LIST OF TABLES

Table	Title of the table	Page
No.		No.
1.1	An approximate estimate of fungal diversity in India	5
2.1	Anti-oxidative potential of various macro fungi	39
2.2	Anticancer potential of extracts or compounds from different	43
	macro-fungi	
2.3	Antidiabetic potential of different macro-fungi	47
2.4	Antimicrobial potential of different macro-fungi	49
2.5	Antiviral activities of various macro-fungi	51
3.1	Details of primers used for molecular identification of fungi	73
3.2	List of fungi identified in the present study	80
4.1	Metabolite profiling of crude extract of P. albus with their	162
	therapeutic potential	
4.2	Metabolite profiling of crude extract of G. triplex with their	163
	therapeutic potential	
4.3	Metabolite profiling of crude extract of D. indusiata with their	164
	therapeutic potential	
4.4	Metabolite profiling of crude extract of I. galariculata with their	169
	therapeutic potential	
4.5	Metabolite profiling of crude extract of C. sterecoreus with their	173
	therapeutic potential	
4.6	Properties of SARS-CoV-2 M ^{pro} potential inhibitors	179
4.7	Molecular docking analysis of potential compounds against	180
	SARS-CoV-2 M ^{pro}	
4.8	ADMET prediction of the bergenin, quercitrin and	188
	dihydroartemisinin	