
CHAPTER VII

ABSOLUTES FOR NEARLY HAUSDORFF SPACES

The major factor behind the study of absolutes was the problem of 

characterizing the projective objects in the category of compact T2 spaces and 

continuous maps. In 1958, Gleason solved this problem by showing that the 

projective objects in the category of compact Hausdorff spaces and continuous 

maps are precisely the compact extremally disconnected spaces. Gleason 

constructed £Ias a part of the solution to this problem. The space EX is a 

zero-dimensional extremally disconnected Hausdorff space, which can be 

mapped to X by a perfect irreducible surjection kx. The space EX is unique in 

the sense that if Y is an extremally disconnected zero-dimensional space 

mapped to X by a perfect irreducible surjection then EX is homeomorphic to 

Y. The projective space EX together with the perfect irreducible mapping kx is 

called the projective cover of X. Further, Gleason observed that every 

completely regular Hausdorff space has a projective cover, which is unique upto 

homeomorphism and as consequence of this it follows that 0{EX) = E{ f$C).

Along the lines of Gleason’s construction we describe here the 

construction of projective cover {EX, hx), for a given compact nearly Hausdorff 

space X. Further, we study projective lift Ef:EX->EY and extension 

rf :rX —>rY of a dp-epimorphism f-.X->Y. We establish that E is a functor
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from the category of compact nearly Hausdorff spaces and dp-epimorphisms to 

the category of compact extremally disconnected Hausdorff spaces and 

continuous maps. We also establish that r is a functor form the category of 

nearly Hausdorff spaces with property it and dp-epimorphisms to the category 

of compact nearly Hausdorff spaces and continuous maps. We finally obtain 

commutativity of the functors E and r.

1. The functor r.

in this section we construct the extension rf :rX ->rY of a density 

preserving epimorphism f :X ~->Y and observe that the map associating to 

each nearly Hausdorff space X with property n, the nearly Hausdorff 

compactification rX [Chapter 6, Section 2] and to each density preserving 

epimorphism / from a nearly Hausdorff space X with property n to a nearly 

Hausdorff space Y with property n, the continuous map rf :rX ~>rY, is a 

covariant functor from the category of nearly Hausdorff spaces with property n 

and density preserving epimorphisms to the category of compact nearly 

Hausdorff spaces and continuous maps. We begin with the following result:

Theorem 7.1.1. Let X and Y be nearly Hausdorff spaces with property n and 

let f: X -> Y be a continuous dp-epimorphism. Then for a erX, the set 

fu (a) = {Clf(F) | Fean R(X)} generates a unique r - ultrafilter.
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Proof. Clearly <p £ fu(a) and X e f#(a). Next, we observe that f#(a) is closed 

under supersets. Let H e R(Y) be such that Clf(F) c H for some 

FeanR(X). Then JntClF cz IntClf~l(f(F)) c f"'(IntH) which implies 

Fc C//-1 (IntH). Since F ea and Fc Clf"1 (IntH), C// ‘ea. Therefore 

Clf (Clf 1 (IntH)) = H e f#(a). Suppose fit(a) generates r-ultrafilter rj.

We now prove uniqueness of this r-ultrafilter. If possible, suppose 

f#(a) generates two distinct r - ultrafilters say rj and Then 77 implies

there exists F e rj such that Fr\H = tp for some H e |. Since 77 and £ are 

r - ultrafilters generated by f# (a) we have

F = (]Cim) and H = (\Clf(Hj),
MM

where F<s HjeanR(X) for all i and j. Now, FnH = <p

^ n \ f m
f\ri(am)) n nr‘(«/wy))

V'=i y \m
<P

( n \ f m ^

m n nv<=i y km )
<p

which is a contradiction as P|F„ f)llj e a. Hence f#(a) generates unique
<=i M

r-ultrafilter.

Theorem 7.1.2. Let X and Y be neatly Hausdorff spaces with property n and 

let f:X-^Y be a continuous dp-epimorphism. Then the map rf:rX-*rY
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defined by rf(a) = a#, where a# is the unique r -uitrafilter generated by f#(a), 

is a continuous map.

Proof. Let a <=rX and let V = rY-F be a basic open set containing rf(a) = a*, 

where F e R(Y). Now a*erY~F implies a* eF. Thus there exists He a9

such that H r\F -<p. Suppose // = Q ), where Hj eanR(X) for all j.

Then Fn
f m \

(\ClfiHj) implies Clfl(IntF)n f]Hj
) Vi=i ) q>.

This proves Clf~\lntF)£a. Set K = Clf~\lntF). Then aerX-K and

rf(rX-K)c.rY~ F. Clearly U = rX-K is an open set containing a such that 

rf{U) c V. This proves continuity of rf.

Note. The map rf:rX->rY defined in Theorem 7.1.2 is unique. If possible, 

suppose there are two maps g':rX -»rY and g" :rX->rY such that the 

following diagram commutes: 

rX rY
T t
X —j-+ Y

Note that g'\x=f = g*\x. If possible suppose g'(a)*g'(d) for some aerX. 

Then there exists Heg'(a) such that HnF^cp for some Feg"(a). Since g' 

and g" are maps generated by ft(d), we have
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F = fiCim) and H = f\Clf(Hj),
/=i ■ >1

where Ff, H.eanR(X) for all i and j. Now observe that HnF = <p implies

( n \ ( m \

n nh,VM J V>=1 )
= <p.

which is a contradiction. This proves g' = g".

Lemma 7.1.3. Let X and Y be nearly Hausdorff spaces with property n and let 

f:X->Y and g:Y ->Z be density preserving epimorphisms. Then g° f is a 

density preserving map and r(g ° /) = rg ° rf.

Proof. Let a&rX. Suppose r(g° f)(a) = an where a* is the r - ultrafilter 

generated by(g°f)§(a) = {Cl(g° f)(F)|FeanR(X)}. Observe that 

Clg(Clf(F))c:Glg(f(F)),\f FzanR(X).

Since (g ° /)# generates! a unique r - ultrafilter, it follows that 

r(g0 /)(«) = (rg o rf)(a) for eajch a e rX.

Theorem 7.1.4. Let x(n) be the category of nearly Hausdorff spaces with 

property n and continuous density preserving epimorphisms and let xfR) be the 

category of compact nearly Hausdorff spaces and continuous maps. Then 

r: Wf7r)->.5Vf?0 assigning rX to X. and rf\rX^rY to f :X -+Y is a covariant 

functor.

Proof Follows from Theorem 7.1.2, Lemma 7.1.3 and the previous Note.



2. The functor E

Let X be a nearly Hausdorff space with property n. Then the Iliadis 

absolute E(rX) of the nearly Hausdorff compactification rX of the space X is 

defined to be the Stone space S(R(rX)) of the Boolean algebra R(rX). The 

elements of E(rX) are ultrafilters on R{rX). The set {A(A)\Ag R(rX)}, where 

A(A) — {a G E(rX) lAea}, forms a base for the topology on E(rX). The set 

E(rX) with this topology is a compact Hausdorff extremally disconnected space.

Lemma 7.2.1. Let X be a nearly Hausdorff space and let R(X) be the set of all 

regular closed subsets of X. Then R(X) is a complete Boolean algebra with the 

following operations:

(i) A < B if and only if Ac B.

(ii) vl =Cl(uIntA„).
a a

(iii) aAa=Cl(Int(nAa)).
a a

(iv) A' = Cl(X~A).

Proof. Follows along the lines of proof of Proposition 2.3 of [32].

We now include results about absolutes of nearly Hausdorff spaces. 

These can be proved along the lines of similar results proved for completely 

regular Hausdorff spaces.
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Theorem 7.2.2. Let X be a nearly Hausdorff space with property n. Then the 

lliadis absolute E{rX) is a compact Hausdorff extremally disconnected space. 

Further, the natural projection hx:E(rX)~>rX defined by hrX(cc) = ncc is a 

perfect irreducible 0 -continuous map.

Proof. Follows along the lines of Proof of Theorem 6.6(e) of [21].

Theorem 7.2.3. Let X be a compact nearly Hausdorff space and let (Y, f) be a 

pair consisting of a compact extremally disconnected zero-dimensional space Y 

and a perfect irreducible 0 - continuous surjection f from Y to X. Then there 

exists a homeomorphism h from EX to Y such that f °h = hx, where 

hx : EX X is the natural projection map.

Proof. Follows along the lines of proof of Theorem 6.7(a) of [21].

Following result has been proved in [8] for regular Hausdorff spaces. We 

include here details of the proof for nearly Hausdorff spaces.

Theorem 7.2.4. Let X and Y be compact nearly Hausdorff spaces and let 

f:X->Y be a density preserving epimorphism. Then the map Ef: EX ->EY 

sending a e EX to the fixed ultrafilter f#{a) = {Clf(F) \F e a} is the projective lift 

off.
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Proof. Clearly <pe f#(a) and X e /, (a). We now observe that /I (<z) is closed 

under supersets. Let H e F(7) be such that Clf(F)^H for some FeR(X). 

Then

Clf(F) c H

=> IntClf(F) c IntH

-> (C//(F)) c Intr' (Clf(F)) c /'' (MF)

IntF c f~x (IntH)

=> F c Clf (IntH).

Since F e a and F cClf '(IntH), we obtain Clf ~l(IntH)ea. Therefore 

CIf(Clfl(IntH)) = HefXa).

Further, if C(f(F), C//(//) e /#(«), then

P * C//(F a //) c Clf(F) a Clf(H)

Clf (F) a Clf (H) e fu(a).

This proves that /#(a) is closed under finite meet. We now establish maximality 

of /#(a). Suppose HaCI/(F)*<p for all Fe«, where //eF(T).Then 

F a Q/(F) * ^ for all F e a 

=> C(T1 (/«Ff> aF *<p for all F e «

=> Clf1 ( IntH) e a

=> // = Clf (Clf ~l (IntH)) e /, («).

This proves /;,(«) is an ultrafilter. We now prove continuity of the map Ef. Let

EY-X(A) be an open set containing Ef(a) = f#(a). Then Ag ft(a) which
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implies that there exists B in f#(a) such that AaB = p and hence 

IntA n IntB = <p.

Further, Bef#(a) implies that B = Of(D) for some D in a. Thus 

IntA n IntB = cp implies

IntA n Int(Clf (D)) = <p 

=> Of' {IntA) aD = (p.

Set K = Of-l(IntA). Then K e R(X) and Ef(EX-A(K))cEY-A(A). This 

proves continuity of the map Ef. The projective lift Ef is unique. Suppose 

g: EX -» EY is a continuous map such that the following diagram commutes

EX —y~±EY V

I 4 .
X ——>■ Y

If gthen there exists aeEX such that Ef (a) g(a). This implies there 

exists Of(H) e Ef(a) such that Of(H)AOf(F) = <p Tor some Of(F) e g(a). 

Therefore (p * IntOf(F a H) c IntOf(F) n IntOf(H) = <p- a contradiction.

Theorem 7.2.5. The map associating the compact, externally disconnected 

space EX to each compact nh-space X and a continuous map Ef: EX -> EY 

to each density presenting epimorphism f:X->Y, isa covariant functor from
* i * •

the category of compact nearly Hausdorff spaces and dp-epimorphisms to the 

category of compact externally disconnected Hausdorff spaces and continuous 

maps.
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Proof. Follows from the Theorem 7.2.4 and the preceding Note.

3. Commutativity of E and r.

In this section, we establish that E(rX) = r(EX), where X is a nearly 

Hausdorff space with property n. Let the space E(rX) and the map hrX be 

same as in Theorem 7.2.2. Define EX to be the subspace /$(X) of E(rX).

Lemma 7.3.1. The subspace EX defined above is dense in E(rX).

Proof If u is an open subset of E(rX) such that UnEX = <p then 

hrX(E(rX)-U) is a closed subset of rX containing X and hence 

hrX(E(rX)-U) = rX. Since hrX is irreducible, E(rX)-U = E(rX). This proves

u = (p.

Lemma 7.3.2. r(EX) = p{EX), where X is a nearly Hausdorff space with 

property n.

Proof The space EX being a dense subspace of the compact Hausdorff 

extremally disconnected space E(rX), is a regular extremally disconnected 

zero-dimensional space. Hence by Corollary 6.3.5 we have r(EX) = fi(EX). 

Theorem 7.3.3. Let the space E(rX) and the map hrX be as in Theorem 7.2.2. 

where X is a nearly Hausdorff space with property n and let EX = h~'x (X).
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Then the map h: EX -»X obtained by restricting hrX to EX, is a perfect 

irreducible 6-continuous surjection.

Proof. Follows as hrX is a perfect irreducible 0-continuous surjection and EX 

is dense in E(rX).

Note. (1) Recall that a nearly Hausdorff space with property n is a Hausdorff 

space. Thus by the uniqueness of the liiadis absolute for a Hausdorff space it 

follows that EX is the liiadis absolute of the nearly Hausdorff space X with 

property n.

(2) Since a nearly Hausdorff space with property n need not be regular, the map 

h in Theorem 7.3.3 need not be continuous.

Theorem 7.3.4. Let X be a nearly Hausdorff space with property n. Then 

r(EX) = E(rX).

Proof. As observed in Theorem 7.2.2, the space E(rX) is a compact Hausdorff 

space. Hence E(rX) is a Tychonoff space. The space EX being a dense 

subspace of extremaily disconnected space E(rX), is densely C*-embedded in 

E(rX). By the uniqueness of the Stone-Cech compactification of a Tychonoff 

space, it follows that /3(EX) = E{rX). Further by Theorem 7.3.2 we have 

r{EX) = (3{EX). This proves r(EX) = E{rX).

102



REFERENCES

1. F. G. Arenas, J. Dontchev, M. L, Puertas, Unification Approach to the 

separation axioms between T0 and completely Hausdorff, Acta. Math. 

Hungar, 86 (2000), 75-82.

2. E. Cech, On bicompact spaces, Ann. of Math. 38 (1937), 823-844.

3. E. Cech, Topological Spaces, John Wiley and Sons Ltd., 1966.

4. R. E. Chandler, Hausdorff Compactifications, Marcel Dekker, Inc., New 

York and Basel, 1976.

5. R. E. Chandler and G. D. Faulkner, Hausdorff Compactifications: A 

Retrospective, Handbook of the History of General Topology, 2 (1998), 

631-667.

6. A. Csaszar, lliadis Absolutes for Arbitrary Spaces, Acta. Math. Hungar, 

57 (1991), 111-120.

7. T. K. Das, A note on maps preserving regular closed sets, Indian J. 

Math., 35 (1993), 233-235.

8. T. K. Das, On Projective Lift and Orbit Spaces, Bull. Austral. Math. Soc., 

50 (1994), 445-449.

9. L. Gillman and M. Jerison, Rings of Continuous Functions, D. Van 

Nostrand Comp., Inc. Princeton, New Jersey, 1960.

10. K. Hardy and R. G. Woods, On c-realcompact spaces and locally 

bounded normal functions, Pacific J. Math., 43 (1972), 647-656.

11. S. lliadis, Absolutes of Hausdorff Spaces, Dokl. Akad. Nauk. SSSR 149 

(1963), 22-25, Soviet Math. Dokl., 4 (1963), 295-298.

103



12. V. Kannan and T. Thrivikraman, Lattices of Hausdorff Compactifications 

of a Locally Compact Space, Pacific J. Math., 57 (1975), 441-444.

13. J. Mack, M. Rayburn and R. G. Woods, Lattices of Topological 

Extensions, Trans. Amer. Math. Soc„ 189 (1974), 163-174.

14. K. D. Magill, N-Point Compactifications, Amer. Math. Monthly, 72 

(1965), 1075-1081.

15. K. D. Magill, Countable Compactifications, Canad. J. Math., 18 (1966), 

616-620.

16. K. D. Magill, A Note on Compactifications, Math. Zeitschr., 94 (1966), 

322-325.

17. K. D. Magill, The Lattice of Compactifications of a Locally Compact 

Space, Proc. London Math. Soc., 28 (1968), 231-244.

18. F. Mendivil, Function Algebras and the Lattice of Compactifications, 

Proc. Amer. Math. Soc., 127 (1999), 1863-1871.

19. H. Ohta, Topological Extension Properties and Projective Covers, 

Canad. J. Math., 34 (1982) 1255-1275.

20. V. Ponomarev, The Absolute of a Topological Space, Dokl. Akad. Nauk. 

SSSR 149 (1963), 26-29, Soviet Math. Dokl., 4 (1963), 299-302.

21. J. R. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff 

Spaces, Springer Verlag, 1988.

22. J. R. Porter and R. G. Woods, The Poset of Perfect Irreducible Images 

of a Space, Canad. J. Math., 41 (2) (1989), 213-233.

23. M. C. Rayburn, On Hausdorff Compactifications, Pacific J. Math., 44 

(1973), 707-714.

104



24. S. Shah and T. K. Das, A note on the Lattice of Density Preserving

Maps, Bull. Austral. Math. Soc. 72 (2005), 1-6.

25. S. Shah and T. K. Das, On Nearly Hausdorff Compactifications, Applied

General Topology, to appear.

26. T. Soundararajan, Weakly Hausdorff Spaces and the Cardinality of 

Topological Spaces, General Topology And its Relations to Modern 

Analysis and Algebra III, Proc. Conf. Kanpur, (1968), 301-306, Academi 

Prague 1971.

27. L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology, 

Springer Verlag, 1978.

28. M. H. Stone, Applications of the general theory of Boolean rings to 

general topology, Trans. Amer. Math. Soc., 41 (1937), 375-481.

29. T. Thrivikraman, On Compactifications of Tychonoff Spaces, Yokohama 

Math. J., 20(1972), 99-105.

30. T. Thrivikraman, On the Lattices of Compactifications, J. London Math. 

Soc., 4 (1972), 711-717.

31. J. Visliseni and J. Flaksmaier, Power and construction of the structure 

of all compact extensions of a completely regular space, Dokl. Akad. 

Nauk. SSSR, 165 (1965), 258-260. Translation: Soviet Math. Dokl., 6 

(1965), 1423-1425.

32. R. C. Walker, The Stone Cech Compactification, Springer Verlag, 1974.

33. S. Willard, General Topology, Addition Wesley Pub. Comp.,1970.

105


