CHAPTER V

LABORATORY INVESTIGATIONS

CHAPTER V

LABORATORY INVESTIGATIONS

Major Oxides and Trace Element Analyses

Chemical analyses of samples from representative members of nearly all lateritic profiles described earlier on was done. Normal wet variation diagrams of the oxide versus the depth have also been given.

In order to study the variation of major oxides and trace elements, 10 profiles representing 8 LST type and 2 HST type sections were chosen (Fig. 58), spanning from the eastern end of the lateritic belt to the western end.

The profiles selected were (starting from the eastern flank (Fig. 58) :

(a)	Satapar (Anjar Taluka)	-	LST	type	section
(b)	Goniasar mota and nana	-	LST	type	section
	(Mandvi Taluka)				
(c)	Hamla (Mandvi Taluka)		HST	type	section
(d)	Chiyasar (Abdasa Taluka)	-	LST	type	section

122

I.ST

1.9T

horizons.

.

(e)	Nundhatar	(Abdasa	Taluka)	-	LST type section
(f)	Naredi	(Abdasa	Taluka)	-	LST type section
(g)	Balachor	(Abdasa	Taluka)	-	LST type section
(h)	Wamoti			-	LST type section
(i)	Mata-no-Ma	adh		-	HST type section
	(Lakhpat]	[aluka)			

ŕ

Further, in order to ascertain the relative losses and gains of chemical constituents in the various horizons of the 10 weathering profiles mentioned, a mass balance model was made of each of the profiles. The methodology followed was as per Esson's (1983) paper. Elements, conventionally those contributing significantly to the analytical total, reported as oxides were retained as oxides in the mass balance model. The mathematical basis of the model is as follows (after Esson, 1983): The purpose of the model is to estimate,

ine purpose of one model is to estimate,

- (a) the thickness of bedrock consumed in forming the soilprofile, and
- (b) elemental balance for each sampling interval in the profile.

Aggregate bedrock thicknesses and elemental balances for individual horizons and the full profile are obtained by summing the results from (b) over the measured thicknesses. All calculations are based on unit area of profile.

Consider a sampling interval of thickness T formed, according to the model, by differential leaching of bedrock. The mass of index constituent in this interval is given by IDT/100 where I is Wt % of index constituent and D, the bulk density of the dry sample. Let T' be the thickness of bedrock containing an equal mass of index constituent. Then, $IDT/100 = I^{T}/100$, where I' and D' are the Wt % index constituent and density for the bedrock. Thus the model bedrock thickness consumed to produce thickness T of the soil profile is given by,

$$T' = I'D'$$
(1)

Ť

In order to estimate T', however, the bulk density of the dry soil is required and is difficult to measure because variable amounts of shrinkage and crumbling occur on drying. Values of the mean particle density for dried powdered samples from horizon -3 B are in the range 3.05 - 3.50 gcm. Crude measurements of dry bulk density indicate a maximum porosity of about 50 %. For the sake of uniformity, the D values used were taken as 50 % of the mean particle densities, ie., D values in the range 1.52 - 1.75. Bedrock density measurements give an approximate average value of 2.75 (D').

For any other constituent, the mass in dry soil of thickness T is given by EDT/100, where E is the constituent Wt %. Similarly, a thickness T⁻ of bedrock contains,

E 'D'T' -----, where E' is the constituent Wt % in the bedrock. 100

These two expressions can be used to evaluate the Wt % of the constituent lost during the conversion of thickness T' of bedrock into a thickness T of soil. The result is

(EDT) 100 1 - <u>E'D'T'</u>

Using equation (1) to eliminate T', this reduces to

Wt % constituent lost

The index constituent could be a resistant mineral or a chemical constituent, and in the present case Cr has been taken as the resistant index.

XRD Analyses

Minus 230 mesh portions of the powdered bulk samples of the samples were subjected to XRD studies. The instrument used was Philips X-ray diffractometer with a Cu-target and CuK alpha radiation. The study was carried out at the R & D laboratory of the I.P.C.L., Baroda. The samples were scanned from 10 to c_{5}^{0} at a speed rate of 2 per minute and having a chart speed of 2 cm per minute, the range being 2x10 3 c/s. The 'd' spacings and intensities were calculated and compared with ASTM standard charts for different minerals.

Samples were collected from typical HST sections at Hamla and Mata-no-Madh and LST section at Wamoti (Fig. 59). Care was taken to take samples from each of the identifiable horizons.

has been done of all the typical representative horizons. LST

HST

Anjar Taluka.

Satapar. (LST) _____ (in percent) 0.0-1.1m 2.3m-3.2m 3.2m-Depth 1.1m-1.6m 1.6m-2.3m ____ B C B B 8 Horizon 0X 0X 0X Major Oxides. Ferricrete Ferricrete Alucrete Saprolite Basalt SiO 19.83 18.89 8.50 37.88 48.90 2 A1 0 10.56 14.62 51.70 10.28 14.89 23 fe 0 48.21 44.28 15.22 12.50 7.60 23 TiO 3.66 3.58 4.15 1.89 1.60 2 T Mn0 .90 .38 .01 1.42 .10 2 CaO .02 .01 .46 3.12 .80 1.16 Hg0 1.78 .15 2.19 1.70 -K O .01 .03 .28 1.00 1.10 2 Na O .05 .03 .57 1.48 .78

2 PO .22 .06 .22 .07 -25 CO .68 . .25 1.03 .49 -2 80 14.10 16.00 18.53 22.68 21.60 2 Total 100.02 99.29 100.82 99.77 95.02 Trace Elem. (in ppm.)

Ba 50 50 50 50 50 Cu 150 150 150 150 140 8b N.D. N.D. N.D. N.D. N.D. Sr N.D. N.D. N.D. N.D. N.D. Zn 50 55 60 60 60 ₽b 100 120 160 200 210 Ħn 80 60 65 70 70 Cr 160 120 100 100 90 Hi 160 170 140 170 -Co 130 135 150 140 120 V 5 5 5 5 5 Zr T T Ť f T

VARIATION OF MAJOR OXIDES IN THE LATERITE PROFILE AT SATAPAR VILLAGE, ANJAR TALUKA, KUTCH DISTRICT

FIG. 60

VARIATION OF TRACE ELEMEMENTS IN LATERITE PROFILE AT SATPAR VILLAGE, ANJAR TALUKA KUTCH DISTRICT

129

•

WET GAINS AND LOSSES OF MAJOR OXIDES AND TRACE ELEMENTS BASED ON A CT-RETAINED MASS BALANCE MODEL. Taluka ANJAR Village SATPAR LST TYPE SECTION

130

1

,

Bed rock thickness consumed to produce present thickness of th weathered profile : 140 m.

Horizon	Box(Fer)	Box(Fer)	Box(Alu)	8 вар	Remarks
Si0 2	-77 19	-71 02	-84 35	-30 28	Lost throughout the profile Maximum
	****				mobility seen in the Box zone.
A1 0 2 3	42 21	6 66	352 62	30.35	Overall gain with a maximum in the
********	******			****	Box (Alu) zone
Fe 0 2 3	256 81	336.97	80.23	48 02	Overall gain with a maximum in the
****					two top horizons.
T10 2	28 67	67 81	133.43	6 31	Overall gain with a maximum in the
					Box(Alu) zone
Ma0 2	406 25	185 00	-91 00	1178 00	Hid-profile zone of depletion in the
					Box(Alu) zone with ovrilging and under- lying horizons, showing maximum gains
CaO	-98 59	-99.06	-48.25	251 00	Bottom horizon of gain with overlying zones of losses
NgQ	41 10	-48 82	-92.05	-15 94	Top horizon of gain with underlying zones of depletion
10	-99 48	-97 95	-77 09	-18 18	Overall losses with mobility
2					increasing inplies in the profile
Na O	-96 39	-97.11	-34 23	-70 76	Overall losses with mobility increasing
•					directio in the profile
P 0	76 78	-35.71	182 85-		Bid-profile zone of depletion with
2 3					under and overflying zones of gains
Ba	-	•	-	-	-
Cu	39.73	19.64	3.57	3 57	Overall gains with a maximum in the top borizon
Rb	N.D.	N.D.	N.D.	¥.D	-
Sr	R D	¥,D,	H.D.	ND	-
	1		, •	ہ • ک	
* · · · ·		1			
Za	-53.12	-31.25	10 00	10 00	Overall loss with increase in mobility higher in the profile.
РЪ	-73 21	-57.14	-31.42	-14 28	Overall loss with increase in mobility higher in the profile.
Ma	35 71	-50.00	-16 42	10 00	Top zone of horizon with underflying zones of depletion.
Cr			-		
					-
Co	39 06	15 62	12.50	5 00	Overall gain with a maximum in the
					top notiton

~

ł

•

ς.

,

Anjar Taluka

,

Ratual :-

Ţ

.

*********	***		**====*****
Depth	0-1 m	1m - 2m	2m - 3,2m
Horizon	Box	Box	Box
*******	Ferricrete	Ferricrete	Alucrete
SiO	18.10	20.15	7.85
2 A1 0	13.62	13.92	56.87
23 Fe 0	43.89	40.19	13.02
2 3 Ti0	3.21	2.51	2.86
2 MnO	. 42	.59	.18
2 Ca0	1.89	1.98	.72
MgO K O	1.72 1.70	.96 1.20	.60 .30
2 Na 0	1.18	1.24	.39
2 P 0	.18	. 19	.22
25 C0	1.40	1.02	1.00
2 H 0	12.60	14.01	16.00
2		**	
Total	99.89	97.96	100.01
		In p	ercent

.

VARIATION OF MAJOR OXIDES IN THE LATERITE PROFILE AT RATNAL VILLAGE, ANJAR TALUKA, KUTCH DISTRICT

ł

FIG. 62

	Tab	ole 6	Table 7		
Bhuj Taluka			αυτου μαίου του του το του του του		13
Kukna :-			Lakhond :-		
Depth	0-1.2 n	1.2 ∎	0-1.3 n	1.3 n	
Horizon	Box	Box	Box	Box	/
	Ferricrete	Alucrete	Alucrete	Saprolite	
SiO	21.88	8.50	18.84	37.88	
2	18.68	49.70	46.76	24.89	
23 7e0	34.40	12.20	11.82	12.70	
2 3 110	1.94	4.15	2.60	1.89	
2 InO	1.72	.03	.02	1.42	
LaO	2.92	. 46	.36	3.12	
lg0	1.89	.15	.68	2.91	
0	.98	.28	. 46	1.00	
2 Ia () 2	1.24	.37	. 32	1.48	
0	T	.22	.64	ĩ	
2 J 0 0	1.04	1.03	1.14	1.10	
2 2	13.29	23.03	19.31	11.58	
lotal	99.98	100.12	100.95	99.97	
***	****	***	In	percent	******

,

£

د

-

.

.

Namuara :-				
Depth	0-1.6 1	1.6-2 m	2.1 🖿	
Horizon	Box	Box	Box	
** ** ** ** ** ** ** ** ** ** ** ** **	Ferricrete	Alucrete	Saprolite	
SiO	20.11	16.84	29.50	
A1 0	12.57	46.76	12.07	•
23 Fe 0 23	47.22	14.82	14.00	
z J TiO	2.59	2.60	.98	
En0 2	.37	.02	.33	
Ca0	.05	. 36	1.00	•
Nati	4.53	.68	26.13	
K 0 2	.02	. 46	.01	
Na O 2	.04	. 32	.04	
P 0 2 5	.12	.64	.06	
c0 2	1.10	1.04	2.88	
H 0 2	10.98	17.82	13.82	
Total	99.70	102.36	100.82	

134

1

-

VARIATION OF MAJOR OXIDES IN THE LATERITE PROFILE AT MAMUARA VILLAGE, BHUJ TALUKA, KUTCH DISTRICT.

1

FIG. 63.

	Ĩa	ble 9	Table 10		136
Mundra Taluka					
Baraja :-		Ramania :	-		
Depth	0-1.3 n	1.3 - 2.4 n	0-2.1 m		
Horizon	Box	Box	Box		
đạn đơn từ độc tạo độc độc đơn đơn đơn độc độc thế	Ferricret	e Ferricrete	Ferricrete		
Si0	27.11	28.89	23.83	*	
A1 0 2 3	19.57	18.68	16.56		
Fe 0 2 3	39.22	44.18	42.21		
Tio	2.68	° 3.58	3.66	,	
Mn0 2	. 55	.38	_90		
CaO	.06	.02	.01		
MgO	5.53	1.16	1.78		
K 0 2	.02	.03	.01		-
Na 0 2	.06	.03	.05	~	
P 0 2 5	.14	.06	.22		
C0 2	1.09	.25	.78		
H O 2	11.00	10.10	10.00		
Total	107.03	107.36	100.01		

-

.

. .

_____t

· · ·

•

Table	11

Mandvi Taluka

ž

ť

-

lenth	0 - 2 =	2 n

lorizon	Box	Box
	Ferricrete	Ferricrete
510	35.88	16.80
A1 0 2 3	18.68	49.88
Fe 0 2 3	21.40	13.80
Ti0 2	1.94	3.62
Hn0 2	1.78	.20
CaO	2.92	.84
Hg0	1.89	.91
L 0 2	.98	.88
Na 0 -	1.24	. 42
25 25	Ţ	. 29
CO 2	1.19	1.03
H O 2	12.30	11.92
Total	100.20	100.59
**************************************	In j	ercent

Mandwi Taluka

-

Depth	0-1.6 m	1.6-2.3 •	2.3 B		44, 14, 19, 26, 20, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1		
Horizon	Box	В	C			-	***
40 40 40 40 10 10 40 40 40 40 40 40 40	Ferricrete	Saprolite	Basalt				
SiO	23.57	50.95	51.50				
2 A1 0	19.73	13.57	14.93				
23 Fe 0	43.26	20.03	3.41	1			
2 3 Ti0	1.90	T	1.73				
2 HnO	.96	1.12	.09	-			
2 CaO	1.30	1.99	9.51				
NgO K O	.36 .32	.67 67	.22 1.02				
2 Na 0	.41	1.07	3.24	-			
2 P 0	.44	.22	.22			,	
25 C0	1.10	1.00	1.60				
2 H O 2	10.79	7.89	7.80			`	
Total	104.14	99.18	95.27		*****		9 90 90 90 90 90 90 90 90 90 90 90 90 90
an in an		In	percent		******		

.

VARIATION OF MAJOR OXIDES IN THE LATERITE PROFILE AT MOTA ASAMBIA VILLAGE, MANDVI TALUKA, KUTCH 139 DISTRICT.

ł

FIG. 64

•

Mandvi Taluka

.

-

ř -

Goniasar Mota and Goniasar Nana :-

Depth	09 m 00).9 - 1.4 m	1.4 - 2.3m 2	.3 n					
Horizon	Box	B	B	C	*********	부 약 은 학 은 내 중 또 가 ~		، هو نبره منه مو بي مو بي مو منه مو بي مو	
w = # 4 # # # # # # # # #	Ferricrete	Saprolite	Saprolite	Basalt		یو، نو من ان من که بن من می ای اور ای اور ای ا	· • • • • • • • • • • • • • • • • • • •		
Si0	35.57	50.95	40.24	51.50					
23	11.73	13.57	37.26	14.93					
7e 0 2 3	35.26	20.03	8.55	3.41					
10 2	1.70	T	1.89	1.73					
ln0 2	.96	1.12	T	.09					
CaO	1.30	1.99	2.89	9.51					
g0	.36	.67	.88	3.89					
0 2	. 32	.67	2.60	1.02					
a () 2	.41	1.07	1.65	3.24					
0 25	.44	. 22	T	. 22			N.		
0 2	. 69	1.00	.46	. 18			·		
10 2	12.89	7.89	6.09	9.77					
otal	101.63	99.18	102.51	99.49	****	****	****	*****	
		*****	In j	ercent				, whi and wai and an and an an air air an air an air air air air	

.

VARIATION OF MAJOR OXIDES IN THE LATERITE PROFILE

FIG. 65

.

.

.

r

۰

Mandvi Taluka.			1		
Goniasar Nota an	d Goniasar Na	ina. (LST)	(in	percent)	
Depth	0-0.9 n	0.9m-2.8m	2.8n-3.2 n	3.2 n -	
Horizon	Box	Box	B	C	
	Ferricrete	Alucrete	Saprolite	Basalt	
Major Oxides			-		
510 2	23.57	30.16	50.95	51.50	
A1 0 2 3	16.73	44.90	13.57	14.93	
Fe 0 2 3	32.56	9.00	20.03	3.41	
Ti0 2	1.90	2.901		1.73	
HnO 2	.96	.02	1.12	.09	
Ca0 -	1.30	. 42	1.99	9.51	
	.30	.38	.07	4.54	
2					×
Ba 0 2	.41	. 38	1.07	3.24	``
P0 25	1.44	Ĩ	.22	.20	
C0 2	.89	1.14	- 1	Ţ	
H 0 2	12.01	10.21	8.84	9.77	
Total	94.15	100.43	99.13	99.94	
Trace Elements			(in pp	n.)	
Ba	20	20	20	20	
Ca	80	40	40	10	
nu Sr	20 43	4U 10	40	60 ·	
Zn	40 85	70 85	00 85	39 70	
Pb	20	20	00 20	7V 50	-
Kn -	50	45	45	40	
Cr ·	150	120	100	90	
Hi	60	70	80	100	-
Co	10	10	15	15	
1	150	150	150	100	
le l	50	40	40	30	

· ·

142

-

VARIATION OF MAJOR OXIDES IN THE LATERITE PROFILE AT GONIASAR VILLAGE, MANDVI TALUKA, KUTCH DISTRICT.

FIG. 66

VARIATION OF TRAC ELEMENTS IN LATERITE PROFILE AT GONIASAR VILLAGE, MANDVITALUKA KUTCH DIST. 144

.

.

•

-

•

× .

ŧ

-

s

	NET GAINS AND LA	NET GAINS AND LOSSES OF MAJOR OXIDES AND TRACE ELEMENTS							
	BASED ON A Cr-R	RTAINED MASS	BALANCE HOD	EL.	115				
	Taluka: MABDVI Bed rock thickne of the weathered	Vil ess consumed d profile :	lage: GONIAS LST to produce 160 m	AR HOTA & WANA TYPE SECTION present thickness	I X U				
Depth	0-0 9m	0.9-2.8m	2.8-3.2m						
Horizon	Box(fer)	Box(Alu)	B (Sap)	Romarko					
510 2	-72 53	-58.07	-44 36	Overall losses with mobility increasing higher in the profile.					
AI 0 2 3	32.76 `	125.55	-18.19	Bottom horizon of loss with above lying horizon	· .				
Fe 0 2 3	520 41	979.00	428.65	Overall gain with a maximum in the Box(&lu)					
Ti0 2	34.10	25.72		Bottom horizon of complete depletion with two					
Ha0 2	540.00	-83.33	1020.00	Mid-profile zone of depletion with top and bottom horizons of gains.					
CaO	-91.79	-3.31	-81.16	Overall loss with top and bottom horizons showing maximum mobility.	,				
Ng0	-95.24	-87.44	-66.71	Overall loss with mobility increasing higher in the profile.					
1 0 2	-61 17	-72.05	5.58	Bottom horizon of gain with overlying depicted zones.					
Ka 0 2	-92.40	-91 20	-70 27	Overall losses with mobility increasing higher in the profile					
P 0 2 5	32 00-		1.00	Hid-profile some of depletic with overlying					
Ba		· •	*******	•					
Cu	380 00	33.33	260.00	Overall gain with top and botton zones of maxima.					
Rb	-80.00	-50.00	-40.00	Overall loss with mobility increasing higher in the profile.					
Sr	-56.27	-41.52	-19.15	Overall loss with mobility increasing higher in the profile.					
Za	-44.28	-30 35	, -18.42 •	Overall Toss with mobility increasing higher					

-

				in the profile.
Pb	-76.00	-70.00	-64.00	Overall loss with mobility increasing higher in the profile.
Ka	25 00	15 62	1.25	. Overall gain with a maximum in the top _borizon.
Cr		-	-	-
81	-84.00	-47.50	-28.00	Overall loss with mobility increasing higher in the profile.
Co	-60.00	-50 00	10.00	Overall loss with mobility increasing higher in the profile
¥	10.00	12 50	35.00	Overall gain with a maximum in the bottom horizon.

.

Nandvi Taluka

Goniasar Nota and Goniasar Nana :-

Depth	092m	00.92-3 m	3 - 4.2 m	4.2 n
Horizon	Box	Box	B	B
	Ferricrete	Alucrete	Saprolite Lithomarge	Saprolite Bentonite
Si0	20.57	22.16	52.95	40.24
A1 0	17.73	50.96	13.57	27.26
Fe 0	34.26	11.00	17.98	8.55
Tio	1.90	1.90	.89	1.89
MnO	.96	.04	1.12	ĩ
CaO	1.30	. 62	1.92	2.89
Mg0	. 36	. 66	.87	.88
K 0 2	. 32	. 64	.71	2.60
Na 0 2	.41	. 48	1.27	1.65
P 0 2 5	.44	.21	. 18	T
co	. 89	.98	T	.20
H O 2	17.01	10.40	8.89	15.89
	00 16	100.05	100 25	100 AE
10431	30.13	100.00	100.00	102.VJ
			Inj	percent

-

ĩ

Mandvi Taluka

Ŷ

Wandh:-			
Depth	08 m	00.8-1.4 B	1.4 n
Horizon	Box	B	B
~~~ <i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>	Ferricrete	Saprolite Lithomarge	Saprolite Bentonite
<b>Si0</b>	27.40	50.95	44.24
2 Al 0	22.80	13.57	32.26
23 Fe 0	34.38	20.03	8.55
2 3 Ti0	3.14	T	1.89
2 MnO	. 02	1.12	T
2 Ca0	.86	1.99	2.89
MgO K O	.30 1.48	.67 .67	.88 2.60
2			1 85
aa 0 2	I	- 91	1.00
P 0 2 5	2.10	.44	Ī
CO	.89	1.02	.98
4 H 0 2	12.89	7.89	10.09
Total	106.06	98.76	106.03
		In	percent

Table	18
*****	

Mandvi Taluka

### Nandh --

			*********	"你你不是我们的你?你?你?你?你?你?你?你?你?你?你?你?你?你你?你?你?你?你????
Depth	0 - 1 m	1 n - 1.9	n 1.9 n -	
Horizon	Box	B	B	
_~~~*******	Ferricrete	Saprolite Bentonite	Saprolite Bentonite	
	26.98	45.24	45.14	-
	18.62	28.26	29.26	
	35.28	8.55	8.80	
	T	1.96	1.82	
	.02	T	.23	
	.88	1.92	1.62	
	.92	.96	.89	
	.40	1.52	.96	
	1.24	1.13	1.18	
	. 1.89	1.02	1.04	
	1.12	. 99	.99	
	14.89	12.09	10.08	
Total	102.22	103.64	101.99	
	*********	In	percent	

e

,

ı

	Table	19	1
Mandvi Taluka			
Sherdi :-			
Depth	0 - 0.6 m	0.6 -	
Horizon	B	В	
	Saprolite Bentonite	Saprolite Bentonite	
SiO	37.88	40.88	
A1 0 2 3	24.89	22.68	
Fe 0 2 3	12.70	10.68	
Ti0 2	1.39	1.72	
HnO 2	1.42	1.12	
CaO	3.12	3,64	
MgO	2.91	3.68	
<b>K</b> 0 2	1.00	1.24	
Na O 2	1.48	1.64	
P 0 2 5	Ţ	T	Y,
C0 2	1.68	1.02	
H O 2	11.06	11.08	
Total	99.53	99.38	
ه می هم بیل هد مع هه هی هم ای خو هم این می هم این می مع	In מ מ ח	ercent	

,

.

### Mandvi Taluka

Sherdi :-

aneral			******	
Depth	0 - 0.7 E	0.7m - 1.2	m1.2 m-	
Horizon	Box	B	B	~
	Ferricrete	Saprolite Litho <b>n</b> arge	Saprolite Bentonite	
Sio	19.25	35.25	40.25	-
AI 0 2 3	14.92	22.68	18.23	
Fe 0 2 3	40.79	15.89	9.62	
TiO 2	2.15	1.98	1.72	
Mn0 2	.59	. 68	. 69	
CaO	1.98	2.74	4.90	
MgO	1.96	2.48	3.60	
<b>K</b> 0 2	1.20	1.36	1.60	
Na 0 2	1.24	1.46	1.90	
P0 25	6.40	2.82	1.98	
C0 2	1.28	1.10	T	
H 0 2	8.98	12.08	16.06	
Total	100.74	100.32	100.55	
****		In p	ercent	

~

~

,

150

ľ

Handvi Taluka. Hamla (HST)           Depth         0.0-1.3m         1.3m-2.6m         2.6m-3.2m         3.2m-4.2m         4.2m-           Borizon         Box         B         C           Ferricrete Alucrete Saprolite Saprolite Basalt           Lithomerge Bestonite         Basalt           Bio C           Bio C           Bio Oxide           Si0         20.20         10.70         30.24         39.00         49.00           2         Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"		Tabl	e 21				•		
Depth         0.0-1.3s         1.3s-2.6s         2.6s-3.2s         3.2s-4.2s         4.2s-           Borizon         Box         Box         B         C         C           Horizon         Box         Box         B         C         C           Hair Oxide         Everiorete         Alucrete         Saprolite         Saprolite         Basalt           10         15.80         57.10         20.94         15.20         9.00         2.3           2.0         24.15         10.40         10.08         15.10         4.80         2.3           2.3         2.0         2.09         .06         .05         1.0         2.80           2.3         2.02         .09         .06         .05         1.0         2.80           2.3         2.2         .02         .09         .06         .05         1.0           2.10         7.10         1.02         .69         .80         .80         .80           8.0         .02         .10         7         .71         .68         .80           9.0         .01         .10         1.02         .69         .80         .80           2.5         .17	Mandvi Taluka.	Hamla (HST)	-						
Borizon         Box         Box         B         C           Variable Supposite Supposit	Depth	0.0-1.3m	1.3m-2.6m	2.6m-3.2m	3.2 <b>m</b> -4.2 <b>m</b>	4.2 <b>a</b> -	***	*******	
Ferricrete         Alucrete         Saprolite         Barolite         Basalt           Hajor Oxide	Horizon	Box	Box	B	B	C .		1	
Hajor Oxide         Si0       20.20       10.70       30.24       39.00       49.10         A1       0       15.80       57.10       20.94       15.20       9.00         2 3       Fe       0       34.15       10.40       10.08       15.10       4.80         2 3       Fi0       5.61       3.76       3.80       3.40       1.90         2 3       Fi0       5.61       3.76       3.80       3.40       1.90         2 3       Fi0       5.61       3.76       3.80       3.40       1.90         2 40       .02       .09       .06       .05       .10         2 7       .09       .06       .05       .10         2 7       .09       .06       .05       .10         2 7       .00       .05       .60       .89       1.00         2 8       .00       .02       .00       .89       1.00         2 7       .02       .01       T       .71       .68         2 8       .02       .02       10       .02       .65       .49         2 90       .01.42       .22.58       .22.5       .20.60 <td>*****</td> <td>Ferricrete</td> <td>Alucrete</td> <td>Saprolite Lithomerge</td> <td>Saprolite Bentonite</td> <td>Basalt</td> <td></td> <td>40 47 61 10 10 10 40 40 40 A</td>	*****	Ferricrete	Alucrete	Saprolite Lithomerge	Saprolite Bentonite	Basalt		40 47 61 10 10 10 40 40 40 A	
Si0       20.20       10.70       30.24       39.00       49.10         2       15.80       57.10       20.94       15.20       9.00         2       3       15.80       57.10       20.94       15.20       9.00         2       3       10.40       10.08       15.10       4.80         23       5.61       3.76       3.80       3.40       1.90         2       .09       .06       .05       .10       .02         2       .09       .06       .05       .10       .02         2       .09       .06       .05       .10       .02         2       .00       .05       .00       .89       1.00         2       .05       .05       .60       .69       1.00         2       .02       .01       T       .71       .68         2       .02       .01       .07       .04       .02         2       .02       .01       .02       .01       .01       .02         2       .02       .01       .02       .07       .04       .02         2       .02       .02       .01       .02	Major Oxide						~		
A10       15.80       57.10       20.94       15.20       9.00         23       80       34.15       10.40       10.08       15.10       4.80         23       7       7       1.90       1.90       1.90         2       7       7       1.90       1.90       1.90         2       7       7       1.90       1.90       1.90         2       7       7       1.90       1.90       1.90         2       7       1.02       1.80       1.76       1.90         2       7       1.01       1.02       1.80       1.76       1.90         2       7       1.01       1.02       1.80       1.76       1.90         2       7       1.01       1.71       68       1.00       2         8a       0       0.02       1.0       1       7.71       68         2       7       0.7       0.41       1.90       1.90       1.90         2       7       0.7       0.41       1.90       1.90       1.90       1.90         10       1.42       22.58       22.25       20.60       1.90       1.90	Si0	20.20	10.70	30.24	39.00	49.10			
$B_{0}$ 34.15       10.40       10.08       15.10       4.80         2 3       5.61       3.76       3.80       3.40       1.90         2       .02       .09       .06       .05       .10         2       .02       .09       .06       .05       .10         2       .02       .09       .06       .05       .10         2       .02       .09       .06       .05       .10         2       .00       .10       1.02       .80       1.76       1.90         KaO       .05       .05       .60       .69       1.00       2         2       .02       .10       T       .71       .68       2         2       .17       .52       T       .07       .04         2 5       .00       .17       .52       T       .65       .49         2       .10       1.42       .22.56       .22.25       .060       .2         2       .17       .52       T       .65       .49       .40       .2         2       .16       .00.33       .91.12       .99.77       .90.41       .2	A1 0 2 3	15.80	57.10	20.94	15.20	9.00	•		
Tio       5.61 $3.76$ $3.80$ $3.40$ $1.90$ 2       .02       .09       .06       .05       .10         2       .02       .09       .06       .05       .10         2       .02       .09       .06       .05       .10         2       .10       1.02       .69       .80 $Ko$ .10       1.02       .69       .80 $Ko$ .00       .05       .60       .89       1.00         2       .00       .00       .00       .00       .00         2       .02       .02       .10       T       .71       .68         2       .02       .02       .00       .07       .04         2.5       .02       .07       .04       .08         2       .00       .22.58       .22.25       .20.60         2       .00       .22.58       .22.25       .20.60         2       .01       .12       .99.77       .90.41         Trace Klements       (in ppm.)         Ba       .15       .20       .20       .25       .55       .55         La	Fe 0	34.15	10.40	10.08	15.10	4.80			
Had       .02       .09       .06       .05       .10         2       .18       .91       1.02       .69       .80         Mg0       .10       1.02       1.80       1.76       1.90         K0       .05       .05       .60       .89       1.00         2       .02       .10       T       .71       .68         2       .02       .01       T       .07       .04         2.5       .00       .48       5.26       T       .65       .49         2       .10       .142       .22.58       .22.25       .20.60         2       .01       .142       .22.58       .22.25       .20.60         2       .01       .12       .99.77       .90.41         Total 99.68       .100.33       .91.12       .99.77       .90.41 <td colspan<="" td=""><td>Tio</td><td>5.61</td><td>3.76</td><td>3.80</td><td>3.40</td><td>1.90</td><td></td><td></td></td>	<td>Tio</td> <td>5.61</td> <td>3.76</td> <td>3.80</td> <td>3.40</td> <td>1.90</td> <td></td> <td></td>	Tio	5.61	3.76	3.80	3.40	1.90		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tin0 ²	.02	.09	.06	.05	.10			
Mg0       .10       1.02       1.80       1.76       1.90         E       0       .05       .05       .60       .89       1.00         2       .02       .10       T       .71       .68         2       P       0       .17       .52       T       .07       .04         2.5       .00       .48       5.26       T       .65       .49         2       .00       .22.90       10.42       22.58       22.25       20.60         2       .00       .02       .00.33       91.12       99.77       90.41         Total       99.68       100.33       91.12       99.77       90.41         Trace Elements       (in ppm.)         Tage Stements         Total       99.68       100.33       91.12       99.77       90.41         Total       99.68       100.33       91.12       99.77       90.41         Total       99.68       100.33       91.12       99.77       90.41         Total       99.68       100.33       30       20       20         Ba	CaO	.18	.91	1.02	. 69	.80			
$2$ $10^{3}$ $10^{3}$ $10^{3}$ $10^{3}$ $10^{3}$ $10^{3}$ $2$ $10^{3}$ $10^{3}$ $10^{3}$ $10^{3}$ $10^{3}$ $2$ $10^{3}$ $10^{3}$ $10^{3}$ $10^{3}$ $10^{3}$ $2^{5}$ $10^{3}$ $10^{3}$ $10^{3}$ $10^{3}$ $10^{3}$ $2^{2}$ $10^{4}$ $22.58$ $22.25$ $20.60$ $2$ $10^{4}$ $22.58$ $22.25$ $20.60$ $2$ $10.42$ $22.58$ $22.25$ $20.60$ $2$ $10.42$ $22.58$ $22.25$ $20.60$ $2$ $10.42$ $22.58$ $22.25$ $20.60$ $2$ $10.42$ $22.58$ $22.25$ $20.60$ $2$ $100.33$ $91.12$ $99.77$ $90.41$ Trace Elements         (in ppm.)         Ba         15 $20$ State         State         15         20 <td< td=""><td>NgO _ \</td><td>.10</td><td>1.02</td><td>1.80</td><td>1.76</td><td>1.90</td><td>~</td><td></td></td<>	NgO _ \	.10	1.02	1.80	1.76	1.90	~		
Na 0       .02       .10       T       .71       .68         2       P       0       .17       .52       T       .07       .04         2 5       CO       .48       5.26       T       .65       .49         2       H       0       22.90       10.42       22.58       22.25       20.60         2       Total       99.68       100.33       91.12       99.77       90.41         Trace Elements       (in ppm.)         Ba       15       20       20       10       10         Cu       .00       .35       .35       .40       .50         State       .15       20       20       10       10         Trace Elements       (in ppm.)         Ba       .15       20       20       10       10         Cu       .00       .10       .10       .10       .15         State       .15       .00       .20       .20         State       .110       .10         <td colspan="2</td> <td>2</td> <td>00</td> <td>.00 .</td> <td>.80</td> <td>.89</td> <td>1.00</td> <td></td> <td></td>	2	00	.00 .	.80	.89	1.00			
P 0       .17       .52       T       .07       .04         2 5	Na () 2	.02	.10	T	.71	.68	,		
C0       .48       5.26       T       .65       .49         2       H       0       22.90       10.42       22.58       22.25       20.60         2       2       10.33       91.12       99.77       90.41         Trace Elements         (in ppm.)         Ba       15       20       20       10       10         Cu       40       30       30       20       20         Ba       15       20       20       10       10       10         Cu       40       30       30       20       20       35       35       40       50         Str       48       50       52       55       55         Zn       80       90       120       95       95       95         Pb       10       15       15       40       45       46       50       20         Gr       170       170       170       170       170       170       170         Ba       10       15       15       40       45       46       50       50       40       30       20	P 0 2 5	.17	.52	T	.07	.04			
H 0       22.90       10.42       22.58       22.25       20.60         2       Total       99.68       100.33       91.12       99.77       90.41         Trace Elements       (in ppm.)         Ba       15       20       10       10         Ba       15       20       20       10       10         Ba       15       20       20       10       10         Ba       15       20       20       20       20       20       20       20       35       55       55       55       55       55       55       55       55       55       10       15       130       170       170       170       170       170       170       170       170       170       170 <th colspa<="" td=""><td>CO 2</td><td>. 48</td><td>5.26</td><td>T</td><td>.65</td><td>. 49</td><td></td><td></td></th>	<td>CO 2</td> <td>. 48</td> <td>5.26</td> <td>T</td> <td>.65</td> <td>. 49</td> <td></td> <td></td>	CO 2	. 48	5.26	T	.65	. 49		
Total       99.68       100.33       91.12       99.77       90.41         Trace Elements       (in ppm.)         Ba       15       20       20       10       10         Cu       40       30       30       20       20       10         Bb       20       35       35       40       50         Sr       48       50       52       55       55         Zn       80       90       120       95       95         Pb       10       15       15       40       45         Mn       55       50       40       30       20         Cr       170       150       130       170       170	H 0 2	22.90	10.42	22.58	22.25	20.60			
Trace Elements       (in ppm.)         Ba       15       20       20       10       10         Cu       40       30       30       20       20         Bb       20       35       35       40       50         Sr       48       50       52       55       55         Zn       80       90       120       95       95         Pb       10       15       15       40       45         Hn       55       50       40       30       20         Tr       170       150       130       170       170         ii       80       90       95       95       95	Total	99.68	100.33	91.12	99.77	90.41			
Ba       15       20       20       10       10         Cu       40       30       30       20       20         Rb       20       35       35       40       50         Sr       48       50       52       55       55         Zn       80       90       120       95       95         Pb       10       15       15       40       45         Mn       55       50       40       30       20         Cr       170       150       130       170       170         Ni       80       90       95       195	Irace Elements	. 44 45 48 49 49 49 49 47 49 48 48 48 48 48 48 48 48 48 48 48 48 48	***	******	(in ;	ppm.)			
Cu       40       30       30       20       20         Rb       20       35       35       40       50         Sr       48       50       52       55       55         Zn       80       90       120       95       95         Pb       10       15       15       40       45         Mn       55       50       40       30       20         Cr       170       150       130       170       170         Ni       80       90       95       195	Ba .	15	20	20	10	10			
Lb       20       35       35       40       50         Sr       48       50       52       55       55         Zn       80       90       120       95       95         Pb       10       15       15       40       45         Hn       55       50       40       30       20         Cr       170       150       130       170       170         Ni       80       90       95       195	la la	40	30	30	20	20			
Sr     48     50     52     55     55       Zn     80     90     120     95     95       Pb     10     15     15     40     45       Mn     55     50     40     30     20       Cr     170     150     130     170     170       Ni     80     90     95     195	10	20	35	35	40	50			
21 80 90 120 95 95 Pb 10 15 15 40 45 Mn 55 50 40 30 20 Cr 170 150 130 170 170 Ni 80 90 95 195	3 <b>7</b> 7-	48	50	52	55	55		-	
IU     ID     ID     ID     ID     ID       Mn     55     50     40     30     20       Cr     170     150     130     170     170       Ni     80     90     95     195	50 01	8V	90	120	95	95			
Cr 170 150 130 170 170 Ni 80 90 05 195	;u In	1V E E	15	15	40	45	,		
NI 80 90 06 100 170 - 170	14 Sp	33 176	0U 150	40	30	20			
	7. H	bV T(A	00 TOA	130	170	- 170			
	20	0V 1A	30 10	90 90	125	-			
	i -	100	100	20	20 100	20			
ζ <b>μ</b> Αθ 55 50 40 80	ir.	£00	<u>500</u>	100	100	8U			

.

-

-

VARIATION OF MAJOR OXIDES IN THE LATERITE PROFILE AT HAMLA VILLAGE, MANDVI TALUKA, KUTCH DISTRICT



•

1



FIG, 68,



SET GAINS AND LOSSES OF MAJOR OXIDES AND TRACE ELEMENTS BASED ON A Cr-RETAINED MASS BALANCE MODEL. Taluka HAHDVI Village: HANLA HST TYPE SECTION Bed rock thickness consumed to produce present thickness of the weathered profile : 160 m. -----0-1.3 1 3-2.6m 2.6-3.2m 3 2-4 2m Depth Horizon Box(Fer) Box(Alu) B(Sap) B(Sap) Remarks SiO -58 85 -75.30 -19.46 -20 57 Overall loss with maximum mobility 2 in the Box zone. -----------A1 0 75 55 619 03 204 25 68 88 Overall gain with a maximum in the 23 Box(Alu) horizon -----Fe O 611 45 145.55 174.61 214.58 Overall gain with maximum in the 23 top and bottom horizons 7i0 195.28 124.28 161 53 78.94 Overall gain with a maximum in the 2 top horizon. ------****** -21.53 -50 00 "Overall loss with maximum mobility MnO -80.00 -2.00 -2 in the top and bottom horizons. ...... _____ Ça0 -77 50 28.91 66 73 -13 75 Mid-profile gains in the Box(Sap) and Box(Alu) zones with under-and overlying zones of depletion. -94.73 -39 15 -23.88 -7 36 Overall losses with mobility increasing Ng0 . higher in the profile -95.00 -94 33 -21 53 -11 00 Overall losses with mobility increasing 10 2 : higher in the profile -----_____ ____ Na O -97.05 -83 33 Ť 4 41 Bottom horizon of gain with overlying ् 2 ~ depleted zones. -----------------------137 33 Overall gain with a maximum in the PO 325.00 T 75 00 25 top horizon. ----50.00 128.66 161.53 Overall gain with a mid-profile maximum Ra in the Bsap zone. Сu 100.00 70.00 96.15 Overall gain with a maximum in the top τ. 2008 ____ ..... Overall loss with increasing mobility -20,00 -8 46 RP -60.00 -20 68 higher in the profile -------23.63 -12.72 -3.03 Overall loss in the profile Sr ł -----..... ...... Two top horizons of depletion with an Zn -13.78 -7.36 65.18 underlying zone of gain Overall loss with an increase in -17.77 -62.22 -56.41 -11.11 Ph mobility higher in the profile. ------183 33 161.53 50 00 Overall gain with maximum in the top Ma 175 00 two horizons. Ċŕ .... 81 . --..... Overall losses with maximum mobility Co -50.00 -2 00 -30 76 in the top and bottom horizons -----------25 00 Overall gain with a maximum in the 25.00 41 66 63 46 ¥ ald-profile region 

Table 22

107.77 117.94 33 33 Overall gains with a maximum in the 100 00

	Tab	ole 23			155
Mandvi Taluka	X-ray data			Box - Ferricrete	100
Hamla :-	HST T	rpe Section			
2 (8)	(d) Spacing (Ao)	Inten Observed Io	isity X   Calculated   Ic	Renark I	••••
17.90 19.80 20.00 24.60 25.80 26.10 26.60 27.00 27.10 27.80 35.20 35.30 35.60 36.40 37.90 38.70 40.20 42.60	4.9417 4.4846 4.4907 3.6193 3.4632 3.4126 3.3517 3.3114 3.2902 3.2094 2.5443 2.5426 2.5078 2.1095 2.3779 2.3262 2.2429 2.1219	92.50 31.00 17.00 7.00 8.00 1.50 2.00 8.00 7.00 3.50 8.50 14.00 5.00 17.00 3.00 6.00 8.50 11.00	100.00 33.51 18.38 7.57 6.49 8.65 1.58 2.04 7.57 3.78 9.19 15.14 5.40 18.38 3.24 6.49 9.19 11.89	Goethite Kaolinite Kaolinite Kaolinite Maghemite Maghemite Quartz Quartz Lepidocrocite Maghemite Ilmenite Hematite Hematite Lepidocrocite Anatase Maghemite Kaolinite Quartz	

ĩ

.
	Ta	able 24			192
Mandvi Taluka	X-ray data			Box - Alucrete	
Hanla :-	EST	Type Secti	.0D		***********
2 (0)	(d) Spacing (Ac)	Inter Observed Io	sity X   Calculated   Ic	Renark	
18.20 20.20 20.50 25.20 26.50 26.90 27.90 28.60 36.50 37.60 39.30 40.10 41.60 44.10	4.873 4.3951 4.3285 3.5346 3.3634 3.3143 3.1974 3.1213 2.4614 2.4296 2.3919 2.2923 2.2485 2.1709 2.0535	88.00 28.50 14.00 4.00 7.00 5.50 2.00 10.00 3.00 13.00 2.50 4.00 5.00 8.50	100.00 32.39 15.91 4.55 4.55 7.96 6.25 2.27 11.36 3.41 14.77 2.84 4.55 5.68 9.66	Gibbsite Gibbsite Gibbsite Anatase Kaolinite Quartz Gibbsite Gibbsite Goethite Gibbsite Gibbsite Kaolinite Kaolinite Gibbsite	

.

156

•

e.

•

Mandvi Taluka	X-ray data B HST Type Section			- Kaolinite	
Hamla :-					
2 (0)	(d) Spacing Inter (Ao) Observed Io		sity X Calculated Ic	Remark	
19.95	4.4509	22.00	50.00	Kaolinite	
20.40	4.3529	39.00	88.64	Kaolinite	
21.40	4.1513	37.00	84.09	Kaolinite	
23.20	3.8334	18.00	40.91	Kaolinite	
23.80	3.7697	10.00	22.73	Kaghemite	
25.00	3.5824	44.00	100.00	Kaghemite	
25.50	3.4956	30.00	68.18	Maghemite	
26.50	3.3634	10.00	22.73	Maghemite	
28. <b>8</b> 0	3.0997	2.00	4.55	Quartz	
31.80	2.8135	6.00	12.63	Calcite	
35.10	2.556	18.00	40.91	Kaolinite	
35.50	2.5285	14.00	31.82	Kaolinite	
38.00	2.4948	20.00	45.45	Kaolinite	
37.90	2.3779	9.00	20.45	Kaolinite	
38.60	2.3354	32.00	72.72	Kaolinite	
39.30	2.2923	18.00	40.91	Kaolinite	
45.60	1.9894	9.00	20.45	Kaolinite	
46.90	1.9374	2.00	4.55	Kaolinite	
48.00	1.8955	4.00	9.09	Anatase	
49.50	1.8441	3.00	6.82	Maghemite	
51.10	1.7874	2.00	4.55	Kaolinite	
55.10	1.6688	13.00	29.55	Kaolinite	

,

Table 25

~

1

-

.

	K-ray data BST Type Section					
Handvi Taluka				B - Bentonite		
flamla :-					*****	
2 (0)	(d) Spacing Intens (Ao) Observed O Io		nsity X Calculated Ic	Remark		
17.50 18.60 19.90 20.40 21.40 22.30 23.20 28.80 29.00 29.60 30.00 31.80 32.60 33.90 35.10 36.00 37.90 38.50 39.60	5.0474 4.7647 4.4563 4.3482 4.1472 3.9907 3.8294 3.0964 3.0753 3.0143 2.9751 2.8108 2.7435 2.6412 2.5536 2.4918 2.3711 2.3355 2.9624	60.40 42.20 8.00 10.00 9.00 7.00 11.00 8.00 8.00 9.00 11.00 9.00 8.00 8.00 8.00 8.00 8.00 8.00 8	100.00 69.87 9.93 16.56 14.90 11.59 18.21 9.93 13.24 14.90 18.21 14.90 13.24 9.93 13.24 9.93 13.24 11.59 9.93 6.62	Montmorillonite Quartz Kaolinite Kaolinite Beidellite Beidellite Maghemite Quartz Kaolinite Kaolinite Kaolinite Kaolinite Kaolinite	· · · · · · · · · · · · · · · · · · ·	
37.60 40.50 42.80	2.2024 2.2247 2.1197	7.00 7.00 7.00	11.59 11.59 11.59	seidellite Beidellite Beidellite		

.

Table 26

ř

,

158

~

Mandvi Taluka	X-r	ay data		C - Basalt
Hamla :-	HST Type Section			
2 (0)	(d) Spacing (Ao)	Inte Observed	nsity X Calculated	Remark
	**	10	ic	
18.60	4.7647	86.00	100.00	Quartz
19.90	4.4563	43.00	48.80	Quartz
21.30	4.1685	18.00	20.90	Labaradorite
22.30	3.9907	16.00	18.60	
23.80	3.7344	11.00	12.80	Ilmenite
24.10	3.6884	6.00	6.98	Augite
24.60	3.6145	8.00	9.30	Augite
27.00	3.2984	2.00	2.32	Augite
27.70	3.2166	22.00	25.00	Sphene
28.00	3.1826	6.00	.98	Maghemite
28.80	3.0964	24.00	27.90	Labradorite
29.00	3.0753	4.00	4.65	Olivine
30.00	2.9751	7.00	8.14	Augite
31.00	2.8813	8.00	9.30	Kaghemite
32.60	2.7435	10.00	11.32	Sphene
33.90	2.6412	21.00	24.42	
34.50	2.596	19.00	22.10	Rutile
35.10	2.5536	12.00	13.95	Lepidocrocite
36.20	2.4785	7.00	8.10	Augite
38.10	2.5561	15.00	17.40	Butile
39.20	2.2954	14.00	16.28	Maghemite
40.20	2.2379	14.00	16.28	

-

-

•

- .

\$

#### Table 27

-



Table	28

Mandvi Taluka

,

.

*****

Hamla :-	****		
Depth	0 - 1.4m	1.4n-1.9 n	1.9n -
Horizon	Box	B	B
	Ferricrete	Saprolite Lithomarge	Saprolite Bentonite
SiO	26.80	37.80	46.88
Al O	14.60	34.60	10.68
23 Fe ()	35.40	5.10	9.62
Tio	1.48	1.28	1.42
Kn0	. 19	.02	. 69
Ca0	1.02	1.24	1.48
ngu K O	.98	. 19 . 20	1.28
z Na O	.96	.80	1.48
2 P 0	.42	. 16	.42
25	.86	1.00	1.20
2 H 0 2	12.06	16.02	20.68
Total	94.95	98.41	96.45
الالا عن الالا الالا الله الله الله الله الله ا	******	In j	percent

•

Table	29

.

-

.

ι.

r

Handvi Taluka	,			
Hamla :-	,			
Depth	0-0.4	00.4m-1.3m	1.3m-2.6m	2.6 <b>n</b> -
Horizon	Box	Box	B	B
	Ferricrete	Ferricrete	Saprolite Lithomarge	Saprolite Bentonite
SiO	·23.68	24.98	38.92	46.72
A1 0	12.42	12.62	32.46	10.42
_Fe 0 _2 %	39.12	38.48	7.02	6.62
Ti0 2	1.42	1.62	1.12	1.22
Kn0 2	.04	.19	.12	.89
CaO	.68	.98	.92	.68
NgO	.96	1.04	.28	.21
K 0 2	1.12	. 98	.92	1.08
Na () 2	1.68	1.96	.86	1.42
PÖ	Ť	. 62	T	T
25			-	-
CO	1.12	1.12	1.00	1.42
2			-	
H O 2	14.82	13.08	16.48	26.68
Total	97.67	100.10	100.10	97.34
****	· • • • • • • • • • • • • • • • • • • •		In	percent

~

## Table 30

.

Mandvi Taluka

,

## Tundi :-

¥

		****		
Depth	0-0.3 m	0.3-1.7 m	1.7 m	
Horizon	Box	Box	В	
~~~~~~~~~~~	Ferricrete	Alucrete	Saprolite Lithomarge	Saprolite Bentonite
SiO	24.68	14.96	37.80	48.56
2 A1 0	18.98	50.70	24.60	19.32
Z 3 Fe O	32.98	14.98	10.10	7.74
2 3 TiO	4.96	3.15	3.48	2.86
Z MnO	.10	.02	.02	. 89
Z CaO	1.36	1.21	1.24	1.48
KeO	.28	.22	.19	.32
K 0 2	.18	.24	.20	. 25
Na O 2	.98		.80	.90
P 0	. 48	.16	.16	.14
2 3 C0	1.86	1.76	1.00	.90
2 H O 2	14.98	13.20	19.06	15.60
Total	100.60	98.65	98.65	98.96
		In	percent	

163

.

Table	31

Abdasa Taluka (LST)

Bandra.		(i)	n percent)	
Depth	0.0m-1.7m	1.7 m -3.2 m	3.2 n -3.7 n	3.7 e
Horizon	Box	Box	B	C
	Ferricrete	Alacrete	Saprolite	Deccan Trap
SiO	24.83	11.50	37.60	49.80
2 A1 0	19.56	54.60	30.80	27.80
23 Fe 0	38.21	4.22	4.10	9.80
2 3 Ti0	3.66	4.15	4.80	8.60
2 Hn0	.90	.01	.01	T
2	01	10	20	1 00
	.01	.40	- 32	1.02
agu T A	1.70	.10	. 10 -	1.00
2	.01	. 20	.00	- 30
Ha O	.50	.57	-	.80
2				
PO	. 22	. 22	. 18	.34
2 3	60	14	10	9 00
2	.00	. 44	.40	2.00
НÖ	10.12	23.03	21.90	3,90
2				
Total	99.63	100.35	100.35	105.96
Trace Blements	*****		(in	ppm.)
 8s	20	00	00	20
ba Cu	20 RA	2U RA	20 en	20
Rb	ov T	00 17	00 T	00 4
Sr	10	20	20	1 30
Zn	30	40	40	su Rn
Pb	5	5	5	5
Ka	80	70	60	40
Cr	60	50	40	40
Hi	10	20	40	60
Co	30	40	60	80
¥ 9	5	5	5	5
2r	10	5	5	5

Ŷ

AT NANDRA VILLAGE, ABDASA TALUKA, KUTCH DISTRICT

ţ

FIG. 71

VARIATION OF TRACE ELEMENTS IN LATERITE PROFILE 168 AT NANDRA VILLAGE, ABDASA TALUKA KUTCH DIST.

	Tabl	e 32		
	BET GAINS AND LO	SSES OF KAJO	R OXIDES AN	D TRACE BLENKUTS
	BASED ON A Cr-BE	TAIWED HASS	BALANCE BOD	
	Taloka. ABDASA	Vill	age: BAN IST	DRA TYPE SECTION
	Bed rock thickne thickness of the	ss consumed weathered p	to produce rofile '	present 180 m
Depth	0-1 7 a	1.7-3.2	3 2-3.78	
Borizon	Box(fer)	Box(Alu)	B(Sap)	Remarks
S10	-66 76	-81 52	-24 49	Overall loss with increasing mobility
2	•			higher in the profile.
A1 0	-53 09	57.12	10.79	Top depleted zone with underlying zones
23				of gain
fe 0	159 93	-85.55	-58.16	Top horizon of gain with underlying
23	,	-		depleted zones.
Tio	-71 62	-61.39	-44 18	Lost throughout the profile with mobility
2				increasing higher in the profile
HaQ		•		•
2			*****	· · · · ·
CaO	-99 34	-63 92	-68 62	Lost throughout the profile with mobility increasing higher in the profile
Hg0	18 66	-88 00	-90.00	Top horizon of gain with underlying zones of depletion.
K0. 2	-99 25	-75.11	-91.11	Overall loss throughout the profile
Na 0 2	-58.33	-43 00	- ,	Overall loss throughout the profile
P 0 2 5	-56 86	-48 23	47.05	Overall loss with mobility increasing
*******	**************		*******	higher in the profile
Ba	*	-	-	-
Cu	11.11	-	-	Top horizon of gain with lower horizons showing losses
RP	-		-	-
Sr	-17 17	-46.66	-33.33	Overall loss with mobility increasing higher in the profile
20	-66.68	-5.33	-33.33	Overall loss with maximum mobility in the top and bottom borizons.
Pb		-	-	- ,
	1	***	4	· ·
No.	33.331	40.00	50.00	Overall gain with a maximum in the bottom horizon mobility increasing higher in the profile.
Cr		-	-	-
NI	-88 88	-73 33	-33 33	Overall lose with mobility increasing higher in the profile
Co	-75 00	-60 00	-25.00	Overall loss with mobility increasing higher in the profile
Ÿ		-	*****	-
,2r	33 33	-		Top horizon of gain with underlying zones

Tabl	8	33	
~~~~			 -

:

Abdasa Taluka. (LST)

-

Naredi.	-			(in percent	)		
Depth	0 <b>n-</b> 0, 3n	0.3m-0.9m	0.9 <b>m-2</b> .1m	2.1 <b>n-</b> 3.6n	3.8 <b>n-4n</b>	41	
Horizon	A	Box	Box	Box	B	C	
	Soil	Ferricrete	Alucrete	Alucrete	Saprolite	Basalt	
SiO	14.80	14.83	4.40	5.50	37.60	49.80	
A1 0	19.20	19.56	68.60	56.70	30.80	27.80	
2 3 le 0	48.21	48.21	2.38	2.22	4.10	9.80	-
110	3.66	3.66	3.13	4.15	4.80	3.60	
MnO 2	.98	.90	.02	.01	.01	T	
2 (a))	61	01	88	48	99	1 09	
Ka()	1 79	1 78	20	15	10	1 00	
<b>I</b> 0	40	01	30	28	08	Q0	
2	-						
a 0 2	.10	.05	. 48	.57	T	.80	
25	20	.22	Ţ	. 22	. 18	.24	
2	1.00	.78	.84	1.03	.44	2.00	1 ¥
10 2	9.98	10.06	22.89	23.03	21.90	3.80	
lotal	100.07	104.11	104.11	94.32	100.33	100.76	
Trace Ble	nents	**********************		(in	n ppma.)	9 W W W M W W W W W W W W W W W W	*****
	-	90 1	-1 70	1 70	1 70	1 20	
b .	• •	5	гу Б	۲۷ ج	IV K	0V 5	
r	-	20	30	30	40	50	
n	-	10	20	90	70 70	30 98	
Ь	-	ND.	ND	ND ND	20 ¥n	20 Nn	
n	•	60	50	45	45	9A	
r	-	90	80	80	80	80	
i	-	40	60	60	80	90	·
0	-	20	20	- 30	60	70	,
	-	20		T	Ŧ	<b>•</b>	
			•	+	*	±	

ф.

۰,

.

.

168

.

.

VARIATION OF MAJOR OXIDES IN THE LATERITE PROFILE AT NAREDI VILLAGE, ABDASA TALUKA, KUTCH DISTRICT 169 Percentage of Oxides 50 60 70 10 20 30 40 80 90 100 A1203 Si02 Fe₂₀₃ Ti 02 1 Depth in metre 2 3 4 4/203 si02 F=203 Percentage of Oxides 04 05 06 07 0.8 0.1 02 0.3 09 1 2 3 4 4,702 C 02 3 3 ₽ M₉₀ 1 Depth in metre 2 3 4 Mn02⁻ M90, Ca0 K20 κ₂0

~ FIG, 73



ļ

FIG 74

l

#### Table 34

-

TO AND TOCCES OF WAJOR OTIBES AND TRACE ELEMENTS

		STAINTO MACS	RALANCE MOD		****	·
	Taluka ARDÁSA	vil	lage: MAR	 RD1		
	Bed rock thicks	ness consumed	LST to produce	TYPE SECTIO present thic	N kness of	
anth	0-0.3m	0.3-0 Sm	0.9-2.1m	2 1-3.6m	3.8-4 <b>n</b>	
	£/(coil)	Roy (For)	Roy(4in)	Roy(Alm)	B(Sap)	Remarks
				_88 95	.74 49	Averall ingges with maximum
2	-	-13.32	-31 10	-00 33	-41.10	mability in the Roy hapiton
						The basican of long with an
10 23	-	-37 45	165 75	103.95	10.18	lop Borizon ut 1988 with an
*******	*******	*********				underlying zone of gain maxima.
e 0 23	•	337.27	-75.71	-77 34	-58.16	Top horizon of gain with
*******	*****			*****		underlying zones of depletion.
10 2	•	9.62	13 05	15 22	33.33	Overall gains with a maximum in
-				***		the bottom horizon.
la0	, -	-	-	-	•	•
2 Ca0	•	-99 12	-15 68	-54 90	-68 62	<ul> <li>Overall losses with maximum mobility in top and bottom horizons.</li> </ul>
ig0		58 22	-80 00	-85 00	-90.00	Top horizon of gain with underlying zones of depletion
K 0		-99 01	-68.66	-68 88	-91.11	Overall losses with top and bottom
2						zones showing maximum mobility.
la O	****	-94 44	-40 00	-28 75	-	Overall lose with an increase in the
2						mobility higher in the profile.
 P 0			· •	-8 33	-25 00	Overall loss with maximum mobility in
25						the upper horizons where it is lost
Ba	***************************************					
 Cu		50 00	16.66	18.66	16 66	Averall gains with a maximum in the
~			10.00	10.00		top horizon.
<b>R</b> D	-	C .	C	C	C	-
Sr		-64,44	-40.00	-40 00	-20 00	Overall loss with an increase in the mobility higher in the profile
20	_	-50.00	, c	C *	° c	Overall loss with maximum mobility in lower horizons.
	' '					
Pb		N.D.	¥.D.	N.D.	N.D	
Xo.	****	200.00	150.00	125 00	125 00	Overall gain with a maximum in the top most borizon.
Cr	-		C	C	C	******
Ni		-55.55	-33.33	-33.33	-11.11	Overall loss with an increase in the mobility higher in the profile
Co	-	-74.60	-71 42	-57 14	-14.28	Gverall loss with an increase in mobility higher in the profile
Y	_ ~ -	C	Ť	Ţ	Ī	
Zr		400 00	100 00	C	C	Increase bigher in the profile
******	*****************	******	*********		*********	-

171

-

-

.

172

.

Table 35

Raydhanpur	-			
Depth	0-0.4 <b>m</b>	0.4-1.2 <b>n</b>	1.2 m	
Horizon	Box	Box	Box	· · · · · · · · · · · · · · · · · · ·
~~~~~~~~~	Ferricrete	ferricrete	Alucrete	
SiO	22.14	28.96	20.42	
Al O	16.16	19.40	40.60	
Z 3 Fe O	25.86	24.86	3.86	
z 3 Tio	2.69	3.69	3.89	
2 Man0	.42	.24	.04	
2 CaO	.86	.96	. 82	
Hg0	1.68	1.96	1.80	
E 0 2	.98	.70	.70	
Na O	.02	Ĩ	T	
PÖ	1.02	.96	.84	
2 3 C0	1.14	.68	.89	
2 H O 2	12.62	16.80	16.80	
Total		90.66	90.66	

Table 36

Abdasa Taluka

• Mivani :-

		* \$ * * * * * * * * * * * * * * * * * *
0-1.2m	1.2-2.4 m	
Box	Box	
Alucrete	Alucrete	
6.08	12.70	
63.84	61.80	
3.04	3.00	
4.12	3.89	
T	.01	
.90	.96	
1.00 .40	.84 .50	
T	. 47	
. 42	. 36	•
. 62	1.02	
19.60	14.65	<i>'</i>
100.20	100.20	
In 1	percent	
	0-1.2m Box Alucrete 6.08 63.84 3.04 4.12 T .90 1.00 .40 T .42 .62 19.60 I00.20 In p	0-1.2n 1.2-2.4 m Box Box Alucrete Alucrete 6.08 12.70 63.84 61.80 3.04 3.00 4.12 3.89 T .01 .90 .96 1.00 .84 .40 .50 T .47 .42 .36 .62 1.02 19.60 14.65 100.20 100.20

٠

يو.

•

.

Table 37

-.

--

-

Chiyasar						
Depth	0 n-0.4 m	0.4m-0.7m	0.7m-1.8m	1.6m-1.9m	1.9 n -	
Horizon	Box	Box	Box	_ 8	C	
	Ferricrete	Ferricrete	Alucrete	Saprolite	Basalt	
Sio	28.11	28.89	21.50	37.60	47.29	-
A1 0	12.57	10.68	46.70	30.80	11.12	
23 Fe 0 23	39.22	42.28	2.22	4.10	17.28	
Tio	.68	3.58	4.15	4.80	.29	
Kn0 2	.55	. 38	.01	.01	. 13	;
CaQ	08	02	46	32	53	
Nøft	5 53	1 16	15	10	A 77	
K O	02	03	- 10	08	01	
9°	. 76	.00	. 20	. 40		
Na O	.06	.03	.57	Ī	.12	
2 0 2 5	.14	.06	.22	.18	.02	
C0 2	1.09	. 25	1.03	.44	.41	
НО 2	10.04	16.96	23.03	21.90	T	
Total	104.32	100.32	100.32	100.33	81.97	
Trace Elements	- # # # # # # # # # # # # # #		(In	ppm.)	in finde ware final allel dille finde finde dille dille sign such anno	
Ba	30	30	40	60	80	-
Cu	60	60	. 60	60	60-	
Rb	ND.	ND.	ND.	ND.	T	
5r	5	10	10	10	- 20	
In	60	65	70	70	80	
?b	20	20	30	40	50	· .
ín 🛛	40	30	25	25	25	
lr .	30	20	20	20	10	
li	50	50	80	80	100	
70	40	50	60	70	80	
Y	10	10	10	5	T	
lr	- 30	20	20	20	10	

FIG. 7.5

175

.

VARIATION OF TRACE ELEMENT IN LATERITE PROFILE AT CHIYASAR VILLAGE, ABDASA TALUKA KUTCH DIST 178

FIG 76

Table 38

.

ŧ

,

~

					1
	NET GAINS AND LOS	SES OF MAJO	R OLIDES AND	TEACE ELENI	INTS
	BASED OF A Cr-RET	ALNED MASS	BALANCE NODE	L	
	Taluka ABDASA	VIII	age. CHIY LST	ASAR TYPE SECTIO	
	Bed rock thicknes weathered profile	s consused . 175	to produce p 	resent thic	kness of
Depth	0-0.4 n	0 4-0.7m	0 7-1 6 m	1 6-1.9m	
Borizon	Box(Fer)	Box(Fer)	Box(Alu)	B(Sap)	Benarks
SiQ	-60 37	-69 45	-77 26	-60 24	Lost throughout the profile with a
2					maximum mobility in the box zone.
AL O	24,64	÷61.07	109.98	38,48	Mid-profile gain in the box(Alu) zone
24					with an overlying depieted zone but with an underlying and topmost zone of gain
Fe O	51 31	22.33	-93 57	-68 13	Gains in the Box(Fer) horizon with
23					underlying zones of depletion
TiO	516 09	517 24	615 51	727 58	Gains throughout the prifile with a
2					maximum in the bottom zone.
Ma0	182 65	46 15	-96 15	-96,15	Gains in the Box(Fer) zone with under-
4					lying horizons showing depletion.
CaO	-92 45	-98 11	-56 60	-69 81	Losses throughout with maximum mobility in the Box(Fer) horizon
MgO	22 71	-87 80	-98 42	-98 95	Top horizon of gain with underlying horizons of depletion
10	33 33	50 00	1300 00	300 00	Overall gains with a eaximum in the
4					Box(Alu) and Bsap horizons
Wa 0 2	-66 66	-87.50	137 50	*,	Mid-profile zone of gain in the Box
					(Alu)with overlying zones of depletion.
P 0 2 5	366.66	50.00	450.00	350 00	Overall gains throughout the profile
Ba	-87 50	-81.25	-75 00	-62 50	Overail losses with mobility increasing higher in the profile.
Cu	C	C	C	C	-
Rb	-	-	-	-	-
Sr	-91 66	-75 00	-75 00	-75 00	Overall losses with mobility increasing higher in the profile.
Zo	-75.00	-59 37	-58 25	-56 25	Overall losses with mobility

					1					
	'increasing higher in the profile.									
Pb	-86 66	-80 00	-70.00	-260 00	Overall losses with mobility increasing higher in the profile					
đa	46.65	40 00	50.00	50.00	Increase higher in the profile.					
ir		~								
1	-83 33	-75.00	-98.00	-96 00	Overall losses with waximum mobility in the two bottom horizons					
0	-83.33	-68.75	-62 50	~L	C r. 11 losses with mobility increa- sing higher in the profile.					
`		·-	-	-	*					
•			*							

٢

	Ta bl	9 39	
Abdasa Taluka			
Kharuva :-			
Peřte	939.8 y	0.6 = 1.3 B	
Horizon	Box	Box	
	Ferricrete	Alucrete	
SiO	24.83	28.89	
A1 0	19.56	22.68	
Fe 0 2 3	38.21	40.28	
TiO 2	3.42	3.58	
Mn0 2	.90	.38	
CaO	.01	.02	
Kg0	1.78	.98	
K 0 2	.01	.03	
Na () 2	.05	.03	
P 0 2 5	.22	.06	
C0 2	.78	.25	
H 0 2	11.89	11.65	
Total	108.83	108.83	
	In p	rceat	

.

ſ

.

Table 40 ***

Abdasa Taluka. -----

۲

Bus	dat		a.	CT)
aun	пат	AP	114	ละเ

Nundatar (LST)							
Depth	0 n -0.6n	0.6m-1.8m	1.8m-2.1m	2.1 n -2.6n	2.6n-3.2n	3.2 n-	**********
Horizon	Box	Box	Box	B	B	Ċ	
	Ferricrete	Ferricrete	Alucrete	Saprolite	Saprolite	Basalt	
S10	20.20	19.96	12.72	30.70	39.00	42.30	
AI 0 2 3	15.80	15.46	49.92	27.10	25.20	19.60	
Fe 0 2 3	34.15	36.15	11.28	20.40	17.10	17.00	
Ti0 2	5.61	4.80	2.80	3.76	3.40	2.81	
MnO 2	.02	.02	.08	.09	.05	.05	
CaO	.18	.90	1.00	.91	. 69	1.67	
Mg()	.10	.47	1.27	1.02	1.76	2.68	
K 0 2	.05	.07	T	.05	.89	1.93	
Na () 2	.02	. 10	Ī	. 10	.71	1.00	
P 0 2 5	. 17	.20	ī	. 52	.07	.57	
C0 2	. 48	.26	T	5.26	. 65	2.00	
K 0 2	22.90	20.90	20.26	10.46	10.25	8.06	-
Total	99.29	99.33	99.33	100.37	99.77	99.67	
Trace Elements		******	******	(In	pp n .)	#* 12 48 49 49 49 49 49 49 49 49 49 49 49 49 49	
Ba	40	40	60	80	80	90	
Cu	70	70	70	60	60	50	
Rb	10	10	10	30	30	40	
Sr	60	70	90	90	90	100	
Za	50	45	45	40	40	30	
Pb	T	T	5	5	5	5	
Un	80	70	55	55	55	35	
Cr	80	70	70	70	70	70	
N1 0-	40	60	70	70	70	90	
U0 17	20	30	30	30	30	40	
Zr	30 40	10 30	10 30	10 30	10 30	10	
		*****	******		****		· · · · · · · · · · · · · · · · · · · ·

.

-

*

-. •

• ÷

FIG. 77

,

VARIATION OF TRACE ELEMENTS IN LATERITE PROFILE AT NUNDATAR VILLAGE, ABDASA TALUKA KUTCH DIST. 181

FIG 78

Table 41 NET GAINS AND LOSSES OF MAJOR OXIDES AND TRACE ELEMENTS BASED ON A CE-RETAINED MASS BALANCE MODEL

Taluka ABDASA Village SUNDATAR LST TYPE SECTION Bed rock thickness consumed to produce present thicknese of weathered profile . 190 s

,

-

Depth	0-0 6 a	0 6-1.8m	1 8-2 1=	2 1-2 6m	2 6-3.2m	
Horizon	Box(Fer)	Box(Fer)	Box(Alu)	B(Sap)	B(Sap)	Remarks
S10	-58 21	-52.81	-69.92	-27,42	-7,80	Lost throwhout the profile with maximum
4						mobility in the Box horizon
Al 0 2 3	-29 46	-21 12	154 69	38 26	28 00	Two top horizons of depletion with an
2.0		ţ				underlying Box(Alu) zone of gain maxima followed by other zones of minor gains
Fe 0	75 77	112 64	-33 64	20 00	-	Rid-profile Box(Alu) zone of loss with
2.0						an overlying zone of gain maximum and with an underlying minor zone of gain
T10	74 68	70.81-		33 80	20 94	Overall gain with two top horizons
						showing gain maximum
Ka0	-35 00	-60 00	60 00	80 00	•	Two top horizons show losses, followed by
•						two zones of gain with the bottom one showing a maximum.
CaO	-90 56	-46 10	-40 11	-45 50	-58 69	Lost throughout the profile with the top and bottom horizons showing maximum mobilit
Ngû	-96 73	-82 46	-52 45	-61 94	-34 33	Lost throughout the profile with mobility increasing higher in the profile
I O	-97 73	-96 37	Î	-97 40	-53 89	Lost throughout the profile with mobility
4						increasing higher in the profile
Na 0 2	-98 25	-90 00	1	-90 00	-29 00	Shows same mobility as I 0 2
P 0	-73 90	-64 91	t	-8 77	-87 71	Lost throughout the profile with maximum
25						mobility shown by the top and bottom zones
Ba	-61 11	-55.55	-33 33	-11 11	-11 11	Lost throughout with increasing mobility higher in the profile
Cu	22 50	40 00	40 00	20 00	20 00	Gains throughout with a maximum in the mid-profile
Rb	-78.12	-75 00	-75.00	-25 00	-25 00	Lost steadily upwards, with maximum mobility in the upper zones.
Sr	-47 50	-30 00	-10 00	-10 00	10 00	Steady loss with maximum mobility

					1	in the upper horizons.
Za	45 83'	50 00	50 00	33 33 ^	33 33	Steady gain higher in the profile
РЪ	1	1	Ť,	à .		-
Ma	100 00	100 00	30 50	30 50	30 50	Steady gain upwards with a maximum in the top horizons
Cr	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		*****	-	-	-
#1	-61 11	-14 28	-22.22	-22 22	-22 22	Steady loss upwards with a maximum mobility in the top horizon.
Co	-50 00	-25 00	-25 00	-25 00	-25 00	Shows same mobility as Ni
¥	162 50		•	*	*	
-		***********	***********	*********		

.

.

,

.

-

.

•

٦

Table 42

Abdasa Taluka. (LST)

-

Balachor	•			(in)	percent)
Depth	0m-0.9m	0.9m-1.6m	1.6 n-2.9n	2.8 n -3.2 n	3.2 n -
Horizon	Box	Box	Box	C	C
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ferricrete	Ferricrete	Alucrete	Basalt	Basalt
SiO	31.70	25.30	31.50	40.30	47.29
A1 0	18.70	22.00	56.70	22.50	21.1 2
z s Fe O	32.37	27.60	2.22	17.30	17.58
z 3 Tio	4.10	3.56	4.15	3.03	. 29
Mn0	.01	. 15	.01	.05	.13
CaO	.15	. 36	. 46	1.13	.53
Ng0	.21	.40	.15	2.28	.77
L 0	.02	.03	. 28	.76	.01
Na O	.01	.03	.57	. 36	. 12
P 0	.12	.13	.22	.22	.02
C0 2 3	.28	13.10	1.02	1.15	.41
H O P	23.23	8.16	13.03	10.70	12.08
Total	110.90	100.82	120.31	99.78	100.35
Trace Riesents	وي الاي الاي الذي الذي الله الذي الله الذي الله الله الله الله الله الله الله الل	an agé iun de an an an an an an an an an de de de de	(in		

Ba	20	20	30	30	50
Ca	80	80	60	60	40
KD C-	10 MB	10 ND	20 ND	30 Nn	00 10
or Zn	89. 46	50	av. 55	5V. Rû	α <i>μ</i> . 7Λ
<u>Р</u> Б	1V ¶	Ť	40	40	40
Hn	80	70	60	60	50
Cr	60	60	60	60	60
fi	40	60	80	80	90
Co	100	120	120	120	130
Y	5	5	5	5	5
Zr	30	30	20	10	T

-

VARIATION OF MAJOR OXIDES IN THE LATERITE PROFILE AT BALACHOR VILLAGE, ABDASA TALUKA, KUTCH DISTRICT

VARIATION OF TRACE ELEMENTS IN LATERITE PROFILE. AT BALACHOR VILLAGE, ABDASA TALUKA KUTCH DIST,

FIG 80

Table 43 -----

NET GAINS AND LOSSES OF MAJOR DEIDES AND TRACE BLEMENTS

BASED ON A CT-RETAINED MASS BALANCE MODEL.

-----Taluka ABDASA Village BALACHOR LST TYPE SECTION Bed rock thickness consumed to produce present thickness of the weathered profile 160 m ------------Depth 0-0 9m 0 9-1 6m 1 6-2 9m 2 9-3 2m Serizon Box(Fer) Box(Fer) Box(Alu) C(Bas) Remarks ---------\$10 -32,96 -46 50 -33 38 -14 78 Lost throughout the profile with a 2 top borizon mobility maximum ****** A1 0 -11 45 4 16 168.46 6 53 Top horizon of losses with a mid-profile 23 gain maximum in the Box(Alu) horizon 84 12 57 11 -87 37 1 59 Botton horizons of losses with overlying le 0 23 zones of gains **fi**0 1313 79 1127 58 1331.03 944 82 Enormous gains throughout the profile. 2 -----. _____ 15 38 -92 30 -61 53 Top and bottom horizons of losses with NaO -92 30 2 a mid-profile Box(Fer) zone of gain -71 60 32 07 -13 20 113 20 Top and mid-profile zonss of losses with a CaO bottom horizon of gain Maximum mobility in the top horizon -----72 72 -48.05 -80 51 198 10 Top and mid-profile zones of losses with MgO a bottom horizon of gain 10 100 00 200 00 2700 00 7500 00 All round gains with maxima in the 2 Box(Alu) and C horizons -------91 66 -75 00 375 00 200 00 Tep horizons show losses with gains in Na O 2 the two bottom horizons 500 00 550 00 1000 00 1000 00 Overall gains in the profile with maxima PO 25 in the two bottom horizons Ra . -60 00 -60 00 -40 00 -40 00 Lost throughout the profile with increasing mobility in the two top horizons 100 00 100 00 50 00 50 00 Overall gain with maxima in the two Ca top horizons **** Rb -80 00 -80.00 -60.00 -40 00 Overall losses throughout the profile increasing higher in the profile

- -Sr ... Zn. -42 85 -28.57 -21.42 -14.28 Overall loss with increasing mobility higher in the profile ***** Ph Kn 60 00 40 00 20 00 20 00 Gverall gain which increases higher in the profile. ****************** Cr -23 80 -23 80, Overall losses with increasing mobility higher in the profile ŧi. -61 90 -42.85 higher in the profile Co -23 07 -7 69 -7 69 -7 69 Mobility same as Co ********** ******* ------¥ ------. ********** Zr 1800 00 1800 00 1200 00 600.00 Overall gains which increase higher in the profile.

.

-

Table 44 -----

ŕ

Wamoti	***				
Depth	0.0m-1.2m	1.2 n -3.1 n	3.1n-3.7n	3.7 n-4 n	4 n -
Korizon	Box	Box	Box	B	C
	Ferricrete	Alucrete	Alucrete	Saprolite	Basalt
Major Oxides					
SiO	28.89	10.89	11.60	37.60	49.80
A1 0	22.68	54.40	53.90	30.80	27.80
23 Fe 0	40.08	6.00	8.00	4.10	9.80
23 Ti0	3.58	3.42	2.90	4.80	3.60
2 MnO	.38	.03	.02	.01	T
2 Ca0	.02	.60	. 42	. 32	1.02
MgO	1.16	. 92	.76	.10	1.00
K 0 2	.03	.64	.54	.08	.90
Na 0 2	.05	.41	.38	1	.80
P 0 2 5	.08	.72	T	. 18	.34
CÔ j	.18	1.00	1.14	.44	1.96
но 2	10.18	20.08	20.21	21.90	4.98
Total	107.31	99.11	99.87	100.33	102.00
Trace Elements			(in	ppn.)	
Ba	30	40	45	45	80
Cu	70	60	50	50	40
Rb	15	15	15	20	35
5r 7n	20	125	150	180	130
20 Ph	1 45	35	1 20	20 1	1 20
Nn	4J 80	70	50	30 A A	20
Cr	95	70	- 70	35	20
Ni	100	120	120	130	120
Co	Ī	Ī	Ĩ	Ť	ſ
u.	20	10	5	5	5
1	40	* v	v		

.

,

187

.

VARIATION OF MAJOR OXIDES IN THE LATERITE PROFILE AT WAMOTI (MOTI) VILLAGE, ABDASA TALUKA, KUTCH DISTRICT

188

•

VARIATION OF TRACE ELEMENTS IN THE LATERITE PROFILE

Table 45 NET GAINS AND LOSSES OF MAJOR OXIDES AND TRACE ELEMENTS BASED ON & CR-RETAINED MASS BALANCE HODEL ----Taluta ABDASA Village. WANOTI LST TYPE SECTION Bed rock thickness consumed to produce present thickness of the weathered profile . 180 m ******** 1.2-3.1a 3 1-3.7a 3 7-48 Depth 0-1 2m Box(Fer) Box(Fer) Box(Alu) B(Sap) Sorizon Remarks -93 75 -87 78 -93.34 \$10 -58.85 Overall loss throughout the profile. 2 A1 0 44 60 36 69 Top horizon of loss with three bottom -82 82 44.09 23 horizons of gains _____ -------76 09 Top horizon of gain with bottom depleted -82.50 -76.67 le 0 13 89 23 zones ----ti0 -79 00 -83 19 -88 23 -82 07 Overall loss throughout the profile. 2 Hn0 -2 ------------------------Overall loss throughout the profile. CaO -99 58 -83 19 -88.23 -82 07 -----Hg0 75.57 -73 71 -78.28 -94 28 Top horizon of gain with bottom depleted zones. -----_____ K () -99 29 -79 68 -82.85 -94 92 Overall loss throughout the profile. 2 ----_____ -86 84 Displays same mobility as E C. Na O -98 68 -83 35 -2 2 ***** ------------....... ***** P 0 -95.04 39 49 --69 74 Top and bottom horizons of depletion 25 with mid-profile gain Ba -92 10 -85.71 -83.92 -98 70 Overall loss throughout the profile. Cu 63 15 57 14 84.28 28.57 Overall gain with a maximum in the Box. -87.75 RЬ -90,97 -87.75 -67.34 Overall loss with mobility increasing higher in the profile. ----..... Sr -96.78 -72.52 67.03 20 87 Top Horizons of depletion with underlying zones of gain. Zn -------------------2b 52.63 50.00 57.14 Overall increase with a maximum in 14.28 the Box some. *******

	Ta	ble 46					
Abdasa Taluk	a X-	ray data		Box - Ferricrete			
Wamoti :-	LST	Type Secti	on				
2(0)	(d) Spacing (Ao)	Inte Observed Io	nsity X Calculated Ic	Remark			
25.10 26.40 26.80 27.90 28.60 36.40 36.40 37.50 39.20 40.00 41.60 44.00	3.5493 3.3752 3.3272 3.1974 3.1211 2.4895 2.4296 2.3978 2.2978 2.2541 2.1709 2.0579	7.00 7.00 12.50 10.50 4.00 15.50 11.00 22.00 4.00 9.00 8.00 14.50	31.82 31.82 56.82 47.73 18.18 70.46 50.00 100.00 18.18 40.91 36.36 65.91	Kaolinite Kaolinite Quartz Maghemite Gibbsite Lepidocrocite Diaspore Gibbsite Kaolinite Kaolinite Gibbsite Sphene			

-

٠

,

.

-

191

-

~
. 192

,

÷

	Tal	ble 47		
Abdasa Taluka	X-1	ray data	Box	- Alucrete
Wamoti :-	LST 1	Type Section)n	
2(0)	(d) Spacing (Ao)	Inte Observed Io	ensity X I Calculated Ic	Remark
12.40 14.50 18.30 20.60 24.90 25.40 26.60 26.90 28.20 29.50 36.70 37.20	7.138 6.0605 4.8464 4.3677 4.3115 3.5773 3.5073 3.3517 3.3114 3.1646 3.0279 2.4489 2.4166	4.00 10.00 98.00 11.00 5.00 3.50 7.00 1.50 2.00 6.00 1.50 4.00 6.00	4.08 10.20 100.00 11.22 5.10 3.57 7.14 1.53 2.04 6.12 1.53 4.08 6.12 5.12	Kaolinite Boehmite Gibbsite Gibbsite Kaolinite Anatase Quartz Quartz Boehmite Calcite Geothite Gibbsite
37.00 38.40 44.20 45.50 50.80 52.30	2.3043 2.3439 2.0492 1.9935 1.8037 1.7493	5.00 5.00 3.00 3.00 3.00 3.50	5.01 5.10 3.06 3.06 3.06 3.57	Anatase Boehmite Gibbsite Gibbsite Quartz Maghemetic

Ŧ.

, -

	Tat	le 48			
Abdasa Taluka	X-1	ay data		Box - Alucrete	
Wamoti :-	LST 1	ype Sectio	n		
2(0)	(d) Spacing (Ao)	Inte Observed Io	ensity X I Calculated Ic	Remark	
20.40 25.40 26.70 27.00 28.10 29.60 31.80 36.70 37.20 37.80 39.50 40.30 41.80	4.3529 3.5073 3.3387 3.3029 3.1724 3.997 3.0184 2.8135 2.4489 2.4166 2.3801 2.2814 2.2377 2.1612 2.4449	64.00 11.00 10.00 21.00 13.00 5.00 3.00 3.00 30.00 12.00 33.00 6.00 11.00 15.00	100.00 17.18 15.63 32.81 20.31 7.81 4.39 46.88 18.75 51.56 9.38 17.19 23.49	Kaolinite Anatase Gibbsite Gibbsite Bohemite Kaolinite Calcite Calcite Gibbsite Gibbsite Hematite Haghemite Gibbsite	
44.30 45.60 47.50 48.00 50.70 52.30	2.0440 1.9894 1.9143 1.8955 1.8008 1.7493	23.00 20.00 13.00 3.00 19.00 19.00	30.94 31.25 20.31 4.69 29.69 29.69	Gibbsite Kaolinite Kaolinite Quartz Gibbsite	

~

r

		Tab	le 49			
Abdasa	Taluka	X-1	ay data		B-Kaolinite	
Wamoti		lst 1	ype Sectio	0		
2(0)		(d) Spacing (Ao)	Inte Observed Io	nsity X Calculated Ic	Remark i	
	19.95 24.20 24.40 24.60 25.50	4.4509 3.6733 3.6437 3.614 3.4956	28.00 18.00 26.00 20.00 3.00	100.00 64.28 92.85 71.42 10.71	Kaolinite Kaolinite Goethite Kaolinite Maghemite	
	25.80 26.50 27.40 31.80 32.60	3.3634 3.2512 2.8135 2.7435	4.00 24.00 26.00 3.00 10.00	14.28 85.71 92.85 10.71 35.71	Nontroille Naghemite Nontronite Calcite Maghemite	
	33.90 34.10 34.50 35.50 39.40	2.6412 2.6261 2.5966 2.5284 2.2842	11.00 9.00 10.00 11.00 8.00	39.28 32.14 35.71 39.28 28.57	Nontronite Kaolinite Anatase	
	39.80 40.50 40.70 45.60 46.90	2.2622 2.2247 2.2142 1.9894 1.9374	4.00 6.00 6.00 5.00 10.00	14.28 21.42 21.42 17.85 35.71	Goethite Beidellite Kaolinite Kaolinite Kaolinite	

-

.

I

•

	Tab	le 50			
Abdasa Taluka	X-r	ay data	C ·	- Basalt	
Wamoti :-	LST T	ype Sectio	n		****
2(0)	(d) Spacing (Ao)	Inte Observed	nsity X Calculated	Remark	
		Io	Ic		
18.60	4.7647	84.00	100.00	Quartz	
19.90	4.4563	42.00	50.00	Quartz	
21.30	4.1665	10.00	11.90	Nontronite	
22.20	3.9907	9.00	10.70	Diaspore	
23.80	3.7344	8.00	9.50	Ilmenite	
26.60	3.3409	6.00	7.10	Quartz	
27.50	3.2396	4.00	4.76	Sphene	
28.00	3.1826	23.00	24.38	Kaghemite	
28.60	- 3.1174	6.00	7.14	Maghemite	
29.00	3.0753	25.00	29.76	Nontronite	
31.00	2.8813	8.00	9.52	Ilmenite	
32.60	2.7435	9.00	10.70	Maghemite	
33.40	2.6796	15.00	17.85	Sphene	
34.50	2.596	10.00	11.90		
35.10	2,5536	8.00	9.50	Rutile	
38.10	2.4851	6.00	7.10	Lepidocrocite	
38.10	2.3021	18.00	21.40	Augite	
39.20	2.2954	16.00	19.05	Rutile	
40.20	2.2379	18.00	19.05	Naghemite	

•

•

٢

ŧ

ı

X-RAY DIFFRACTION TRACES OF VARIOUS HORIZONS OF LATERITIC PROFILE AT WAMOTI (ABDASA TALUKA) LST Type Section.

.

Depth in meter	Horizon	Dominating minerals	
0 -1. 2m	Box - Ferricrete	Kaolinite Maghemite Lepidocrocite Goethite Gibbsite Quartz Sphene	
I.2-3.Im	Box- Alucrete	Gibbsite Bohemite Yaolinite Quartz Goethite Maghemite Anatase Galcite	14.5. 10.3 14.5 10.3 14.5 10.3 14.5 10.3
3 .I-3.7 m	Box - Alucrete	Gibbsite Kaolinite Bohemite Calcite Anatase Maghemite	
3 .7-4 m	B- Yaolinite	Kaolinite Nontronite Beidellite Maghemite Goethite Anatase Calcite	
4— m	C-Basal\$	Maghemite Nontronite Lepidocrocite Quartz Sphene Rutile Ilmenite	M.M.M.

FIG:83

. 195

-

Table 51

Abdasa Taluka

ĩ

Hamoti (Nani) --

Depth	0-1.6m	1.6m-
Horizon	Box	Box
	Ferricrete	Alucrete
SiO	24.83	19.40
AL O	19.56	48.60
23 Fe 0	36.20	2.38
2 3 Ti0	3.66	3.14
2 Mn0	.90	.02
2 Ca0	.01	.86
NgO K O	1.78	. 20
2	05	48
2	.00	. 10
PO 25	.22	T
C0	.76	.89
HŐ	12.03	32.89
2		-19 at 10 it is in it is a at at at a a a
Total	100.01	109.16
	In	percent

•

-

,

Table 52

e

Adbasa Taluka

Khappar :-

¥

Khappar :-				
Depth	0-0.9m	0-9-1.6 n	1.6n-2.2n	2.2 n -
Horizon	Box	Box	Box	Box
	Ferricrete	Ferricrete	Alucrete	Alucrete
SiO	16.83	15.83	20.16	26.84
A1 0	21.33	18.56	44.90	36.76
Z 3 Fe O	38.29	39.21	9.00	19.82
Z 3 Ti0	3.32	3.70	2.90	2.60
2 Mn0	. 28	.90	.02	.02
2 CaO	.01	.01	. 42	.36
Ng0	.15	.78	.76	.68
L U 2	.02	.01	. 54	. 46
Na O 2	.02	.03	. 38	. 32
PO	.04	T	ĩ	.64
25	91	78	1 14	1.04
2	.41	-10	1-14	1.04
H 0 2	20.14	20.30	20.21	11.02
Total	100.64	100.39	100.43	100.56
			In p	ercent

-

-

.

• ~

.

Tab	le	53		
		 	-	

Abdasa Taluka

		 -	 	-	-	-	
•	•						

1

Boha :-			
Depth	0-1.2 n	1.2m-1.6m	1.6∎-
Horizon	Box	В	C
	Alucrete	Saprolite	Trap basalt
SiO	14.96	40.50	46.85
AL 0 -	50.70	12.07	21.04
Z S Fe O	14.95	16.00	16.88
Z 3 Tio	3.15	.98	.29
Z Mn0	.02	. 33	.11
2 Ca0	1.21	1.00	. 29
MgO	.22	6.13	4.01
K 0 2	.24	.01	.01
Na O	T	.04	.11
PÖ	.16	.06	.02
دم د0	1.76	2.88	.87
2 K 0 2	13.20	20.06	9.87
Total	100.57	100.06	100.35
		In pe	ercent

,

٠

-

.

-

.

~

¢

VARIATION OF MAJOR OXIDES IN THE LATERITE PROFILE AT BOHA VILLAGE, ABDASA TALUKA, KUTCH DISTRICT.

FIG 84

Table 54

Nakhatrana Taluka

Thomas	•

•

-: 150504		**********	
Depth	0-0.9m	0.9 n-1.4 n	1.4 n-2.1n
Horizon	Box	Box	Box
	Ferricrete	Ferricrete	Ferricrete
SiO	38.11	28.11	27.97
A1 0	12.57	11.42	11.96
23 Fe 0	39.22	40.42	40.30
2 3 Ti0	2.68	1.68	1.80
2 KnO	.55	. 40	.50
2 Ca0	.06	. 12	.09
MgO	4.53	3.47	4.02
K 0 2	.02	.04	.05
Na O	.06	.07	.09
P 0 2 5	. 14	. 25	. 18
2 3 C0	6.00	.98	.92
2 H 0 2	.00	10.12	11.02
Total	103.94	97.08	98.88
** ** ** ** ** ** ** ** ** ** ** ** **	4m 10m 401 400 400 500 500 400 400 400 400 400 400	In p	ercent

.

Table 55

Lakhpat Taluka

Jhulrai :-

			د هيا کاه ديده مده هند دي دي دي چي چي چي وي .		• 冬 美 永 章 美 筆 電 電 考 考 者 書 物 的 物 者 者 者 者 者 者 者 者 者 者 者 者 者 者 有 有 有 有 有
Depth	0-0.6m	0.6m-0:9m	0.9m-2.4m	2.4n-	
	Ferricrete	Ferricrete	Alucrete	Saprolite Bentonite	
510	30.11	28.96	24.80	28.60	
2	9.57	10.92	52.50	47.80	
23	40.21	40.96	3.86	4.01	
23 i0 2	2.59	1.97	2.08	2.98	
n0	.67	.04	.03	.03	
a0	.05	5.21	. 42	. 38	
gU 0	.02	.42 .21	. 29	.20	
2 a ()	.05	.41	.52	.61	
2 0	.12	.21	. 26	. 19	
25	1.10	1.97	2.03	1.80	
2 [0 2	13.09	12.62	13.69	14.00	
lotal	98.22	103.90	100.78	100.89	
	*****	alle app pop dan sale alle app ann sale app ann app	In	percent	

`

.

•

-

1

.

-

.

~

.

.

Table 56

-	•••	-	 **	•

Lakhpat Taluka

I

-

Saran :-	-					
Depth	0~0.9 m	0.9 m -1.2m	1.2m-2.8m	2.8m-3.6m	3.6n-	
Horizon	Box	Box	Box	Box	B	
***********	Ferricrete	Ferricrete	Alucrete	Alucrete	Saprolite Bentonite	
SiO	13.10	10.90	2.59	4.69	38.80	
Al 0 2 3	18.80	15.40	52.16	51.06	31.70	
Fe 0 2 3	39.50	44.06	11.04	12.64	10.80	
Ti0 2	4.11	2.11	2.01	2.97	4.20	
MnO 2	. 59	. 62	.71	1.02	.01	
CaO	. 62	.70	.61	. 63	.27	
Mg()	.00	.09	1.02	1.09	.31	
L 0 2	.07	. 69	1.03	.97	. 13	
Na () 2	.00	.00	.00	.00	.14	
P 0 2 5	.21	.26	.30	.50	.04 -	
CO 2	1.65	1.42	1.32	1.52	3.45	
H O 2	21.97	21.97	31.60	30.58	10.45	
Total	100.62	98.22	104.39	107.65	100.30	
			In 1	ercent		

,

1

-

Table	57

-

Lakhpat Taluka

ſ

.

-

Dakapat laluk	d 	•	
Samajirao :-		,	
Depth	0-1.6 m	1.6 m -	
Horizon	Box	Box	· · · · · · · · · · · · · · · · · · ·
den en en en promo de en els de en en tra	Ferricrete	Ferricrete	, .
S10	18.11	20.10	
41 0 2 3	12.57	12.92	, ,
Fe 0	39.22	38.92	
Tio	1.68	1.42	
Kn0 2	. 55	.72	
CaO	.21	.32	
ligi) I A	.53	.54	
L U 9	.03	.09	
Na 0 2	.97	1.03	
P 0 2 5	.86	1.01	
2	1.69	1.69	
H 0 2	19.97	18.67	×
Total	97.05	97.93	
	In	percent	

÷

.

•

-

Table 58

Lakhpat Taluka

r

Rato Talov :-

Depth	0-0.4 m	0.4-0.9 =	0.9-2. 4 m	2.4-3 n	3 n
Horizon	Box	Box	Box	B	C
	Ferricrete	ferricrete	Alucrete	Saprolite	Trap basalt

			Bentonite	
20.10	20.25	22.70	26.86	40.28
17.62	18.92	51.80	39.88	20.71
30.29	28.19	3.00	13.80	19.89
3.21	2.15	3.89	3.62	1.90
.48	.59	.01	.20	.09
1.89	1.98	.96 84	.84	.52
1.70	1.20	.50	. 38	.24
1.16	1.24	. 47	. 42	.41
.46	. 32	.36	. 29	.26
1.04	1.40 -	1.02	1.03	. 89
19.96	19.62	15.00	11.92	15.01
99.63	97.82	100.55	100.15	100.66
	20.10 17.62 30.29 3.21 .48 1.89 1.72 1.70 1.18 .46 1.04 19.96 99.63	20.10 20.25 17.62 18.92 30.29 28.19 3.21 2.15 .48 .59 1.89 1.98 1.72 1.96 1.70 1.20 1.16 1.24 .46 .32 1.04 1.40 19.96 19.62 99.63 97.82	20.10 20.25 22.70 17.62 18.92 51.80 30.29 28.19 3.00 3.21 2.15 3.69 .48 .59 .01 1.89 1.98 .96 1.72 1.96 .84 1.70 1.20 .50 1.16 1.24 .47 .46 .32 .36 1.04 1.40 1.02 19.96 19.62 15.00	20.10 20.25 22.70 26.86 17.62 18.92 51.80 39.88 30.29 28.19 3.00 13.80 3.21 2.15 3.89 3.62 .48 .59 .01 .20 1.89 1.98 .96 .84 1.72 1.96 .84 .91 1.70 1.20 .50 .38 1.18 1.24 .47 .42 .46 .32 .36 .29 1.04 1.40 1.02 1.03 19.96 19.62 15.00 11.92

.

VARITION OF MAJOR OXIDES IN THE LATERITE PROFILE AT RATO TALAV VILLAGE, LAKHPAT TALUKA, KUTCH DISTRICT

FIG. 8:5

Table 59

.

t

Lakhpat Taluka				(1	n percent)		
Nata-No-Nadh.	-						
Depth	0.0 n -0.4 n	0.4n-1.1n	1.1m-1.8m	1.8 n-2.4 n	2.4 m -4.2m	4.2 n -	
Horizon	Box	Box	B	B	B	C	
	Ferricrete	Ferricrete	Saprolite Alucrete	Saprolite Kaolinite	Saprolite Bentonite	Basalt	
Major Oxides		********		*****		*****	
SiO	29.10	29.25	35.25	38.25	46.25	51.48	
AL 0	16.62	14.92	22.68	20.90	18.23	16.02	
2 3 Fe 0 2 3	32.89	30.79	15.89	14.65	9.62	6.44	
Tio	3.21	2.15	1.98	1.90	1.72	1.34	
Mn0 2	.48	.59	.68	. 59	. 69	. 38	
CaO	1.89	1.98	2.74	3.68	4.90	5.60	
NgO	1.72	1.96	2.48	2.92	3.60	4.80	
KO	1.90	1.20	2.48	2.92	Ĭ.60	1.80	
2			•				
Na 0 2	1.16	1.24	1.46	1.62	-	• ·	
P 0 2 5	-	-	-	-	-	-	
C0 2	-	-	-	-	-	-	
H 0 2	11.18	15.28	14.72	13.64	11.90	10.20	
Total	100.15	99.36	99.24	99.56	100.41	100.34	
Trace Elements	_			an ang ng	(i	n ppm.)	*************
Ba	20	20	20	40	40	 R0	
Cu	80	70	60	60	80	40	
Rb	5	10	10	20	20	20	
Sr	25	30	30	45	45	55	
Zn	50	45	45	40	40	30	
Pb	T	Ĩ	T	ĩ	T	T	-
lin .	60	50	45	45	45	25	
UP	90	80	80	80	80	80	
81 ()_	50	70	80	80	80	100	
ν0 π	10	20	20	20	20	30	
¥ 7_	ZU	5	5	5	5	T	
45	4V	10	0	5	9	I	

VARIATION OF MAJOR OXIDES IN THE LATERITE PROFILE AT MATA-NO-MADH VILLAGE, LAKHPATH TALUKA, 208 KUTCH DISTRICT.

FIG. 86

FIG. 87

Table 60

NRT	GA	INS	AND	LOSSES	01	HAJOI	R OXIDES	S AND	TRACE	ELEMENTS
BAS	ED	ON	á Cr	-BETAIN	ED	MASS	BALANCE	HODE	6.	

.............

Taluka LAIHPAT Village. MATA-HO-MADH HST TYPE SECTION Bed rock thickness consumed to produce present thickness of

the weathered profile . 160 m 0-0 4m 0 4-1.1m 1 1-1.8m 1 8-2 4m 2.4-4.2.m Depth ----Box(Fer) Box(Fer) Box(Alu) B(Sap) B(Sap) Bemarks Horizon _____ -----10 12 Lost throughout the profile. -49 73 -43.15 -31 50 -25 67 SiO 2 Maximum mobility in the Box horizon 3 74 -6 86 41 57 30 46 13 79 Top horizon of loss fallowed by a zone A1 0 23 of gain, with a maximum in the Box(Alu) horizon ______ 353 96 378 10 146 73 127 48 49 37 Gains throughout the profile. Re O 23 Increase with top horizon gain maximum higher in the profile. **** 112 93 60 44 47 76 41 79 28 35 Gains throughout the profile with a Ti0 2 maximum in the top horizons 8n0 12 28 55 26 78.94 55 26 81 57 Gains throughout the profile, with 2 mid-profile Box(Alu) and bottom Beep maximum -55 71 -34 28 -12 50 Lost throughout the profile, with an -70 00 -64 64 Caû increase in mobility higher in the profile -------MgO -68 14 -59 16 -48.33 -39.16 -25 00 Shows the same mobility as CaO ******* -10 -6 17 -33 33 37 77 62 22 -11 11 Top and bottom horizons of losses with 2 mid-profile gains with a maximum in the Beap (lith) horizon. -Ma O ---. 2 ------ΡO --. . 25 **** -70.37 -66.66 -66.66 -33.33 -33 33 Losses throughout the profile increasing Ba higher in the profile Gains throughout with a maximum in the 77,71 Cu 75.00 50.00 50.00 50.00 Box borizon -77 77 -50.00 --Rh -50.00 Losses throughout with a mobility maximum in the top borizons.

Sr	-59.59	-45.45	-45 45	-18 18	-18 18	Increase in losses higher in the profile.
Zs	-48 14	-71 42	-71 42	-52 38	-52 38	Lost throughout the profile with a mid-profile mobility maxima.
Pb	*	*********	*			
Ho.	113 33	100 00	80.00	80 00	80 00	Increasing gains higher in the profile.
r		-	-	-		
1	-55.55	-30 00	-20.00	-20 00	-20 00	Lost throughout the profile with a mobility maximum in the top horizon
6	-70 37	-33 33	-33 33	-33 33	-33 33	Hobility same as Ni

•

	Tal	ble 61			
Lakhpat Taluka	X-1	ray data		Box - Ferricrete	
Nata - no - Nadh	HST :	Type Sectio	n		
2 (0)	(d) Spacing (Ao)	Inten Observed Io	sity X Calculated Ic	Remark	
25.10 26.40 26.80 27.90 28.60 36.40 37.00 37.50 39.20 40.00 41.60 44.00	3.5493 3.3752 3.3272 3.1974 3.1211 2.4695 2.4296 2.3978 2.2978 2.2541 2.1709 2.0579 2.0019	$\begin{array}{c} 7.00\\ 7.00\\ 12.50\\ 10.50\\ 4.00\\ 15.50\\ 11.00\\ 22.00\\ 4.00\\ 9.00\\ 8.00\\ 14.50\\ 12.00\end{array}$	31.82 31.82 56.82 47.73 18.18 70.46 50.00 100.00 18.18 40.91 36.36 65.91	Kaolinite Kaolinite Quartz Maghemite Gibbsite Lepidocrocite Diaspore Gibbsite Kaolinite Kaolinite Gibbsite Sphene	-

.

	Ta	ble 62			
Lakhpat Taluka	X-r:	ay data		Box - Alucrete	
Nata - no - Nadi	HST T	ype Section	ł		
2 (0)	(d) Spacing (Ao)	Inten Observed	sity X Calculated	Benark	
		Io	Ic		
20.40	4.3529	64.00	100.00	Kaolinite	******
25.40	3.5073	11.00	17.18	Anatase	
26.70	3.3387	10.00	15.63	Gibbsite	
27.00	3.3029	21.00	32.81	Gibbsite	
28.10	3.1724	13.00	20.31	Boehnite	
28.80	3.0997	5.00	7.81	Kaolinite	
29.60	3.0184	3.00	4.69	Calcite	
31.80	2.8135	3.00	4.69	Calcite	
36.70	2.4489	30.00	46.87	Gibbsite	
37.20	2.4166	12.00	18.75	Gibbsite	
37.80	2.3801	33.00	51.56	Gibbsite	
39.50	2.2814	6.00	9.38	Hematite	
40.30	2.2377	11.00	17.19	Maghenite	
41.80	2.1612	15.00	23.49	Gibbsite	
44.30	2.0448	23.00	35.94	Gibbsite	
45.60	1.9894	20.00	31.25	Kaolinite	
47.50	1.9143	13.00	20.31	Kaolinite	
48.00	1.8955	3.00	4.69	Kaolinite	
50.70	1.8008	19.00	20.69	Quartz	
52.50	1.7493	19.00	29.69	Gibbsite	

•

	Tai	ble 63			
Lakhpat Taluka	X-r	ay data		B - Kaolinite	
Nata - no - Nadi	h HST T	ype Section			-
2 (0)	(d) Spacing (Ao)	Inten Observed Io	sity X Calculated Ic	Remark i	r 44 - 44 - 64
19.90	4.4509	22.00	50.00	Kaolinite	
20.40	4.3529	39.00	88.64	Kaolinite	
21.40	4.1513	37.00	84.09	Kaolinite	
23.20	3.8334	18.00	40.91	Kaolinite	
23.80	3.7697	10.00	22.73	Maghemite	
25.00	3.5624	44.00	100.00	Maghemite	
25.50	3.4956	30.00	68.18	Naghemite	
26.50	3.3634	10.00	22.73	Haghemite	
28.80	3.0997	2.00	4.55	Quartz	
31.80	2.8153	6.00	12.63	Calcite	
35.10	2.556	18.00	40.91	Kaolinite	
35.50	2.5284	14.00	31.82	Kaolinite	
36.00	2.4948	20.00	45.45	Kaolinite	
37.90	2.3779	9.00	20.45	Kaolinite	
38.50	2.3354	32.00	72.72	Kaolinite	
39.30	2.2923	18.00	40.91	Ånatase	
45.60	1.9894	9.00	20.45	Haghemite	
46.90	1.9374	2.00	4.55	Kaolinite	
48.00	1.8955	4.00	9.09	Kaolinite	
49.50	1.8441	3.00	6.82	Esolinite	
51.10	1.7874	2.00	4.55	Eaclinite	
55.10	1.668	13.00	29.55	Kaolinite	

-

ĩ

.

	Ta	ible 64		
Lakhpat Taluka	X-ra	ıy data	H	B - Rentonite
Nata - no - Na	dh HST Tyr	e Section	-	
2 (0)	(d) Spacing (Ao)	Inter Observed Io	nsity X Calculated Ic	Remark d
19.80	4.4789	40.00	86.96	Nontronite-Hontm.
20.50	4.3272	12.00	26.00	Beidellite
21.20	4.1859	9.00	29.57	Goethite
24.20	3.6733	9.00	19.57	Illite-Montm.
26.60	3.3409	46.00	100.00	Maghenite
27.50	4.2396	9.00	19.70	Maghemite
28.60	3.1174	4.00	8.70	Nontronite
29.40	3.0344	9.00	19.70	Nontronite
30.60	2.9181	10.00	21.74	Montmorillonite
31.50	2.8367	6.00	13.04	Ilmenite
32.00	2.7935	8.00	17.39	Illite-Montm.
33.20	2.6913	8.00	17.39	Nontronite
34.50	2,593	8.00	17.39	Hematite
34.80	2.5749	9.00	19.70	Montmorillonite
35.20	2.5431	10.00	21.74	Beidellite
35.80	2.505	7.00	15.21	Hematite

N N

214

-

-

	Ta	ble 65		
Lakhpat Taluka	X-r	ay dáta	C	3 - Basalt
Mata - no - Mad	h HST T	ype Section	-	
2 (0)	(d) Spacing (Ac)	Inter Observed Io	nsity X Calculated Ic	Remark
18.60	4.7647	79.00	100.00	Quartz
19.90	4.4763	12.00	15.19	Quartz
20.50	4.3272	8.00	7.60	Haghemite
21.30	4.1865	8.00	1.10	Labradorite
22.30	3.9907	4.00	5.06	Diaspore
23.80	3.7344	11.00	13.92	Ilmenite
24.10	3.6884	13.00	16.46	Augite
24.60	3.6145	3.00	3.79	Augite
26.50	3.3409	9.00	11.39	Quartz
27.00	3.2984	9.00	11.39	Augite
27.50	3.2396	9.00	11.39	Sphene
28.00	3.1826	4.00	5.06	Naghemite
28.60	3.1174	4.00	5.06	Haghemite
29.00	3.0753	4.00	5.06	
31.00	2.8813	7.00	8.86	Ilmenite
32.60	2.7435	6.00	7.60	Haghemite
33.90	2.6412	8.00	7.60	Sphene
34.50	2.596	8.00	10.10	Y Contract of the second se
35.10	2.5536	8.00	10.10	Rutile
36.20	2.4785	8.00	10.10	Lepidocrocite
38.10	2.5561	21.00	26.58	Augite
	==********			2、1、19、19、19、19、19、19、19、19、19、19、19、19、1

.

r

,

,

X-RAY DIFFRACTION TRACES OF VARIOUS HORIZONS OF LATERITIC 218 PROFILE AT MATA - NO -MADH (LAKHPAT TALUKA) HST Type Section

Depth in meter	Horizon	Dominating mínerals	
0-I.Im	Box- Ferricrete	Goethite Maghemite Lepidocrocite Kaolinite Gibbsite Diaspore Sphene	
I.I-I.8m	Box- Alucrete	Gibbsite Kaolinite Bohemite Calcite Hematite Maghemite Quartz	M. H. S.
I.8-2.4m	B- Kaolinite	Kaolinite Maghemite Calcite Quartz Anatase	
r 2.4-4.2m	B- Bentonite	Nontronite Montmorillonite Beidellite Hematite	
4.2 - m	C-Basalt	Augite Labradorite Maghemite Lepidocrocite Ilmemite Quartz Rutile Sphene	6 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2

.

FIG. 88

Tab	le	66	

Lakhpat	Taluka
---------	--------

Mata-no-Madh --

nq	va-	π0.	-ngan	•-

.

ſ

Depth	0-0.3 m	0-3-0.9 🔳	0.9-1.4 n	1.4-3.2 m	3.2-4.3 n	4.3 m
Horizon	Box	Box	B	B	B	C
	Ferricrete	Ferricrete	Saprolite Litho n arge	Saprolite Bentonite	Saprolite Bentonite	Trap basalt
SiO	34.08	35.88	37.88	40.88	46.88	52.09
AL O	17.74	18.68	24.89	22.68	20.80	18.54
Fe ()	26.68	25.40	12.70	11.68	8.12	3.78
Tio	2.10	1.94	1.89	1.72	1.58	1.96
Mn0 2	1.96	1.78	1.92	1.12	1.98	.07
CaO Nafi	2.64	2.92	3.12	3.64	3.81	4.92
K O	.68	.98	1.00	1.24	1.42	4.90
2 Na () 2	1.12	1.24	1.48	1.64	1.89	2.10
P 0 2 5	-	-	-	-	-	-
	-	-	-	-	-	-
H 0 2	10.42	9.49	12.68	11.10	10.70	9.89
Total	99.14	100.20	100.47	99.38	101.28	99.98
				In p	ercent	**

-

VARIATION OF MAJOR OXIDES IN THE LATERITE PROFILE18 AT MATA-NO-MADH VILLAGE, LAKHPAT TALUKA, KUTCH DISTRICT

FIG 89

Table	67
TITE TA	

Lakhpat Taluk	(a	
Fulra :-		
Depth	0-0.3 ∎	0.3 n
Horizon	Box	Box
	Ferricrete	Alucrete
S10	25.73	10.42
2	18 AR	50 60
23	20.10	2.00
fe 0 2 3	38.46	3.88
Ti0 2	3.56	3.89
MnO	1.08	.04
CaO	.15	.82
NgO K O	4.12 .01	1.80 .70
2 Na 0	.03	T
2 P 0	05	RA
25		.07
2	2.17	. 83
H O 2	10.12	26.80
Total	101.94	100.66
ann	In	percent
	#1 ***************	

•

,

DISCUSSION ON THE MOBILITIES OF VARIOUS MAJOR OXIDES AND TRACE ELEMENTS IN HST AND LST SECTIONS BASED ON CR-RETAINED MASS BALANCE MODELS

This discussion has been divided into two parts viz.

i) Variation of mobilities in HST, and (ii) in LST sections, in order to bring to light variations, if any.

HST Section : (SiO /Al O /Fe O /TiO) 2 2 3 2 3 2 The two HST sections selected are from Hamla in Mandvi taluka and Mata-no-Madh in Lakhpat taluka. These two sections are similar in the sense, that there are 5 units present in them, viz.

```
Ferricrete (laterite))

Box (Fe,Al)

Alucrete (bauxite)

Saprolite lithomarge)

Basalt

C.
```

From the Cr-retained mass balance models, it can be seen that 160 m of rock thickness was consumed to produce the present thickness of the weathered profile in both cases.

There is an overall loss of this oxide throughout the Si0 The increased profile, with maximum mobility in the Box zone. mobility of SiO in the Box zone can be indicative of freer drainage conditions. Further at Mata-no-Madh and Hamla, whereas there are gains shown by Al O and Fe O in the Box zone, SiO 23 2 3 2 shows depletion, indicative of an inverse relation to both of them.

Further, minimum mobility is observed in the near bottom horizon i.e. Bsap bentonite, indicative that quite a lot of silica must be going into the reconstitution of the neo-formed mineral assemblages, and that the drainage must have been sluggish in contrast to the freer drainage conditions in the upper horizons. According to Okamoto et. al. 1957, the presence of Si and Al in small amounts would cause immediate co-precipitation. This indicates that the removal of Si predates Al accumulation in the profiles. It could also mean that Si and Al are not both in true solution. If Al is for example, organically bound it could be simultaneously mobilised with Si in solution (Mefarlane, 1989).

Alo_: The behaviour of AlO in the two HST sections is not 23 anomalous. At Hamla there is an overall gain with a maxima in the Box (Al) horizon, whereas at Mata-no-Madh there is a zone of Box(Fe) overlying the Box(Al) zone showing depletion.

At Mata-no-Madh an overlying zone of depletion and top most horizon of minimum mobility, can be attributed to an overhead source of accumulation, which is logical as there is a land reduction of 160m. But such a conclusion cannot be made in the case of Hamla, where there must have been some local conditions at play. McFarlane (1976) has stated that iron and alumina may behave antipathetically, increase of iron content being matched by decrease of alumina and vice-versa. This is not true for the two HST profiles under discussion.

Fe Q ______ The behaviour is generally the same in both profiles **23** with increases upwards in the profile, with the exception at Hamla where there is also a bottom horizon in B sap, of minor gain as compared to the mid - profile region. In accordance with laboratory leaching experiments, Fe and Al are inseparable, as is displayed by the two HST sections under discussion. This could be due to that adequate leaching and other organic conditions were not amenable for the leaching of either Fe or Al, during the formation and stabilization of these sections.

Tio ____: The behaviour of TiO is allied to Fe in all respects 2 with an increase higher in the profile. TiO has often been 2 regarded as an ideal resistant index mineral, but in Kutch, it is

clearly mobile, rendering it unfit for use in any mass-balance Anatase is secondary after ilimenite, yet at Hamla, studies. ilimenite is found in the top horizon and anatase in the middle There is a possibility that ilimenite could be present in one. the middle horizon, but beyond XRD detection limit. Its recognition in the top indicates that anatase in the top was leached out. This is another example of the surprising survival of primary forms in upper horizons, where secondary forms (theoretically more stable) are leached out. The presence of as a primary form in the basalt (ilimenate) argues for TiO 2 residual origin, as in the case of Hartman's (1955) study.

CaO. MgO. K O. Na O :

2 2 These are generally showing variable mobilities, with some cases of CaO, K O, Na O gains in various parts of the profile. The 2 2 overall pattern of increasing loss higher in the profile, and the gains shown at variable depths can be attributed to local factors, which remain inexplicable geochemically. Perhaps this pattern is a later overprint associated with increased aridity.

Trace Elements :

1

<u>Ba</u>: The two sections show inverse mobilities, with Hamla showing gains with a mid-profile maxima, and Mata-no-Madh showing increasing upward losses. This differential behaviours explicable in geochemical terms, and can be attributed to some local conditions which are not properly understood.

<u>Cu</u>: Both the profiles show an overall gain with a maxima in the upper most horizon. Its behaviour can be correlatable with that of Fe.

Rb: Upward increases in losses throughout both the profiles.

Sr : Overall loss in both the profiles.

Zn : At Mata-no-Madh, this element is lost throughout the profile with a mid-profile increase in mobility. But in Hamla, there is a top horizon depletion with an immediately underlying horizon of gain. From this an overhead source for mid-profile accumulation can be deduced.

<u>Pb</u>: While at Mata-no-Madh Pb is found completely lost from the profile, at Hamla increasing losses higher in the profile are seen.

Mn : Both profiles show overall gains with two-top horizon This behaviour is similar to iron. This points towards maxima. a general oxidizing environment (Burridge and Ahn, 1965). Further, although a high humus content of the surface material favours loss of manganese (Heintze, 1946) plants may under uptake circumstances be responsible for its and certain accumulation in the soil (Tiller, 1963). This is an indication the presence of vegetal cover during the process of of lateritization.

Ni : At Mata-no-Madh there is an overall loss with increasing mobility higher in the profile while at Hamla it is completely lost from the profile. The increased mobility in the upper horizons can be suggestive that nickel went into solution at the top, and was carried along with the circulating waters, but since neither magnesia and silica were stable in these profiles, no redeposition at Hamla and slight redeposition at Mata-no-Madh is seen (Fisher, 1958, de Vletter, 1955). This solution of nickel is a continuous process, wherein, ncikel, is lost due to the lack of silica and magnesia, along with the reduction of the landsurface (de Vletter, 1955).

<u>Co</u>: Co is found to be lost throughout the profile with maximum

mobility in the top horizon. This behaviour is akin to that of 224Ni.

 \underline{V} : In both the profiles, the behaviour of V differs, with complete losses in Mata-no-Madh, and overall gains with a midprofile maxima in Hamla. This behaviour could be again due to some local conditions which are not understood.

Zr : This element shows similar behaviour to that of V, with complete losses in Mata-no-Madh and overall gains with a midprofile maxima in Hamla. The behaviour of Zr is allied to titanium (Read, 1947). As Zr has been depleted as a primary resistant form in the parent rock, the mid-profile accumulation of Zr at Hamla, argues for a purely residual origin. LST profiles : There are two types of LST profiles with variation in the Box viz (a) with the alucrete sandwiched in between ferricrete, and the other (b) with the alucrete underlying the ferricrete and overlying either the saprolite or parent rock. 8 LST sections have been taken up for Cr-retained mass balance studies, out of which 7 are of the (a) type and 1 is of the (b) type.

Differential bed rock consumption is exhibited varying between 140m - 190m, in contrast to the constant consumption exhibited by the HST sections.

The behaviour of this oxide is consistent, as it is <u>S10</u> ____ mobile throughout the profile, with maximum mobility, in a majority of the cases, in the Box(Al) horizon. This indicates freer drainage conditions in the upper horizons. The accumulation of Fe O and Al O in the Box zone and the increased mobility of 23 23 Si0 in this horizon, indicates an antipathetic behaviour.

Al Q ____: Except at Satpar and Goniasar, Al O shows a consistent 23 23 behaviour, with a depleted zone overlying the Box (Al) horizon. Even at Satpar and Goniasar, though there is no overlying zone of

depletion, there is a quantum increase in Al 0 in the Box 225 23 (Al)zone, as compared to the overlying horizons. From this, an overhead source of accumulation accompanied by land reduction can be safely assumed. Further, since no zones of depletion are seen below the zone of enrichment, upward enrichment can be firmly ruled out.

Fe Q : Except at Satpar and Goniasar, Fe O shows a gain 23 maxima in the Box(Fe) horizon, with underlying zones of depletion or comparatively less gains indicating an antipathetic behaviour in comparision to Al. This can possibly be attributed to postincision leaching. At Satpar and Goniasar, the behaviour of Fe O is the same as that of Al O, showing gains. But even here, 23 the gains in the Box(Fe) horizon are considerably more than those of the underlying zones.

TiO _____ The behaviour of TiO in the LST profiles is erratic, 2 with two showing top horizon gains (Goniasar, Nundatar), one with a top and mid-profile gain (Balachor), one with a mid-profile gain maxima (Satpar), two showing bottom horizon gain maxima (Chiyasar, Naredi), and two showing losses throughout the profile with Wamoti showing downwards, and Nandra showing upwards increasing mobility. The variations could relate to preferred rutes if redeposition, reasons for which are not properly understood.

Ť

It is very difficult to draw any conclusions from this erratic behaviour. This is in contrast to the consistent behaviour, shown in the HST profiles.

CaO. MgO. K O. Na O: The overall pattern is that of losses, 2 2 increasing upwards in the profile, with some cases of certain horizons showing gains of CaO, MgO, K O, and Na O. This 2 2 anomalous behaviour can again be attributed to local conditions, which remain inexplicable. **PQ_____** This oxide shows variable behaviour, with some profiles 226 25 showing top-and mid-profile gains (Satpar, Chiyasar), one showing bottom horizon gain (Balachor), one showing top horizon (Goniasar), one showing mid-profile gains with top and bottom zones of depletion (Wamoti), Nundatar showing overall depletion with top and bottom horizons of maximum mobility, Naredi showing depletion with a bottom horizon of maximum mobility and Nandra also exhibiting overall losses with increasing mobility upwards.

Trace Elements

ŕ

Ba : The behaviour of this element is consistent, in the sense that it is either completely lost from the profile or shows losses with increasing mobility higher in the profile.

<u>Cu</u>: The behaviour is consistent with increases upwards, especially in the Box zone. A couple of profiles also show midprofile along with top-horizon gains.

<u>Rb</u>: The behaviour of this element is consistent, as it either shows complete losses from the profiles or increasing losses higher in the profile.

Sr : The behaviour resembles that of Rb.

Zn : Zn is either completely lost from the profile or shows upwards increasing losses with the exception of Nundatar where there are all round gains, with a mid-profile maximum.

<u>Pb</u>: This is another element which is either completely lost from the profile or shows upwards increasing losses. The exception is that of Wamoti where all round gains are seen with top-and mid-profile gain maximum. <u>Mn</u>: Mn shows consistent behaviour with all round gains with a maximum in the top horizons. This behaviour is similar to that shown in the two HST profiles. The same discussions are valid for the LST profiles.

Ni .: The behaviour is more or less consistent, with profiles showing complete losses, or losses increasing upwards. This is similar to the variation shown by the HST profiles. A reduction of landsurface (de Vletter, 1955) can be inferred. <u>Co :</u> With the sole exception at Satpar, where overall gains with a maximum in the top horizon is seen, in all profiles, Co is either completely lost or shows upwards increasing losses. This behaviour is similar to that shown by the HST profiles.

<u>V</u>: The behaviour is erratic with 5 profiles showing complete losses (Satpar, Chiyasar, Naredi, Nandra, Balachor). The other 3 profiles at Goniasar, Nundatar, and Wamoti, show overall gains with a maximum in the top horizon. This sort of behaviour can be attributed to local conditions.

<u>Zr</u>: 4 profiles at Satpar, Goniasar, Chiyasar, and Nundatar show complete loss from the profile. At Naredi, Nandra and Balachor there is overall gain with a maximum in the top horizons. At Wamoti, there is an overall gain, but there is a mid-profile maximum.