53,62                |              |                       |                      |

-

| TA | BLE | 18 |
|----|-----|----|
|    |     |    |

TABLE 19

•

ROTATIONAL CONSTANTS FOR 1,0; 0,0 and 0,1 BANDS OF A - X SYSTEM OF INI MOLECULE

| ν', ν <sup>ιι</sup> | و<br>مس <sup>1</sup> | B' am <sup>-1</sup> | B"tm _1               | D' cm <sup>-1</sup>     | D" cm <sup>-1</sup>      |
|---------------------|----------------------|---------------------|-----------------------|-------------------------|--------------------------|
| 1,0                 | 24548,535            | +03742              | *0368 <u>1</u>        | 0.12 × 10 <sup>-7</sup> | 0.087 x 10 <sup>-7</sup> |
| 0'0                 | 24393,853            | <sup>+</sup> 0377_1 | •0368 <sub>2</sub>    | 0.087 x 10-7            | 0.075 x 10 <sup>-7</sup> |
| 0,1                 | 24216,705            | 0°03761             | $0.0364_{\mathrm{I}}$ | 0°1 x 10 <sup>-7</sup>  | 0,06 x 10 <sup>-7</sup>  |

121

Ł

ł

,

~ )

.

122



Fig. 8







,



Fig. 10



Fig. 11

> > Fig. 12



Fig. 13

observed values of the difference in wavenumbers of R branch for 0,0 band and 0,1 band viz  $R_{0,0}(J)-R_{0,1}(J)$ were plotted against J(J + 1). The values are listed in Table 20. The st. line graph fig. 13 satisfy the following relation

$$R_{0,0}(J) - R_{0,1}(J) = \Delta G_{\frac{1}{2}}^{u} - \overset{u}{\ll} (J)(J+1)$$
(36)

The slope and intercept of the st. line gives the values of the constants  $\varkappa_e^{"}$  and  $\Delta G_{L_2}^{"}$  for the lower state - X of A - X system. Similar relationship viz

$$R_{1,0}(J-1) - R_{0,0}(J-1) = \Delta G_{\frac{1}{2}} - \mathcal{A}_{e}(J)(J+1)$$
(37)

holds for the upper state - A taking the difference of wavenumbers of R branch of 1,0 and 0,0 bands. The values are listed in Table 21.

The molecular constants for A - X system obtained from the present analysis are given in Table 22 along with the microwave data of Barrett and Mandel ( 1958 ).

## TABLE 20

|           |               |    | 11 |     | 11           |        |     |       |       |
|-----------|---------------|----|----|-----|--------------|--------|-----|-------|-------|
| GRAPHICAL | DETERMINATION | OF | ≈e | AND | $\Delta G_1$ | VALUES | FOR | LOWER | STATE |
|           |               |    |    |     | 2            |        |     |       | ~~~   |

.

|             |                               |                                       | ₽₩₽₽₽₩₽₩₽₩₩₽₩₽₩₽₽₩₽₩₽₩₩₽₩₩₽₩₩₩₩₩₩₩₩₩₩    |
|-------------|-------------------------------|---------------------------------------|------------------------------------------|
| J           | $R_{0,0}(J)$ cm <sup>-1</sup> | R <sub>0,1</sub> (J) cm <sup>-1</sup> | $R_{0,0}(J)-R_{0,1}(J)$ cm <sup>-1</sup> |
| 115         | 24413.30                      | 24239.36                              | 173.94                                   |
| 116         | 13,58                         | 39,56                                 | 174,02                                   |
| 117         | 13,89                         | 39.81                                 | 174.08                                   |
| 118         | 14.18                         | 40.03                                 | 174,15                                   |
| 119         | 14.50                         | 40,36                                 | 174.14                                   |
| 120         | 14 <b>.7</b> 9                | 40.78                                 | 1.74.01                                  |
| 121         | 15.08                         | 41.05                                 | 174.03                                   |
| 122         | 15,40                         | 41.37                                 | 174.03                                   |
| 123         | 15,71                         | 41.72                                 | 173,99                                   |
| 124         | 16.01                         | 42.06                                 | 173.95                                   |
| 125         | 16,33                         | 42.43                                 | 173.90                                   |
| 12 <b>6</b> | 16.65                         | 32,78                                 | 173,87                                   |
| 127         | 16.95                         | 43.13                                 | 173.82                                   |
| 128         | 17,25                         | 43.46                                 | 173.79                                   |
| 129         | 17.58                         | 43.85                                 | 173.73                                   |
| 130         | 17.90                         | 44.18                                 | 173.72                                   |
| 131         | 18.24                         | 44,54                                 | 173.70                                   |
| 132         | 18.55                         | 44,96                                 | 173,59                                   |
| 133         | 18.88                         | 45,25                                 | 173.63                                   |
| 134         | 19.18                         | 45,59                                 | 173.59                                   |
| 135         | 19.53                         | 46.01                                 | 173.52                                   |

FROM R<sub>0,0</sub>(J)-R<sub>0,1</sub>(J) Vs. J(J+1) OF A-X SYSTEM OF INI MOLECULE

, .

,

## TABLE 21

GRAPHICAL DETERMINATION OF  $\checkmark_{e}^{i}$  AND  $\bigtriangleup G_{2}^{i}$  VALUES FOR UPPER STATE FROM  $R_{1,0}(J-1)-R_{0,0}(J-1)$  Vs. J(J+1) OF A - X SYSTEM

OF INI MOLECULE.

١

|                   | 24413 00 |                |
|-------------------|----------|----------------|
| 115 24567.92      | 24413,00 | 154.92         |
| 116 68.17         | 13,30    | 154.87         |
| 117 68,44         | 13, 58   | 154.86         |
| 118 68,72         | 13,89    | 154.83         |
| 119 68.98         | 14.18    | 154.80         |
| 120 69,27         | 14,50    | 154.77         |
| 121 69,54         | 14,79    | 154,75         |
| 122 69.84         | 15.08    | 154,76         |
| 123 70,11         | 15,40    | 154,71         |
| 124 70.38         | 15.71    | 154.67         |
| 125 <b>7</b> 0.68 | 16.01    | 154.67         |
| <b>126 7</b> 0.92 | 16.33    | 154.59         |
| 127 71.24         | 16.65    | 154,59         |
| 128 71.50         | 16,95    | 154.55         |
| 129 71.81         | . 17.25  | 154,56         |
| 130 72.10         | 17,58    | 154,52         |
| 131 72.39         | 17.90    | 154,49         |
| 132 72,68         | 3 18.24  | 154.44         |
| 133 72.99         | 18.55    | 154 <b>.44</b> |
| 134 73.25         | 5 18.88  | 154.37         |
| 135 73,56         | 5 19.18  | 154,38         |

.

| 22   |  |
|------|--|
| ម្មា |  |
| TAB  |  |

MOLECULAR CONSTANTS OF INI OBTAINED IN THE PRESENT WORK ALONG WITH THE MICROWAVE DATA

(BARRETT AND MANDEL 1958 ).

| ana) Alan Julya Tara ya ya na                                              | г.                               | x 10 <sup>-4</sup>        | x 10 <sup>-4</sup>   | 1 x 10 <sup>-4</sup> |
|----------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|----------------------|----------------------|
|                                                                                                                | ۲°                               | 9*0<br>0                  | ۳<br>۳               | *1,04                |
| an a                                                                       | Δ <sub>9,</sub> cm <sup>-1</sup> | 155*7 <sub>2</sub>        | 176 • 1 <sub>2</sub> |                      |
| ander van de seren ander en de seren d | r <sub>e</sub> A°                | 2,710 <sub>2</sub>        | 2*770                | *2,754               |
|                                                                                                                | Be cm <sup>-1</sup>              | , 0•0376 <sub>2</sub>     | 0.0362 <sup>2</sup>  | *<br>0.0368          |
|                                                                                                                | Electronic state                 | A <b>3</b> T <sub>O</sub> | × 1<br>#+            |                      |

128

:

١.

### 6.2 ELECTRONIC TRANSITION OF A - X SYSTEM

Ground state configuration of InI molecule . can be written as  $z \stackrel{2}{\sigma} y \stackrel{2}{\sigma} w \stackrel{4}{\pi} x \stackrel{2}{\sigma}$  analogous to those of the halides of the same group ( InCl, InBr and InF ) giving rise to  $\frac{1}{z}$  ground state. The excited electron configuration is  $z \partial^2 y \partial^2 w \pi^4 x \partial v \pi$ , which gives rise to  $\frac{1}{\pi}$  or  $\frac{3}{\pi}$  state.  $\frac{1}{\pi} - \frac{1}{\Sigma}$  transition is attributed to C - X system which is analogous to those of similar molecules. However  ${}^{1}\pi$  state is repulsive in the case of InI molecule which gives a continuum at 3180 A°. The  $\frac{3}{4}$  state belongs to Hund's case (a) due to its large coupling constant ( 648.9 cm<sup>-1</sup>). Hence  $\frac{3}{\pi_0}$ ,  $\frac{3}{\pi_1}$  and  ${}^{3}\pi_{2}$  states are analogous to  $\frac{1}{\Sigma}$ ,  $\frac{1}{\pi}$  and  $\frac{1}{\Delta}$  states respectively.  $\frac{3}{\pi_2} - x \stackrel{1}{\Sigma}^+$  is a forbidden one whereas  ${}^{3}\pi_{1} - x {}^{1}\Sigma^{+}$  has been ascribed to the B - X system. Therefore  ${}^{3}\mathbf{r}_{0}$  — X  ${}^{1}\mathbf{r}_{1}^{+}$  transition may be attributed to the A - X system of InI molecule. The appearance of single P and R branches in case of 0,0; 0,1 and 1,0 bands of A - X system confirms this assignments

#### 6.3 0.0 BAND OF B - X SYSTEM OF INI MOLECULE

The rotational analysis of 0,0 band at 3993.7 A° of B - X system could not be carried out since the structure of the band was not properly resolved into branch lines ( P, Q and R branches ) even at the highest dispersion which the grating spectrograph could offer ( 0.43 A°/mm ). The spectrogram showing the various heads and rotational lines of the 0,0 band is reproduced in plate 11.

An attempt was made in the present work to evaluate the rotational constants of the upper state-B from observed values of the second differences of the wavenumbers ( $\Delta^2 \cdot$ ) of poorly resolved lines following the method suggested by Herzberg (1950). The spectrogram clearly indicates front P head and inner Q head of the band. Assuming the band origin to lie very close to Q head, the P - head to origin wavenumber difference k is given by the relation

$$k = \frac{2}{H} - \frac{2}{0} = -\frac{d^2}{4e} = -\frac{(B' + B'')^2}{4(B' - B'')}$$
(38)

130

,



The average value of the second difference of the wavenumbers ( $2\omega$ ) of poorly resolved lines gives 2e value. Here e = B' - B''. Observed  $\Delta^2 v$  values for 0,0 band are listed in Table 23. Microwave data of Barret and Mandel (1958) provides the value for the lower state rotational constant B''. Using this, rotational constants for 0,0 band of B - X system obtained in the present work are given below :

| Bi cm <sup>-1</sup> | B" cm <sup>-1</sup> | r' A° | r" A° |
|---------------------|---------------------|-------|-------|
| 0.0388              | 0,0368              | 2,683 | 2,754 |

| TABLE | 23 |
|-------|----|
|-------|----|

VACUUM WAVENUMBERS AND THEIR SECOND DIFFERENCE ( کع) OF SOME POORLY RESOLVED LINES OF (0,0) BAND OF B - X SYSTEM OF INI MOLECULE

| Vacuum wavenumber<br>v cm <sup>-1</sup> | First difference<br>Avan <sup>-1</sup> | Second difference $\overset{2}{\Delta}$ cm <sup>-1</sup> |
|-----------------------------------------|----------------------------------------|----------------------------------------------------------|
| 25043,595                               |                                        |                                                          |
| 43,681                                  | 0.086                                  | -                                                        |
| 43 <b>.7</b> 69                         | 0.088                                  | 0.002                                                    |
| 43,859                                  | 0.090                                  | 0.002                                                    |
| 43,920                                  | 0.061                                  | -0,029                                                   |
| 44.015                                  | 0,095                                  | 0.034                                                    |
| 44,109                                  | 0.094                                  | O • 001                                                  |
| 44,205                                  | 0.096                                  | 0.002                                                    |
| 44,303                                  | 0.098                                  | 0,002                                                    |
| 44.396                                  | 0.093                                  | -0,005                                                   |
| 44,498                                  | 0,102                                  | 0.009                                                    |
| 44,612                                  | 0.114                                  | 0.012                                                    |
| 44 <b>.7</b> 32                         | 0,120                                  | 0.006                                                    |
| 44,860                                  | 0.128                                  | 0,008                                                    |
| 44,992                                  | 0.132                                  | 0.004                                                    |
| 45,127                                  | 0.135                                  | 0,003                                                    |
| 45,266                                  | 0.139                                  | 0.004                                                    |
| 45.408                                  | 0.142                                  | 0,003                                                    |
| 45.554                                  | 0.146                                  | 0.004                                                    |

e

Table 23 (contd..)

•

•

| Vacuum wavenumber<br>v cm <sup>-1</sup> | First difference<br>Av cm <sup>-1</sup> | Second difference |
|-----------------------------------------|-----------------------------------------|-------------------|
| 25045,706                               | 0.152                                   | :0,006            |
| 45,828                                  | 0.122                                   | -0.030            |
| 45,973                                  | 0.145                                   | 0.023             |
| 46,123                                  | 0,150                                   | 0.005             |
| 46.317                                  | 0.194                                   | 0.044             |
| 46.455                                  | 0.138                                   | -0,056            |
| 46.599                                  | 0.144                                   | 0,006             |
| 46.751                                  | 0.152                                   | 0.008             |
| 46.904                                  | 0.153                                   | 0.001             |
| 47.064                                  | 0.160                                   | 0.007             |
| 47,329                                  | 0.165                                   | 0.005             |
| 47,496                                  | 0.167                                   | 0.002             |
| 47.666                                  | 0.170                                   | 0,003             |
| 47.849                                  | 0.183                                   | 0.013             |
| 48.019                                  | 0.170                                   | -0.013            |
| 48,187                                  | 0.168                                   | -0,002            |
| 48,370                                  | 0,183                                   | 0.015             |
| 48,540                                  | 0.170                                   | -0.013            |
| 48.713                                  | 0,173                                   | 0,003             |
| 48.890                                  | 0.177                                   | 0.004             |
|                                         |                                         |                   |

Average value of approximately near second differences  $\Delta^2 q = 0.004 \text{ cm}^{-1}$ .