CHAPTER lli

ORDER STRUCTURE OF POSET DP(X)

Since last several years topologists have been studying the order

' structure of an associated family of extensions of a space and have obtained
results like Theorem 1.3. obtained by Magill in 1968. The situation in which

the topology of a space is determined by the order structure of an associated

family of mappings is illustrated by Theorem 1.17.

In case of the poset DP(X), the order structure of DP(X) is always

determined by the topology of the space X, i.e. if topological spaces X and

Y are homeomorphic then DP(X) and DP(Y) are order isomorphic. In this
chapter we deal with the converse problem, that is, if DP(X) and DP(Y) are

order isomorphic then can we say that X is homeomorphic to Y ? In section

1 of this chapter we define and study primary and dual member in DP(X). In
section 2, we introduce the notion of cin-bijection and using cin-bijections we
prove in the last section that if X and Y are countably compact T, spaces
without isolated points then DP(X) and DP(Y) are order isomorphic implies

X is homeomorphicto Y.

Some results of this chapter are being published in the Bulletin of the

Australian Mathematical Society, 72 (2005).
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1. Primary and dual members in DP(X).
In this section we define primary and dual members in DP(X) and
characterize them. We also derive the formula for the greatest lower bound

of two primary members in DP(X).

Definition 3.1.1. Let X be a topological space. Then an f in DP(X) is said
to‘ be

() primary if the corresponding dp-partition p(f) generated by f has at
most one non-singleton member.

(i) dual if f is primary and the corresponding dp-partition g(f) generated

by f contains exactly one doubleton.

Notation. If fe DP(X) is such that g(f) contains »n non-singleton
members, say X, K,,...., K,,, then  f is denoted by (f; X,, X,,...., K,). In

particular, if X is a non-singleton closed nowhere dense set in X, then

(f; K) denotes the natural density preserving map defined on X obtained by

collapsing K to a point.

Examples 3.1.2.(a) Consider the usual space R of real numbers and take
closed nowhere dense set as the set Z of all integers. The natural quotient
map q: R — R|z obtained by identifying Z, is a density preserving map and
the only non-singleton member in @(f) is Z. Therefore (¢; Z) is a primary

member in DP (R) but is not a dual member.
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3.1.2(b) The natural quotient map f on the usual space R of real numbers
obtained by identifying two distinct points x and y in R is a density
'preserving map. Observe that the only non-singleton member of p(f) is the

set {x,y}. Hence this primary member f inDP(R) is also a dual.

Theorem 3.1.3. Let X be a fopological space. Then an fin DP(X), f#1,,
is primary if and only if there do not exist duals g, he DP(X) such that
frg=fnAnh=f and the only dual points greater than g A h are g and
h. |

Proof. If f in DP(X) represents the family of constant members then for any
two duals g,2 in DP(X), we get fAg=fAh=f. Therefore f is
primary. Suppose f is a non constant member in DP(X) such that /=1,
and there do not exist duals g and 4 in DP(X) such that
frag=fnrnh=f and the only duals greatér than gah are g and 4. Then
we need to show that f is primary or equivalently dp-partition p(f)
generated by f contains exactly one non-singleton member. Suppose (/)

contains more than one non-sihgleton member say K and H. Then choose
distinct points a, be H and ¢, de K and consider the natural dual

members (g;{a,c}) and (k{bd}) in DP(X). Since HNnK=¢, the dp-
partition  p(f A(g:{ac})) generated by fA(g:{ac}) consists of |
[9()—{K, H}] v{K w H}. Observing similarly for f A(h;{b,d}), we obtain

faglach=7r{bd}) = f.
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Also, besides g and h, there are other duals in DP(X) greater than gAh.In
fact g A h is the natural quotient map (g A 4; {a.b.c,d}) and (k;{a,b}) is a dual
member in DP(X) different from g and 7 satisfying (gAh) s k. This
contradicts our hypothesis. Hence such an f is primary.

Conversely, suppose f # I, is primary. In case f is constant we are
through. Let f be non-constant and let X | bé the non-singleton member of
(). Let (g;{a,b}) and (h;{c,d}) be two distinct dual members in DP(X).
Then g # h implies

{a,b} #{c,d}
= {a,b}"{c,d} = ¢ or {a,b}{c,d} is a singleton.
Now suppose {a,b} n‘{c,d} =¢. Incase {ag,b}nK=¢ and {c,d}nK=9p,
then | '
fag~(fng K, {a, b)) M
and |
fARs(F AR K e d). (@
On the other hand consider the case when {a, 5}n K = ¢ and {c,d}nK #¢.
Let»beK and de K. Then
frg=(fnrg Kuia}) )
and
S b= (f als K Uie)). (4)
Relations (1) to (4) imply that if {a,b} ~{c,d} =9, then fAg# fAh and we

are through.
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Next, suppose {a,b} "{c,d} is a singleton. In case fAg=#fAh, we
are through. Suppose fAagw~fAah=f. In this case we obtain a dual
member 7 different from g and & which is greater than 2ag. In fact, if
{a,b} " {c,d} ={a}, where a=c, then

(I {a, b)) A (g {c, d}) = (hngifa, b, d}).
and the dual member (7; {b, d}) is different from g and & and is greater
than Ang.

Therefore if #(f) contains exactly one non—singleton member then
there do not exist dual points g and % such that fAg=~ fAh# fand the

only duals greater than hA g are g and 4.

Theorem 3.1.4. Let X be a topolbgical space. Then an f in DP(X) is a
dual if and only if theré does not exist g in DP(X) such that f<g<I,.
Proof. Suppose f e DP(X) is a dual. Then there exists precisely one non-
singleton member in g(f) which is a doubleton. If possible, suppose there
exists g € DP(X) such that f<g<I,.Then
f<g = p)cp(f)

=  g'(2) is a singleton for each z in Rg

= g ~ I, - a contradiction.

Conversely, if poséible, suppose f is not a dual. Then the dp-partition
() contains one non-singleton member, say K, containing more than two
elements. Choose distinpt points a,b,c in K. Then (& {a, b}) is a dual

member in DP(X) satisfying f<h<I,.
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Theorem 3.1.5. Let X be a topological space. Then for any two closed

nowhere dense subsets K, and K, of X,

(B K, K,), if K,nK,=¢

(f3 Kl) A (gi’ K2)= {(h, K1UK2)=if KlmK2¢¢'

Proof. Suppose K; N K, =¢. Then by Lemma 2.3.3,
#(f) c o) and p(g) < ph)

= (f;Kl}Z(h; K, K,) and (g;szZ(h; K, K,)
if 6 e DP(X) is ano?hér member such that f >c and g>o, then by Lemma
233, :

fzocand gzo

= pf )g;so(s) and p(g) < (o),
which implies X, iS a subset of some member in g(c)and K, is also a
subset of some merélber in g(c). But this gives ¢ < (4 K,, K,) which proves
FEIA @K, = (5K, Ky).

Next, suppé)se K nK,#¢, then (f;K)2(MmK, vK,) and
(8:K,) = (K, uKz)’i. Suppose o € DP(X) is such that f>o and g2o.
Then by Lemma 233

fzoand g0

= o) s_: #(0) and p(g) < (o),
which implies th,at‘ kl is a subset of some member, say H, in p(c) and K;_
is a subset of some}% member, say H, in g;(ci). Since K, nK, # ¢, we have
H/=H,. Thus (fh;K; vK,)2o. This ;:)roves that (f;K)A(g:K,)
=K, VK,),Iif K15K2¢¢, | |
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Theorem 3.1.6. Let X and Ybe topological spéces._ Then an order
isomorphism ¢ : DP(X) — DP(Y) maps duals to duals.

Proof. Suppose f e DP(X) is a dual. If o(f) is not a dual member then by
Theorem 3.1.4, there exists g € DP(Y) such that o(f)<g<1,. Since ¢ is
an order isomorphism, we have f<o¢™'(g)<I, which contradicts that
f € DP(X) is a dual. Hence an order isomorphism ¢ : DP(X) — DP(Y) maps

duals to duals.

2. cin-bijection.
In this section we define cin-bijection and prove that for Hausdorff
spaces X and Y without isolated points, an order isomorphism

@: DP(X) - DP(Y) induces a cIn-bijection from X to Y.

Definition 3.2.1. A bijection f : X —>Y from a topological space X to a
topological space Y is called a cin-bijection if the family { f(4)| 4 is a closed

nowhere dense subset of X} is precisely the family of all closed nowhere

dense subsets of Y.

We recall that a point p in the Stone-Cech compactification X of a
Tychonoff space X is called a remote point of X f pe fX—-X but

p ¢ Cl, A, for every nowhere dense subset 4 of X.

Example 3.2.2. Consider the usual space Q of rational numbers. Suppose

p and g are remote points of O such that Stone extension of none of the
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self-homeomorphism of Q maps p to g. Consider the subspaces QU {p}
and Quiq} of the Stone-Cech compactification A0 and the map

f:0u{p} > Quiq} defined by f(x)=x if xeQ and f(p)=q.Then f isa

cin-bijection.

Lemma 3.2.3. Let X and Y be Hausdorff spaces without isolated points and

let 9. DP(X)—> DP(Y) be an order isomorphism. Then there exists a cin-

bijection F:X —Y such that for each fe DP(X) .we have
plo(fN={F( A dep(f)}
Proof. Let p e X . Choose distinct points ¢, r € X ~{p}. By Theorem 3.1.6,
o(f,{p,q}), @(g, {p,r}) are dual points of DP(Y) say (f,{a, b}) and
(g, {c, d}) respectively. Clearly

(fi{a, b)) A (gl d) = o(f A g {p, 4, 7})-
If {a, b} N {c, d}=¢, then

(Fi{a b)) A (e d) = (f A g {a, b}, (e, d}),
Thus in this case (f;{p, q}), (g; {p, ¥}, (h; {q, r}) are three dual points in
DP(X) greater than (f A g;{p, q,r}) where as (f;{a, b)), (g {c, d}) are
the only two dual points in DP(Y) greater than (f A g {a, b}, {c, d}) which
is not possible. Therefore {a, b} N {c, d} # ¢, in fact kit is a singieton, say {a}.
Define F: X -» Y by F(p) =a. We now show that the choice of a4 does not

depends upon the choices of r and q. Let se X —{p,q,7}. Then there exist

points y and z in Y such that ok {ps)=(k{y.z}). We have
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o(f3{p.q}) = (f:{a,b}). Assume o(g:{p.r}) =(g:{a,c}). Using similar
arguments we conclude that {y, z} intersects both {a,b} and {a,c} in exaCt'ly
one point. If a ¢ {y,z}then {y,z} = {b,c}. Therefore by Theorem 3.1.5,

o(f rngnkiip, g1, s})

= (f3{a, ) A (g {a, D AU, o)

=(frgaki{a b, c}).
This implies there are sik dual points greater than (f A g Ak;{p,q.r,s}) while
there are only three duals greater than (f A gna¥k;{a,b,c}), which is
impossible as ¢ is an order isomorphism. Thus our assumption that a ¢ {y,z}
is not possible. This proves that for any se X —{p}, if o(k;{p, sH=(k;{y,z})
then aec{y,z}. Also if s is any other point in X-{pq} and if |
o(c:{p,s D =(c;{y,z}), then {y,z}"{y,z} ={a}. Thus we have defined
map F.

We now show that F maps closed nowhere dense sets to closed

nowhere dense sets. Let H be a closed nowhere dense set in X . Consider
f e DP(X) of the form (f; H). If o(f; Hy=f then f=(f;K) for some
closed nowhere dense subset K of Y. Further, if p, ge H, p#q, then by
Lemma 2.3.3 (¢: {p. ¢}) 2 (/; H) which implies (g; {a, b)) = (f; K). Hence
{a,b} c K. This proves that F({p,q})= {a,b} < K. Since p,qe H are
arbitrary, it follows that F(H) c K.

Similarly, using qp“‘; we can define F:Y —> X as follows: Let ae¥.
Choose distinct points & and ¢ in Y—{a}. Then, ¢7'(f:;{a,b}) and
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o (g:{a,c}) are dual points of DP(X) say (fi{p.g) and (gfr.s})
respectively. Then using similar arguments as above we can show that

{p,gyn{r,s} isa singleton say p and the choice of p does ndt depend upon
the choice of » and ¢. Define F:Y — X by F(a) = p. Arguing as above, one
can show that F(K)c H.

We now prové that Fo F is identityon X .Let pe X and ge X -{p}.
Clearly o(f:{p.q}) is a dual, say (f;{a, b}). Then F(p)e {a, b}. Assume
F(p)=a. Suppose: F (a)=p. Then F(a)=gq. Chooge reX-{p,q}. Then
there exists ¢ € Y such that ¢(g; {p, r}) is a dual point say (E; {a, c}). Since
F(a)e{p,r} and F(a)#p, therefore F(a)=r, a contradiction as
F(a)=q#r. Therefore we conclude that F(a)=p. This proves FoF is

identity on X . Similarly, we can prove that F oF is identity on Y. Hence
F:X—-Y isa bije}ctivel map which preserves closed nowhere dense sets.

Also, by the definition of the map F, it follows that if ¢(f; H) = (?; K), then

F(H) =K and hence p(p(f)) = {F(4)|4ep(f)}.

3. Topology of X and the order structure of DP(X).

We shall see an easy proof of the fact that if topological spaces X

and Y are homeomorphic topological spaces then DP(X) and DP(Y) are

order isomorphic. To find when the converse is true, we shall use the

following known fact:
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Note. Let X be a countably compact T, space without isolated points. Then
Ac X is closed if and only if whenever Bc 4 and CI, B is nowhere dense

in X then CI,,B c 4 [22].

In fact, we shall use the given order isomorphism‘between DP(X) and
DP(Y) to construct a cin-bijection F between X and Y and then use the

fact stated in the above note to prove that both F and F~' are closed maps.

Theorem 3.3.1. Let X and Y be countably cbmpact T, spaces without
isolated points. Then DP(X) and DP(Y) are order isomorphic if and only if

X and Y are homeomorphic.

Proof. Suppose X and Y are homeomorphic and let 2: X Y be a
homeomorphism. Define ¢: DP(X) — DP(Y) by ¢(f)=foh™. The map ¢
thus defined is a bijéctive order preserving map from DP(X) to DP(Y).
Hence DP(X) and DP(Yj are order isomorphic.

Conversely, suppose DP(X) and DP(Y) are order isomorphic. Then
by Lemma 3.2.3 there is a cIn-bijection F: X — Y. We shall show that F is a

closed map. By symmetry, it will follow that F' is also a closed map and

hence F will be a homeomorphism. Let M c X be such that CI, M is
-nowhere dense. First obsérve that F(CIy,M)=CIl,F(M). Clearly, M cCI, M
and hence F(M)c F(Cl,M). Since CI,M is a closed nowhere dénse set
and F is a cin-bijection, CI, F(M) is a closed nowhere dense set satisfying

Cl,F(M)c F(CI,M). For the reverse containment, observe that
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F™(Cl,F(M)) is a closed nowhere dense set containing M which imblies
that F(CI,M)c Cl,F(M). This proves F(CI,M)=Cl,F(M), whenever
Cl, M is a nowhere dense set.

We complete the proof by showing that F is a closed map. Let C be a

closed subset of X. Suppose Bc F(C) and CI, B is a nowhere dense set.
Then Y being countably compact T, space without isolated points, to
establish that the map F is closed, it is sufficient to show that CI, B ¢ f‘(C).
Now,

'Bc_:F(C) = Fi(B)cC.
Also C is closed imp'!ies CI,F™(B)c C and hence

F(Cl,B) = CL,F'(B) cC.

This proves CI, B ¢ F(C) and hence the required result.

Note. A cIn-bijection between non-countably compact spaces without isolated
points need not be a homeomorphism is justified by Example 3.2.2. In fact,

the map f:Qu{p}— Qu{g} defined in that example is a cIn-bijection but
we know that the spaces Qu{p} and Qu{q}considered there are not

homeomorphic.
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