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CHAPTER - I

INTRODUCTION

The study of molecular spectra has become
one of the most important means for investigating
molecular structure and therefore in the last few
decades considerable progress has been made in the
investigations and theoretical interpretations of
molecular spectra of various substances. From the
study of spectra, various discrete energy levels of
molecules can be derived directl y and from the
study of energy levels of molecul es, one can get
the complete information regarding motion of
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electrons (Electronic Structure), vibration and 
rotation of the nuclei in the molecules. The 
detailed study of electronic motion gives theoretical 
understanding of chemical valence and vibrational 
frequencies provide the knowledge of forces between 
the atoms, heat of dissociation and vibrational 
temperature of a molecule can be calculated. The 
rotational frequencies give information about the 
geometrical arrangement of nuclei in the molecule.

In an atom, the total energy in a 
particular state is almost entirely electronic, but 
in a molecule, the total energy is the sum of the 
electronic, vibrational and rotational energy of 
which the electronic energy is much more greater 
than the other two. It means that the vibrational 
and rotational transitions are superposed on the 
electronic transition giving rise to the molecular 
spectrum, what is called the band spectrum. Hence 
the study of band spectra gives perfect and 
detailed information regarding the electronic 
structure of molecules and geometrical arrangement of 

the atoms in them.

Since 1925, with the application of
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quantum mechanics, the theory of the spectra of
diatomic molecules has undergone very rapid 
development and has helped much especially in
understanding the nature of electronic states of
molecules and the products of dissociation.

The most probable electron configuration 
for the lighter diatomic molecules and the order of 
their electron binding have been determined by 
Mulliken (1932). However no such scheme has yet been
formulated for heavier molecules as they involve
greater number of electrons and molecular orbitals 
having approximately equal energy. The structure of 
lightest molecules, such as H2 and He2 has been 
interpreted by Heitler and London (1927). This 
enables us to determine the electron configuration 
of other lighter molecules by successive addition of
electrons to the H2 and He2 molecules. A successful 
utilization of this method depends entirely on the 
accuracy of the molecular constants derived from the 
vibrational and rotational analyses of the spectra 
of these molecules and also on the studies of
their ionization potentials. Band systems have been 
studied in detail for heavy molecules but molecular
constants of many of them are not known accurately.



4
Therefore any additional experimental data on the 

spectra of heavy diatomic molecules will be helpful 
in the construction of an improved electronic scheme 
for these molecules.

A systematic investigation on the 
molecular constants for a group of related molecules 
such as the halides of the elements of a column 
of the periodic table or a group of molecules with 
the same number of valence electrons provide much 
useful information about the electronic states 
involved and allows us to interpret them in terms 
of their electron configurations. This procedure can 
be used to compare various molecular constants
derived and their dependence on the energy levels
of the constituent atoms. This will al so help in
the search for missing analogous band systems.
Moreover, a detailed investigation of the rotational

structure enables us to understand some of the
properties of nuclei of the constituent atoms of 
the molecule e.g. binding energies, internuelear 
distances, dipole moments, quardrupole moments and 

nuclear statistics etc.

The theory and methods of analysing the
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electronic spectra have been well established and
are discussed in detail by Mulliken (1930, 1931,
1932), Jevons (1932), Johnson (1949), Herzberg (1950), 
Gaydon (1953), Barrow (1962), Walker and Straw (1962), 
King (1964) and Kovacs (1969). In order to make the 
thesis self - contained, a brief theoretical account 
related to the present study of band spectra will 
be described now.

The theoretical work on spectroscopy based
on quantum concepts started with Niels Bohr.
According to him, an atom or a molecule can not
exist in the state having arbitrary energy but only
in discrete energy states , which are known as
stationary states. According to Bohr, electromagnetic
radiation (Energy) is not emitted while an electron
moves in its orbit but only when it jumps from
one state of higher energy E1 to another state of
lower energy E2. The liberated energy (E^ - e2) is
emitted as a quantum of electromagnetic radiation
(Photon), i • 6 •

Ei “ e2 - hj>' = he ~x>

where - frequency of radiation emitted

= wave number of radiation emitted
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c = velocity of light in vacuum.

This equation is also known as Bohr's frequency
condition. According to the selection rule? only

those transitions are possible in which the quantum 

number i (the number designating a particular atomic 
state) changes by A i = +1 where l is the orbital 

quantum number. The transitions other than A l - i 1 
are said to be forbidden transitions. The wave
number of a spectral line is usually represented as 

the difference between two quantities called "Terms". 
The word "Term" is used synonymously with energy 
state or quantum state, the word "Term value" is
used synonymously with energy value.

The possible energy values of a diatomic
molecule can be expressed as functions of certain

quantum numbers associated with motions of the
electrons and nuclei.‘ These quantum numbers can be
divided into three groups :

(1) A group which defines the energy depending on
the electronic motions which the molecule would 
have if the nuclei could be held stationary.

(2) A single quantum number "v" which defines the 
state of vibration of the nuclei.
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(3) A group of quantum numbers associated with the 
rotation of the nuclei and with the finer
details of the electronic motions. In this
scheme of these quantum numbers, interactions
between electronic motion and nuclear rotation 
must be considered.

VIBRATIONAL STRUCTURE OF ELECTRONIC SPECTRUM

energy
In a 

consists of
molecule the total 
three components viz.

quantizable

E = E + E + E e v r ....(1)

where E„

Ev
E.

sum of electronic energy Eel 
potential V .

energy due to vibration of nuclei, 

energy due to rotation of nuclei.

and

Now the electronic energy Eel depends on the
internuclear distance .r. This dependence wil 1 be
different for different electronic states. The sum
of electronic energy Eg| and coulomb potential Vn
acts as the potential energy under whose influence
the nuclei carry out their vibrations. The
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electronic state in question will be stable only 
if the potential energy in its dependence on the
internuclear distance is a minimum. If there is no 
minimum the electronic state is unstable i.e. the 
two atoms repel each other for any value of
internuclear distance.

The wave number of any line in the
spectrum can be obtained by taking the difference 
of two terms, one of higher energy (F1 ) and
another of lower energy (F")

= F' - F"

(F* - F" ) +e e (F' -V F"v) + (F'r - F"r )

= +2J + 2J
e v r ......(2)

For a given band varies for each of its
rotational lines, while ( 3^ + ) is constant and
defines the band origin ^o * For a given band
system, :2>v varies from band to band, being
constant and defining the system origin.

All the spectrum lines associated with a 
definite pair of electronic states are collectively 
called "band system". These lines of a band system
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are again divided into limited groups of lines 
called bands, each band being associated with a 
definite pair of vibrational states belonging to 
the two different electronic states involved in the 
transitions.

The equation for energy in terms of term 
values is given as

T = Te + G(v) + F(J) ......... (3)

To study the vibration and rotation of a molecule
in different electronic states we can use the model 
of the vibrating rotator, where

G(v) = ^(v+1/2) -c*iexe(v+l/2)2 + Weye(v+l/2)3 .... (4)

and
F(J) = Bv J(J+1) - DvJ2(J+1)2 .... (5)

In order to study the arrangement of bands, the
term a? in equation (2) can be safely disregarded.
For a given electronic transistion, F' - F"e remains 
constant and dJ, = 0 for band origin, we express 
the vibrational structure of the electronic
transition by
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zl> ~ j> + 3J ■^e v

- + a)'e(v’+l/2) - w'ex'e(v'+l/2)2 + c0’ey'e(v*+l/2)3

-Je(v"+1/2) + Jex"e(v"+1/2)2 “ W ey"e(v"+1/2)3

.....(6)
where is the wave number of a band head, v" and 
v,! are the vibrational quantum numbers, oS & and
co"e are the vibrational frequencies of the
molecule in these states and a)'ex'e> £j"ex"e5 CO e y'e 
and cu"ey"e are the anharmonicities of the upper and 
lower state respectively. In principle, any
vibrational level of the upper electronic state can
combine with any other vibrational level of the
lower electronic state.

Due to lack of resolution the band
origins are not usually observed and hence for
vibrational analysis band heads are measured instead 
of band origins and therefore discrepancy arises in 
the vibrational constants but it is very small. In 
the equation^ the single primed letters refer to 
the upper state and the double primed letters
refer to the lower state. By putting the value 
v' =0 and v" = 0 in equation (6) the following
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expression can be readily obtained

oo

d/2 - 1/4 cJ' x" ♦ 1/8 Jv”) (7)

Here is a term independent of v1 and v" and
is called (0,0) band as it corresponds to the
transition v’ = 0 ----  v" = 0. The equation (6) can
also be written in terms of as

^ ■ ^00 * < oJg V .1 x! v|2 + , T (3
LW o o w oJ o

Cd"nV" «VV"2 * CinV nV„3

)

)

(8)

In fact equation ( 7 ) referes to the band origins
but in usual practice the positions of the band
heads are measured as it is difficult to determine
the band origins without detailed analysis of the
rotational structure. Since the separation between
^origin and -^head is small, the error in the
vibrational constants derived from the band head
measurements is often negligible.
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The vibrational analysis of a band system 

is usually made by arranging the wave numbers of

various bands in a scheme cal 1 ed "Deslandres table"

(Herzberg, 1950). In this scheme the bands having

the same upper state wil 1 come in the same column

and those having the same 1 ower state wil 1 come in

the same row. The differences of the wavenumbers 

between the columns in the table give the spacing 
between the vibrational levels in the lower 

electronic state and the differences between 

wavenumbers in the rows give the spacing between 

the vibrational levels in the upper electronic 
state. The separation of successive vibrational 

levels of an electronic state is given by the first 

difference

A G(v+l/2) = G(v+1) - G(v)

= Ol> - 2 tJ x e e 2 Hxev (9)

The second difference gives

A2 GCv+1/2) = AG (v+3/2) - AG (v+l/2)

= - 2 coe e
. .(10)
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Thus vibrational constants CO and 00 x for bothe e e
the states and the system origin 2) can be 
determined from the observed wavenumbers of the band 
heads. By neglecting cubic terms, following equation 
represents the bands of a sequence (&v = const)

^oo + co'qAv - oj'0 *'o(Av) ~ ( u)"0 ~ Od'o

2 cJ o x’oAV) v" ' ( CO' x'n “ 0)"0 x"o) v .,2

(11)

If v" is small and has the opposite sign to that
of the quadratic term, a reversal can take pi ace
in the succession of 1bands in a sequence. It can
be - observed that with increasing v", bands draw
together and eventually turn back. The turning point
may be called head of heads. At the turning point
v" will be obtained by taking

d A? 0dv"

From equation (11)

2P
t

(12)
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Formation of head of heads has been observed for 
molecules like InBr, CN etc.

INTENSITY DISTRIBUTION IN A BAND SYSTEM

A simple theoretical interpretation of the 
observed intensity distribution is given by Franck 
(1925) and by Condon (1926, 1928). According to
Franck - Condon principle "The electron jump in a 
molecule takes place so rapidly in comparison to 
the vibrational motion that immediately afterwards
the nuclei still have very nearly the same relative
position and velocity as before the jump". "Only
those transitions will be more favourable in which
the change in velocity and relative position will 
be minimum". The relative intensities of the bands 
depend upon the initial distribution of the 
molecules as well as on the relative transition 
probabilities as a function of vibrational quantum 
numbers. The intensity distribution in a band system 
can be interpreted with the help of potential 
curves of electronic states involved. The following 
types of intensity distribution are generally 
observed :
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(1) When r'e SO r"e (and oj\ 00"e^ the most
probable transitions are those for which v' = v". 
i.e. the Condon parabola consists of two almost 
coincident branches along the diagonal of the
v', v" array,

(2) When the difference in rg values is not too
large^ Condon parabola with moderately separated
branches will be observed.

(3) If r' << rH (and ai' ), the (0,0) band
may not be observable and the bands in its
neighbourhood will be generally weak in
intensity. The two branches of the Condon
parabola will be quite open and the intensity
in this case tends to follow the progressions
rather than the sequences.

(4) If r' >> rn (and ' << ), the intensity
distribution will be similar to that of (3).

VIBRATIONAL AND ROTATIONAL ISOTOPIC EFFECTS IN A

BAND SYSTEM

Isotopic effect has been found to be very 
important in the analysis of band spectra. The 
potential energy functions of two isotopic molecules
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are observed to be identical . This is because the
potential energy function depends on the motion of
the electrons (which varies very slightly due to
the mass difference of the isotopes), and on the
coulomb repulsion (which remains the same in
isotopic molecules).

Neglecting the cubic and higher powers, 
the vibrational isotopic separation between bands, in 
a transition designed by fixed value of v' and 

v", can be written as

Al) = i?. - 
-u- i

= ( §- D[ co' e(V +1/2) - <jj"e( v"+l/2) ] - < § i 2 - 1}

[ oo'e x’e (v’ +1/2)2 - co"e x"e (v" + l/2)2]

....C13)

The rotational isotopic shift in a band can 
be written as

ir r

= (<52-d[b'j' (j'+d - b"j" (j"+d]

= ( 2-1) 2)r (14)
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In equations (13) and (14) ^ = J^//U^ , jx and
being the reduced masses of the lighter and heavier 
molecules respectively.

The study of the vibrational isotopic
shifts in a band system provides a good check for
the correctness of the vibrational assignments and
the study of rotational isotopic shifts in a band
system provides a good check for the correctness of
J numbering. The bands corresponding to the 1ighter
isotopic molecule wil 1 be more separated from the
system origin than those of the heavier molecule.
The intensity of the isotopic bands depends on the
relative abundance of the isotopic masses of the
constituent atoms.

Many new isotopes have been discovered 
with the knowledge of isotopic shifts in band 
spectra. The intensity of the emitter of the bands 
can be varified by means of isotope effect.

CLASSIFICATION OF ELECTRONIC STATES AND ELECTRONIC 
TRANSITIONS

The electrons move in an electric field
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which is symmetric about the internuclear axis in a 
diatomic molecule. Therefore the component of angular 
momentum of electrons about the internuclear axis 
will be a constant of motion. If L is the total 
electronic angular momentum, the component ML can 
have the values

Ml = L, L - 1, L - 2, ...... - L.

In an electric field, states having the same (ml}
will have the same energy and are said to be
degenerate.

If A - I Ml |, A can have the values 0, 1, 2,...
According to the values of A = 0, 1, 2, ...... ..L,
the corresponding molecular states are designated as
X , IT, ,___ .

In the molecule, the vector sum of spin 
of individual electrons gives total spin S. Due to 
the orbital motion of the electrons, there will be 
an internal magnetic field in the direction of the
internuclear axis which interacts with the magnetic 
field produced due to the spin of the electrons 
to affect a splitting in the electronic levels. The 
component of total spin S along the internuclear
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axis can have values

JZ = s, S - 1, S-2, ....... , - S .

Therefore the number of splitted levels will be
2S + 1.

HUND'S COUPLING CASES

The vector sum of (1) electronic spin
angular momentum g; (2) electronic orbital angular
momentum y\ and (3) angular momentum due to nuclear

rotation N will give resultant angular momentum
symbolised by J. The method of distinguishing
different modes of coupling of angular momenta was 
first suggested by Hund (1930). Here the most commonly

occuring cases (a), (b) and (c) ar,e briefly
discussed.

Hund1s Case (a)

In this case it is assumed that the
interaction of nuclear rotation with electronic

motion is very weak but the electronic motion

itself is coupled very strongly with the

internuclear axis. The total angular momentum al ong
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the internuclear axis is -IX = A + 21 will be constant 
of motion, which, with N (angular momentum due to 
nuclear rotation) forms the total angular momentum J. 
In this case, the different multiple levels will be 
fairly well separated and the rotational energy 
levels having J less than -/X will be absent. 
Usually TT and A. states belong to case (a).

Hund's Case (b)

In this case, the spin vector S will be 
very weakly coupled to the internuclear axis. The 
component of orbital angular momentum A and the 
angular momentum due to nuclear rotation N form a 
resultant K having values K = A , A+ 1, A+2,

......  Now, this angular momentum K and the spin
angular momentum S form the total angular momentum 
J, which can have the values

J - (K + S) , (K + S - 1)....... (K - S) .

The case (b) is generally observed in 21 States.

Hund's Case {c)

Apart from cases (a) and (b) there are
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cases (c), (d), (e) and intermediate between these
cases also. In case (c), A and are not defined 
but L and S first form resultant J , which is
then coupled to internuclear axis with a component 
_n_. The angular momentum N of the nuclear rotation 
and _/l. then form resultant J, just as in case (a). 
Sometimes due to increase in rotational energy, 
transition from one case to another may occur
(Herzberg, 1950).

ROTATIONAL STRUCTURE OF INDIVIDUAL ELECTRONIC BAND

In a single band, and DJ are fixed
whil e J>T varies. The wave number of a rotational
1 ine is given by

+ F' (J) - F' 
0

"(J)

where 0 u

ft
)'
-

4* ^v is constant and is called

band origin or zero 1 ine. F' (J) and
F"(J) are rotational terms of the

upper and lower states respectively.

The rotational term is represented by

Fv(J) = B J(J+1) - 2D J*
V

(J+l)2 .... (15). .(15)
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where 

Using

^ = 2S + B* J’ (J'+l) - D' J'2 (J'+l)2 - B"v J"(J"+1)

+ D"v J"2 (J"+l)2 ....(16)

In the case of a symmetric top
molecule, selection rules are -A J = 0, _+ 1. According 
to these selection rules, series of lines are
expected in a band. Lines corresponding to A J = -1,
0, +1 are said to form P, Q 'and R branches
respectively. The wave numbers of rotational lines
in these branches are given by

Bv = h^8 Tf-jul r2c.

equation (13), we write

a>
P = 0

- (B* V + B"V ) J + (B 1 *V
B"v) J2 ....(17)

<y - ^o + (B' V - B"V ) J + (B t _V
B"v) J2 ....(18)

- ^o + 2B' v + (3B ' - B"V V ) J + (B1 - B,!v V
> j2

---.(19)

where J stands for rotational quantum number of
the 1 ower state. In the above three equations the
terms containing DV being smal 1 at 1 ow J values
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have been neglected.

The P and R branches can be represented by a 
single formula

+

II

7
\ (B'v + B"v) m ■*• (B'v - B" ) m2

V ---(20)

where m = -J for P branch and

m = J + 1 for R branch.

In most cases, owing to the quadratic term in
equation ( 20), one of the two branches turns back
forming a band head. A head is formed in the R
branch if (B1 - B" )V V is negative and lies on the
short wavelength side of the zero line and the
band is shaded towards red. If (Bf - B,f ) v V is +ve,
head is formed by P branch and the band is
degraded towards the violet. The ' m' number
corresponding to the band head is given by

(B'v - B" ) _
m.. aa

d ---(21)
M 2 (B * - B" )V V 2e

The head to origin distance can be calculated by 
using the equation

d2
D) ~ y .......... .....(22)h origin 4e
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It is important to notice that in Q branch the

head is formed at the beginning of the branch and

lies very near to the origin.

The rotational constants B1 , D' and B"v ’ v v
and D"v for upper and lower states are usually

evaluated from combination differences. In a simple 

band, where only P and R branches are present, for 

every line in the P branch there is a

corresponding line in the R branch with the same

upper or lower state. The wavenumber difference of

these two lines is equal to the separation of

either the lower or the upper rotational levels

from the next but one viz A^F'^J) or A2F'(J)

which will be given as

R CJ - 1) - P (J + 1) = F"v(J - 1) - F"v (J + 1)

= A2 F"(J) ..........(23)

and

R (J) - P (J) = F'v (J + 1) - F'v (J - 1)

= A2 f' (J) (24)
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In the case of a band having P, Q and R branches, 
following combination relations are used

R (J) - Q (J) = F'v (J + 1) - F'v(J) = F' (J)

(25)

Q(J + 1) - P(J + 1) = F'v(J + 1) - F'v(J) = F'(J)

.... (26)

R (J) - Q(J + 1) = F"v(J + 1) - F"v(J) = A^'U)

.... (27)

Q (J) - P(J + 1) = F”v(J + 1) - F"v(J) = At F"(J)

.... (28)

where F(J) refers to the seperation of the
successive rotational levels. Substituting from 
equations (17, 19) we get

A F(J) 9
__£--------  = 4B - 8D (J + 1/2)z .... (29)
(J + 1/2) v v

A2F(J)
A plot of -------- ---- ----- > (J + l/2)z

(J + 1/2)

will be a straight line whose slope gives 8Dv and
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intercept gives 4Bv. This plot serves as a
criterion for the correctness of J numbering of the 
branch lines. If there is a misnumbering the graph 
will deviate from the straight line for lower
values of J (Youngner and Winans, 1960). Standard 
methods to assign correct numbering to the different 
branch lines have been described by Herzberg (1950). 
Rotational constants can also be determined by the
same graphical procedure from A^F(J) values.

AtF(J) = 2Bv (J + 1) - 4Dv (J + l)3 .... (30)

If two or more bands with the same v' are
studied, the combination differences, for the
upper state of the two bands must agree exactly. 
The agreement between corresponding combination 
differences for bands with the same lower or upper 
vibrational states provides an important sensitive 
check on the correctness of the rotational analysis.

If we want to determine the vibrational
constants of a molecule very accurately, we must
use the band origins and not the band heads. A 
convenient method that makes use of most measured
lines for determining the band origin is as
follows :
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From observed wavenumbers of all J values, sum
R(J - 1) + P(J) is formed and from equations ( 17, 19 ) 

we get

R(J - 1) + P(J) - 2 VQ + 2(B'V - B"v) J2 .... (31)

2When R(J 1) + P(J) is plotted against J , a
straight line is obtained whose intercept with the 
ordinate axis gives 2 and its slope is
2(B'v - B"v) . If an intense Q branch is present, 

the most convenient way of determining S>Q is to 
use Q branch.

Q(J) = 3>Q + (B'y - B”v) J(J + 1) .... (32)

The value of rotational constants B and D willv v
change for different vibrational levels according to 
the following equation

B = B - (v + 1/2) + .... .... (33)
v e e

where °C- is Rotation - vibration interaction constant e
and Be Corresponds to completely vibrationless

state. Variation of is given by
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Dv = De + Be (v + 1/2) + ...... .... (34)

where the constants D . IS and oj are related bye ’ e e J
the equation

De " «e3^e .... (35)

The vibrational quanta A G and constant 

oC can be determined as follows (Jenkins and
Mckellar, 1932).

The combination differences between

corresponding lines of two bands having the same 

upper state,

Vv"^) - V,v"2(J) - G"(vV - G”(vV

-(B - B „ )J(J + 1) --- (36)v 1 v 2

and between corresponding lines of two bands having 

same lower state

Rv. V..(J) ~ Rv. V..(J ~ 1)
v 2>v v

G'(v* 2) - G'(v'x)

(B , - B , ) J(J + 1)v 1 v 2

(37)

are formed. The graph of these combination
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differences against J(J + 1) is straight 1 ine, whose
intercept gives G(v2) - G(Vl) and si ope gives

<B„ - B„ ) from which AG and e>c can be
1 2

calculated.

In the above discussion, we have not 
considered the influence of the rotational constant 
D at low J values.

Now, by introducing D term, equation (18) becomes

& = + (B' + B" ) m + (B'„ - B" - D' + D" ) m'O v V V v V V

-2(D’v + D"v) m3 - (D'v - D"v) m4 .... (38)

for P and R branches* m = -J for P branch and 
m = J + 1 for R branch.
And

(B'v - B"v) J(J + 1) - (D'v - D"v) J2 (J + l)2

for Q branch

(39)

From the above equations, it is clear
that P and R branches may have as many as three
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heads, while Q branch may have two heads. For
sufficiently higher value of J, additional heads

JU WU JU

P , Q , and R will appear with shading opposite to 
that of normal P, Q and R heads. Such a reversal
of shading occurs only if (D ' - D" )V V has the same
sign as (B1'v ~ B"v) even if this is the case , the
extra heads usually lie at such a high J value
that they are not observed due to very 1 ow
intensity.

A - type DOUBLING :

In Hund's cases (a) and (b) the
interaction between the rotation of the nuclei and 
angular momentum L has been neglected. But it is 
found to produce a spl itting into two components 
for each value of J in the state with A # 0. 
This splitting is found to increase with increasing 
rotation. This is known as A -type doubling.

In A -type doubling two component 1evels
with somewhat different energies have the * same value
of J, thus it differs from spin splitting . For
multipiet states, the rotational levels of each
component of the multipiet including those with
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-A = 0, split into two A - type components. In
general it will amount to only a fraction of a

-icm . In some cases for large values of J, it
will reach a value of few cm the splitting is 
relatively greater for terms with the smallest -CL . 
The nature of A “ type doubling for different 
electronic levels has been discussed in detail by
Hill and Van Vleck (1928), Mulliken (1930, 1931, 1932), 
Herzberg (1950) and Kovacs (1969). Due to the
A - type doubling equations 25, 26 , 2 7 and 28 no
longer hold exactly and the so called combination 
defect occurs.

R(J) - Q(J) « Q(J + 1) - P(J + 1) + G

S? A^f'U) .... (40)

R(J) - Q(J + 1) o Q(J) - P(J + 1) + 6

'^a1F"(J) .... (41)

It is observed that the A F"(J) values for
different bands with the same lower state need not 
agree exactly, because the A~ type doubling in 
different upper states may have different magnitude.
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But A ^F" values of bands with the same lower
state should agree exactly even if perturbations are 
present. In equations (40) and (41), £ is the sum

of A - type doubling of the successive levels. The
splitting on one level is very nearly one half of
this.

he- (BVC - Bvd) J(J + 1)

= q J (J + 1) (42)

where B C
V

and Bvd are the BV values for doubling
components c and d respectively In practice the
mean val ue of BVC and Bvd is usually used as true
Bv value. The combination defect £ wil 1 be the same
for 1 ike symmetry and it would have opposite sign
for uni ike symmetry.

The knowledge of this combination defect 
help us in understanding the exact nature of 
electronic levels involved in a transition.

SPIN SPLITTING

The effect of electron spin can be
2 2clearly observed in transitions like jr---- .
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2 jr state always belongs strictly to Hund's case (b) 
and selection rule AK = + 1 holds. The separation of
two sublevels with J = K + % and J = K - h. for a
given K is in general very small. However, with
large resolution each line of P and R branches 
splits into three components according to the
selection rule AJ = 0, + 1. A J = 0 holds if
A J AK and intensity of these components falls 
off rapidly. Therefore in practice, there is a
doublet P and a doublet R branch.

If we distinguish the term components 
having J = K + \ with the subscript 1 and those
having J = K - \ with subscript 2, we obtain the 
four main branches

Rt (K) = 2>o + F' ^ (K + 15 ~ F"1(K) .... (43)

R2 (K) - 2->o + F'2(K + 1) ~ F"2(K) .... (44)

Pt (K) = 2Jq + F* 1 (K - 1) - F"1(K) .... (45)

P2 (K) = + F'2 (K - 1) - F"2(K) .... (46)

2Rotational term values for 21 State are
given by
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Ft (K) = Bv (K + 1) + hf K  (47)

and
F2 (K) = Bv K(K + 1) ~ h /(K + 1)  (48)

where f is known as spin splitting constant.

In P and R branch, the line splitting is given by

(P) = Px - P2 = ( V' -y") K - k( y' + y")

....(49)
and

(R) = Rt - R2 = ( y’ - y") K + 3 y' - y")
....(50)

This shows that splitting increases linearly with 
K. The combination difference must be formed either 
between R^ and P^ or R2 and P2< From equations
(47) and (48) we get the values of A2 F as

A2 Ft (K) = 4 By (R + h) + f .....(51)

and
&2 F2 (K) = 4 Bv (K + h) ~ i  (52)

that the A2 F curves for the twoThis exhibits
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2components of a jr state form parallel straight 

lines and their vertical separation is 2f .

PERTURBATION

In the case of some bands one line or
several successive lines deviate more or less
strongly from the formula

22 = c + dm + era^ .... (53)

Sometimes even a splitting into two lines appear^ or 
for a multiplet band, the multiplet splitting 

may be abnormally great at some places in the band
or the intensity is abnormally small for one or
more lines in the band.

Displacement from the regular position and 
weakening of intensity may also appear simultaneously. 
These abnormalities are due to perturbation. When
perturbations appear for a number of successive J 
values, they usually have a resonance - like 
behaviour i.e. The deviations from the normal 
position and intensity increases rapidly to a 
maximum with increasing J and then decreases rapidly to zero.
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The perturbations in the fine structure 
of a band are due to perturbations in the 
rotational term series, either of the upper or of
the lower state. Therefore, if a perturbation
appears at a certain place in a P branch of a
band, it will al so be observed for the same J' or
J" values in the corresponding R branch of the
band and is of the same type and magnitude.
Further more the perturbation wil 1 also appear in
all other bands that involve the same perturbed
vibrational state as upper or 1 ower state. But it
is observed that in most of the cases the
combination relations must hold exactly even if 
strong perturbations are present and therefore 
analysis is possible.

The levels that result from the 
approximate wave equation without the interaction 
term produces a shift. The shift of a given level 
depends inversely on its separation from the
perturbing energy levels. These shifts are always in 
the sense of a repulsion. In addition, each of 

the two states assumes properties of the other.
The mutual repulsion of two states of approximately 
equal energy gives an explanation for the occurence
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of perturbation in band spectra, since it can
easily happen that a 1 evel belonging to a different
electronic state has the same energy as a level of
a given series.

SELECTION RULE FOR PERTURBATION

The magnitude of perturbation depends not 
only on the smallness of the energy difference of 
the unperturbed levels but also on the magnitude 
of the matrix element

W12 - (Vi* df ....(54)

of the perturbation function W i..e. it depends on
the eigen functions of the two states involved.
The perturbation occurs only when W^2 is
non-vanishing. The conditions for non-vanishing W12
i.e. the selection rules for perturbation have been
derived by Kroning (1928). They are determined by
the quantum numbers and symmetry properties of the
two states considered.

These selections rules are 

Aj = 0 .... .... ........ (a)
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A S = 0 (b)

A A = 0, 1 (c)

+ (d)

s < > a (e)

(a) , (d) and (e) are rigorous.

(b) holds only approximately.

(c5 holds only when a is defined.
i. e. Hund's case (a) and (b) •

In Hund's case (c) it must be replaced by
A -fl = 0, + 1 •

Perturbations with A A = 0 are the perturbations
between states of the same type, so Mulliken (1937)
called them homogeneous perturbations and those with
AA = + 1 are called heterogeneous perturbations.
Dieke (1941) cal 1 ed them as vibrational and
rotational perturbations respective!y

ROTATIONAL TEMPERATURE

The intensity distribution in a band can
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be used for calculating the temperature of the
source of emission. The variation of the intensity
of the line in rotation-vibration band as a
function of J is given essentially by the thermal 
distribution of the rotational levels. The intensity
depends on the value of (2J + 1) for the upper and 
lower states. It should be noted that the J values 
of the initial state must be used in the
exponential term.

The intensity of a line of the rotation 
or rotational-vibration band in emission is given 

by

I = °em ^ (J. + J.. + 1} e-B'J' (J'+l)hc/KT
em qxr

.... (55)

where Cem is the constant depending on the change 
of dipole moment and the total number of molecules
in the initial vibrational level. For a given 
rotation-vibration band at a given temperature, the

('em
factor ------ is very nearly constant. Therefore the

Qr
intensity distribution resembles closely with the
distribution of the rotational levels, a maximum of 

intensity occurring in each branch at about the same J
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value.
It is observed that with increasing temperature the 
band extends farther and the intensity maxima of 
the two branches move outward and at the same 
time become flatter. The decrease of the height of 
the maximum with increasing temperature is due to
the increase of the state sum Qr in the
denominator of the above expression. It is al so
observed that the total intensity of the band
remains constant as long as the temperature is not
so high that the number of molecules in the 1 ower
vibrational level (v = 0) is appreciably reduced.

From equation (55) we have

I B' J'(J'+1) heem___  _ ^ vJ'+J" + l ~ k'T

where A = log Cem a/l’/Qr is considered as constant.

By plotting log I /(J * + J" +enr v 1) --- > j'(j' + 1)
a stright 1 ine is obtained. The slope of the 1 ine
gives the value of B'v hc/kT. i.e. If the 1 ine
intensities have been measured and the rotational
constants are known, the temperature of the source
can be calculated . In the present work this method
is used to determine rotational temperature of the
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source of emission.

Experimentally it is found that the
intensity distribution in emission bands occurring in 
electric discharge is the same as in purely thermal 
excitation. If a molecule is excited by electron
collision, no great change in the angular momentum 
of the system can be produced and therefore, the
distribution of the molecules over the different
rotational 1evels in the upper electronic state is
practically the same as in the ground state. But
the distribution’ corresponds to thermal equilibrium 
at a certain effective temperature and hence this 
will also be at least approximate case in upper 
state. However, we must be quite clear that this 
normal intensity distribution in electric discharge 
results from the circumstances that the angular 
momentum is not strongly altered in excitation by 
electron collisions.

Even if the fine structure of the bands
is not resolved, the shape of the band profiles
varies as a function of temperature and used for
determining the rotational temperature of the source 
of emission. It must be emphasized that the
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temperature thus obtained is "Effective Temperature".
It represents true temperature only if either the
excitation is strictly thermal or is of such a

type that it does not affect the thermal
distribution. A good indication that this condition
is fulfilled in a given case is the agreement of
the temperature obtained independent! y from rotational
and vibrational intensity distributions t


