
CHAPTER I

INTRODUCTION

A compactification of a topological space X is a compact space K 

together with an embedding e: X -> K such that e{X) is dense in K. We 

identify the space X with e(X) and consider X as a subspace of K. A 

compactification of a completely regular Hausdorff space X in which X is 

embedded in such a way that every bounded continuous real valued function 

on X extends continuously to the compactification is called the Stone-Cech 

compactification of X and is denoted by pX. This compactification px is a 

useful device to study relationships between topological characteristics of X 

and the algebraic structure of the set of all real valued continuous functions 

defined on X.

Once the term compactness was defined, it was a natural problem to 

try to “extend” a non-compact space to a compact one. The first general 

method was the one-point compactification due to Alexandroff (1924): For a 

locally compact Hausdorff space X, let <nX = Xu{00}, where 00 is a point 

outside X. Describe topology on <oX as follows: Each open set ofX is open 

in mX and set of the form mX-K, where K is a compact subset of X is 

open in mX. The resulting topological space coX, called as one-point 

compactification of X, is a compact Hausdorff space and contains X as a 

dense subspace.
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The year 1937 was an important year in the development of Topology 

and studying its relations with algebra. M. H. Stone [28] and E. Cech [2] 

published important papers, each providing independent proof of the 

existence of the compactification pX. Stone’s paper deals with the relations 

of algebra and topology through applications of Boolean rings. The most 

important result in this theory is the representation of Boolean algebras 

utilizing totally disconnected compact Hausdorff spaces. On the other hand, 

Cech showed the existence of the compactification pX by extending 

Tychonoffs idea of embedding a completely regular Hausdorff space X in a 

cube and used it to investigate properties of X by embedding X into pX. 

Cech gave an additional characterization of pX which is important in the 

construction of px via zero-sets as described in Gillman and Jerison 

[9, Chapter 6]. In 1938, Wallman gave a general method for constructing a 

7] compactification for any Tx space X. If X is a normal space then this 

compactification coincides with px.

Another interesting area in the theory of compactification is the study 

of remainder of a space: Let aX be a compactification of a Tychonoff space 

X. Then aX - X is called the remainder of X in aX. If X is a locally 

compact Hausdorff space then as observed earlier X has a one-point 

compactification a>X. Conversely, if X has a compactification aX with finite 

remainder then aX-X being finite, X is open in aX so that X is locally 

compact. Under what conditions a locally compact space X can have a 

compactification (besides roX) with a finite or countable remainder? Magill
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answered these natural questions in [14, 15, 16]. In [14], Magill gave the 

following characterization of spaces, having an N -point compactification.

Theorem 1.1. For some compactification aX of X, \aX-X\ = N if and only if 

X is locally compact and contains N non-empty, pairwise disjoint open sets

N
{G,[1 <i<N} such that K = X-\jGi is compact, but for each i, 1 <i<N,

M

KuGt is not compact.

From the above result it follows that if a space has an N -point 

compactification then it also has an M -point compactification for every 

positive integer M<N. Further, Magill observed that if a locally compact 

space X has the property that every compact subset of X is contained in a 

compact subset whose complement has at most N components then X has 

no M-point compactification for M>N. As a consequence of this result, 

we obtain that the space R of real numbers has no N -point compactification 

for N> 2. The only compactifications of R with finite remainder are 1-point 

and 2 -point compactifications.

A compactification aX of a Hausdorff space X is called a countable 

compactification if ccX- X is countable. Continuing the study of remainder of 

a space, Magill obtained the following characterization of those spaces which 

are locally compact and have countable compactifications [15].
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Theorem 1.2. For a locally compact space X the following are equivalent:

(i) fix -X has infinitely many components.

(ii) There is a compactification aX with aX-X infinite and totally 

disconnected.

(iii) For some compactification yX of X, \yX-X\ = K0.

(iv) For each neN, X has a compactification with n points in its remainder.

As a consequence of the above result one can obtain that no 

Euclidean n -space has a countable compactification. Further, given 

topological spaces X and K, can we always construct a compactification 

aX of X having K as a remainder? In [16], Magill proved that if X is a 

locally compact, normal space containing an infinite, discrete, closed subset 

then for any Peano space K, there exists a compactification ceX of X such 

that aX - X is homeomorphic to K.

Two compactifications aX and yX of a Tychonoff space X are Said 

to be equivalent if there exists a homeomorphism from aX to yX leaving the 

points of X fixed. We identify equivalent compactifications of X, and denote 

by K(X) the set of all such equivalence classes. The set K(X) is partially 

ordered by the relation “<” defined by aX <yX if there exists a continuous 

function from yX to aX which leaves the points of X fixed. In 1941, Lubben 

proved that for a Tychonoff space X, (K(X), <) is a complete upper semi

lattice. Lubben further characterized that K(X) is a complete lattice if and 

only if X is locally compact [4].
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Magill studied relation between K(X) and px-X. In [17], Magill 

proved the following:

Theorem 1.3. For locally compact non-compact Hausdorff spaces X and Y, 

the lattices K(X) and K(Y) are isomorphic if and only if pX - X and pY-Y

are homeomorphic.

In [17], Magill determined the automorphism groups of the lattice 

K(X). Magill proved that for a locally compact, non-compact space X, if

|px -X\ = 2 then A(K(X)), the automorphism group of the lattice K(X), is

the group consisting of one element. Further if \px -X\*2, then A(K(X)) is

isomorphic to the group (under composition) of all autohomeomorphism of 

PX-X. Magill further observed that every group can be regarded as the 

automorphism group of the lattice of all compactifications of a suitable locally 

compact space. In fact, given any group G, there exists a locally compact 

space X such that G is isomorphic to A(K(X)).

In [12], V. Kannan and T. Thrivikraman have also explored the relation 

between lattice structure of K{X) and the Stone- Cech remainder of a 

Tychonoff space X, In [29], Thrivikraman has described a method to get 

back the space pX~X from the K(X) when X is locally compact, and the 

compact sets of pX-X otherwise. We briefly describe Thrivikraman’s work 

done in £293 We recall the following definitions: For a Tychonoff space X, 

3a(X) denotes the family of partition classes of PX-X corresponding to
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the compactification aX of X. In fact, if q: pX -> aX is the natural quotient 

map then 3a(X) = {q~1(p)\peaX-X}. Further, if Kx, K2, .... KN are 

finitely many pairwise disjoint non-empty compact subsets of aX-X then a 

compactification a(X;Kx, K2,..., KN) of X is obtained by collapsing 

Kx, K2, KN to N distinct points.

We recall the following definitions.

Definition 1.4. An aX e K(X) is a dual atom in K(X) if there exist distinct 

points p and q in pX-X such that aX = a{X\{p, q}). On the other hand 

aX e K(X) is called an atom if oX = a(X;Kx, K2), where fiX-X = KxvK2.

For a completely regular Hausdorff space X, D denotes the set of all 

dual atoms of K{X).

Definition 1.5. A compactification aX of a space X is called a primary 

compactification if 3«(X) has precisely one non-singleton member.

Definition 1.6. Two distinct dual atoms of K(X) are said to overlap if there 

are precisely three dual atoms above their lattice intersection and a dual d is 

said to be hinged with the overlapping duals dx and d2 if d overlaps dx as 

well as d2 and there are precisely six duals in D greater than the lattice 

intersection of d, dx and d2.
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Definition 1.7. Let dx and d2 be two overlapping dual atoms of K{X). Then 

the set of all dual atoms hinged with d{ and d2 is called the point \dxd2\.

The set of all subsets of D of the form ]dxd2\ is denoted by F.

Definition 1.8. Let A be a subset of F with more than one element. Then

(i) a dual atom d is said to be determined by A if d occurs as the unique set 

intersection of two members of A.

(ii) A is said to be F-compact provided

(a) a d exists and
dsX

(b) X = jj, where 77 is the collection of all dual atoms > a d in K(X),
deX

where X is the collection of all duals determined by A.

Theorem 1.9. Let X be a Tychonoff space. Then there exists a bijection 

from F to fiX-X which carries F - compact sets to compact sets of 

fiX-X and vice versa. Further the complements of F- compact sets of F 

form a topology for F if and only if X is locally compact. In this case, F is 

homeomorphic to fiX-X.

Corollary 1.10. Let X and Y be Tychonoff spaces. If K(X) and K(Y) are 

isomorphic then there exists a bijection h from fiX-X to fiY-Y which 

preserves compact sets in both directions.
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Also, as a consequence of Theorem 1.9 Thrivikraman has obtained 

Magill’s result [Theorem 1.3]. In [29], Thrivikraman has also characterized 

some topological properties of fiX-X in terms of lattice theoretic properties 

of K(X) as follows:

Theorem 1.11. Let X be a locally compact space. Then,

(i) K(X) is distributive if and only if \fiX -X\ < 3.

(ii) K(X) is modular if and only if \fiX - X\ < 4.

(iii) K(X) has a zero element but no atom if and only if fix-X is compact 

and connected.

(iv) fix-X is totally disconnected, if K(X) is complemented. .

We recall the following definition:

Definition 1.12. Let B and C be categories. A covariant functor 

(contravariant functor) from B to C is a correspondence F which assigns to 

each object X eB, a unique object in C, denoted as FX, and to each 

morphism / in B, a unique morphism in C, denoted by F(f), satisfying 

following three properties:

(i) lf f:X-^Y is a morphism in B, then F(f) :FX FY (respectively

F(f): FY FX) is a morphism in C.

(ii) For each object X of B, F{IX) = IFX.

(iii) For morphisms /:X->F and g:Y->Z of B, F(g° f) = F(g)<>F(f) 

(respectively F(g o /) = F(f) o F(g)).
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In [30], Thrivikraman has obtained certain generalizations of Magili’s 

result. Also, he has established that the association of fix -X with K{X) 

extends to a contravariant functor from the category of all compact Hausdorff 

spaces with morphisms as continuous surjections, into the category of all 

lattices with suitable morphisms and this functor is not injective but its 

restriction to the full subcategory of spaces with power different from 2 is 

injective.

In 1973 [23], M. C. Rayburn has obtained generalizations of Magill’s 

result [Theorem 1.3] by dropping the requirement that X and Y are locally 

compact spaces. For a Tychonoff space X, Rayburn considered the set 

R(X) of all points at which X is not locally compact. Note that for any 

compactification aX of X, R(X) = Xr\ClaX(aX-X). If f:pX->aX the

natural quotient map then 3(aX) = {/.1 (p)\pe Cl^(aX-X)} 3(aX) is a

partition of Cl^ifiX-X) into compact subsets. For aX, yX in K{X), 

consider partial ordering '<’ defined on K(X) by aX<yX if and only if 

3(yX) refines 3(aX). In [23], Rayburn proves the following results:

Theorem 1.13. Let X and Y be completely regular Hausdorff spaces. If 

there exists a homeomorphism from Cl^ (fix - X) to Cl^ifiY-Y) which 

carries R(X) to R(7) then K(X) is isomorphic to K(Y).
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Corollary 1.14. Let X and Y be completely regular Hausdorff spaces with 

|R(X)|=|R(7)|=1. If fix-X is homeomorphic to pY-Y, then K(X) is 

isomorphic to K(Y).

A space X is called compactly generated, or a k- space, if every 

subset of X whose intersection with every compact subset of X is compact, 

is itself closed. To each space X one can associate a unique k-space kX 

with the same underlying set and the same compact sets by requiring that 

the closed sets are precisely those sets whose intersection with every 

compact set is compact. It follows that a space X is a k - space if and only if 

X = kX. A space X is called a k- absolute space if fix - X is a k- space. 

In [23], Rayburn proved following results:

Theorem 1.15. Let X and Y be completely regular Hausdorff spaces. If 

i//: K(X) -> K(Y) is an isomorphism, then there exists a homeomorphism 

f: k(fiX - X) -» k(fiY - Y) such that for each aX in K(X),

3(i//(aT))npY-Y = {/(//) |H e 3(aX)r>(ffX-X)}. There are two such 

homeomorphisms if \fIX-X\ = \fiY-Y\ = 2, otherwise homeomorphism is 

unique.

Corollary 1.16. Let X and Y be any two k-absolute spaces. If K(X) is 

isomorphic to K(Y) then pX-X is homeomorphic to PY-Y.
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In [13] Mack, Rayburn and Woods have obtained results from which 

some of Magill’s result follow. For a completely regular Hausdorff space X, 

they have considered a topological property P which is

(a) closed-hereditary,

(b) productive under arbitrary products and

(c) such that if X is the union of a compact space and a space with P then 

X has P.

Recall that a topological space X is a realcompact space if every real 

maximal ideal in C(X) is fixed. The ‘ P - reflection’ yX of a space X is 

defined by yX = n{r|r has P and IcTc fiX). It is known that if property 

P is compact, then yX = J5X and if P is realcompact, then yX = vX, where 

vX is the Hewitt Nachbin real compactification of X. They have studied the 

algebraic structure of the family of tight extensions of X i.e. those extensions 

which have property P and contain no proper extension with that property). 

When X has property P locally but not globally then relations between the 

complete lattice P*(X) of those tight extensions which are above the 

maximal one-point extension and the topology of the P -reflection, have been 

studied by them. They have obtained conditions under which P*(X) 

characterizes yX-X. If P is taken to be compactness, then their work 

coincides with the MagiiPs work done in [17].

It is interesting to know semilattices which are isomorphic to K(X) for 

some X. Kannan and Thrivikraman in [12] have characterized dually atomic
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complete lattices in terms of lattices of closed equivalence relation of a Tx 

space X and have used this result to obtain a characterization of K(X), 

when X is a locally compact Hausdorff space.

Further the restriction to px -X of the Cech map of aX is perfect i.e. 

closed, continuous, onto and the pre-image of each point is compact. In [22], 

Porter and Woods have studied perfect irreducible continuous surjection on a 

fixed domain X. A perfect irreducible continuous surjection is also termed as 

a covering map. For a Hausdorff space X, consider two covering maps / 

and g with range Rf and Rg, respectively. The covering maps / and g are 

said to be equivalent (/ » g) if there is a homeomorphism h:Rf -+Rg such 

that h°f = g. We identity equivalent covering maps with domain X, and 

denote the equivalence classes of covering maps with domain X by IP(X). 

A partial order '<’ on IP(X) is defined as follows: For covering maps / and 

g, g<f if there exists a continuous map h:Rf -+Rg such that h°f = g. 

For a Hausdorff space X without isolated points (IP(X), <) is a complete 

upper semilattice. Porter and Woods have partially answered the question: 

When IP(X) is a complete lattice? They have observed that if spaces X and 

Y are homeomorphic then the corresponding posets IP(X) and IP{Y) are 

order isomorphic. In [22] they have proved that the converse of the above 

statement is true when the underlying spaces are A:-spaces.
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Theorem 1.17. Let X and Y be k-spaces without isolated points. Then 

(IP(X), <) and (IP(Y), <) are order-isomorphic if and only if X and Y are 

homeomorphic.

For an open subset U of X, define 

IP(X, U) — {f e IP(X) 11/-* (/(x))| = 1, for each x e U}. Porter and Woods

have obtained generalization of Theorem 1.17. They have proved the 

following result:

Theorem 1.18. Let X and Y be a Hausdorff space and let U and V be open 

subsets of X and Y containing all isolated points of X and Y respectively. 

Suppose <p: IP(X, U) -»IP(Y, V) is an order isomorphism. Then there is a 

bijection F :X -U ~>Y~V such that {F(A) | A is a compact nowhere dense 

subset of X and AcX-U} ={B\Bis a compact nowhere dense subset of 

Y and B^Y-V} and if / e IP(X, U) then

= {{X} IX G V} u {F(A) I A e p(f) and A^X-U}.

Porter and Woods have used the above result to derive Theorem 1.3 

due to Magill.

In [18J, Mendivil has proved using technique of function algebra that 

for locally compact spaces X and 7, K(X) is order isomorphic to K(Y) if

and only if C*(X)\Cq(x) is order isomorphic to C*(F)]Co(r), where
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C0(X) = {/ e C\X) I fp \px_x = 0}, in which ffi denotes the extension of / to 

fix. Magill’s [Theorem 1.3] result follows as a consequence of this result by 

using the fact that C* (X)\Cam is isomorphic to C*{fiX-X).

Another construction in general topology is the ‘absolute’ of a space. 

With each Hausdorff space X there is associated an extremally 

disconnected zero-dimensional Hausdorff space EX, called the lliadis 

absolute of X and a perfect, irreducible, 0 -continuous surjection from EX 

onto X [11] The points of EX are certain uitrafilters on lattices associated 

with X. If the space X is regular then the space EX can be mapped onto 

X by a perfect continuous map kx, which is also irreducible. If X is not 

regular, then also the extremally disconnected zero-dimensional Hausdorff 

space EX and the map kx, which is a perfect surjection can be constructed 

but the map kx is no longer continuous, it is 0-continuous. Uniqueness of 

the space EX follows from the following result:

Theorem 1.19. Let X be a Hausdorff space and let (Y,f) be a pair 

consisting of an extremally disconnected zero-dimensional space Y and a 

perfect irreducible 0 - continuous surjection f from Y to X. Then there 

exists a homeomorphism h from EX to Y such that f oh = kx, where kxis 

the natural map from EX to X.

In [6], Csaszar has constructed absolutes for arbitrary topological

spaces.
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The projective space EX together with the perfect irreducible mapping 

kx is called the projective cover of X, Further, for a non-regular Hausdorff 

space X we can construct an extremally disconnected space PX, called the 

Banaschewski absolute of X and a perfect irreducible continuous surjection 

tcx : PX -» X . The space PX is extremally disconnected but not regular. For 

a regular Hausdorff space X, PX and EX coincide. That PX is not zero

dimensional follows by the following result [21]:

Theorem 1.20. The following are equivalent fora Tychonoff space X:

(i) X is extremally disconnected,

(ii) each dense subspace of X is C *-embedded in X,

(iii) each open subspace of X is 0*-embedded in X, and

(iv) px is extremally disconnected.

In [32], R. C. Walker has discussed that the Stone-Cech 

compactification and the Hewitt-Nachbin realcompactification are both 

functorial i.e. they can be used to define functors. Using Gleason’s result that 

every completely regular space has a projective cover which is unique up to 

homeomorphism and the uniqueness of EX, we have E{fiX) = fi(EX). The 

extensions and absolutes, although conceptually very different, are 

constructed using similar tools. In [19], H. Ohta has discussed topological 

extension properties and projective covers. Ohta has discussed under what 

conditions p(EX) = E(pX), where p is a topological property of a
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completely regular Hausdorff space. This question was raised by Woods and 

the case when p is realcompactness was settled by Hardy and Woods [10].

The projective lift of a map /: X F (if it exists) is the unique map 

Ef: EX EY satisfying kY °Ef = f°hx. In [8] Das has constructed 

projective lift of a dp-epimorphism, and hence proved that E is a covariant 

functor from the category Cd of regular Hausdorff spaces and continuous dp- 

epimorphisms to its coreflective subcategory consisting of projective objects 

of C„.

We now briefly describe the work done in the present thesis. In [8], 

Das has introduced the notion of a density preserving map which is defined 

as follows: A continuous map / from a topological space X into a 

topological space F is called a density preserving map if IntClf{A) * rp, 

whenever* tp, where A is a subset ofX. We say two density preserving 

maps / and g defined on a topological space X with range Rf and Rg 

respectively are said to be equivalent if there exists a homeomorphism 

h:Rf -^Rg satisfying h° f = g. We identify equivalent density preserving 

maps on a fixed domain X and denote by DP(X), the set of all such 

equivalence classes of density preserving maps. We define an order relation 

^ on DP{X) such that (DP(X),<) becomes a partially ordered set (poset). 

Having observed that the poset IP{X) is naturally contained in the poset 

DP(X), we study the poset DP(X) to obtain further results in the direction of
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[22]. In Chapter 2, we show that for a compact Hausdorff space without 

isolated points DP(X) is a complete lattice.

In Chapter 3 we obtain results similar to Theorem 1.17 for DP(X). In 

fact we prove that if X and Y are countably compact r3 spaces without 

isolated points then X and Y are homeomorphic if and only if DP(X) is 

order isomorphic to DP(Y).

In Chapter 4, for A c X we define set DP(X, A) of density preserving 

maps / on X satisfying |/_l(/(x))| = 1 for each x in A and observe that for 

a dense subset U of a compact space X, DP(X,U)=IP(X,U). In particular, 

for a locally compact space X we have DP(PX,X)=IP(PX,X). As a 

consequence of this we obtain Magill’s result [Theorem 1.3]. Using a result 

due to Porter and Woods [22], we obtain that DP(pX,X) is order isomorphic 

to K(X). As a consequence of this we are able to use lattice theoretic 

properties of the complete lattice DP(pX,X) to obtain topological properties 

of pX-X when X is a locally compact Hausdorff space.

An / e DP(X) is said to be a dual if the only non-singleton fiber of / 

is a doubleton. In Chapter 5, we introduce and study the notion of 

overlapping duals and also the notion of duals hinged with overlapping duals. 

We topologize the collection 3 of all subsets of the set of duals in DP(X) 

which are hinged with overlapping duals in DP{X), and study when the
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topological space 3 is homeomorphic to X. We in fact prove that 3 is 

homeomorphic to X when X is a countably compact r3 space without

isolated points. To prove this result we introduce the notion of F - closed 

sets and observe that for a locally compact Hausdorff space X, the notion of 

F- closed sets coincide with the notion of F - compact sets defined by 

Thrivikraman in [29].

In Chapter 6, we attempt to construct a compactification rX for 

a non-Tychonoff space X by using the family Rf(X) of all finite intersections 

of regular closed subsets of X. We observe that the resulting 

compactification rX is a non-Hausdorff Tx space. A separation axiom 

stronger than Tx but weaker than T2 naturally exist on rX, which we term as 

nearly Hausdorffness. We introduce a topological property n for a space X 

and note that a space with the property n is a nearly Hausdorff space if and 

only if it is Urysohn. Further, we answer the natural question: When 

rX = ($X ? We observe that if Rf(X) forms a Wallman base for a nearly 

Hausdorff space X, then rX = pX. As a consequence of this we have that if 

X is normal or zero-dimensional then rX - px.

In Chapter 7, we describe the construction of projective cover 

(EX,hx) for a compact nearly Hausdorff space X on the lines of Gleason’s 

construction [32], In this chapter we study projective lift and extension of a 

density preserving epimorphism f:X->Y. We prove that both E and r are

functorial and establish the commutativity of E and r.
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