APPENDIX - 5 B

<u>Testing of returns to Scalé</u> :

Production Function - without restriction.

 $Y = B - X^{B} \cdot X^{B} \cdot X^{B} \cdot e$ Where X, X, X are, capital, labour and raw 1, 2, 3 respective. material respectiv y $\beta_1, \beta_2, \beta_3$ are regression coefficients. Another production function is fitted with a restriction $Y = \beta_{0} X_{1} X_{2} X_{3} e$ and $\beta_{1} + \beta_{2} + \beta_{3} = 1$ $\therefore Log Y = Log \beta_{0} + \beta_{1} \log X_{1} + \beta_{2} \log X_{2} + \beta_{3} \log X_{3} + \log e$.which can be written as $y = B + \beta_1 x + \beta_2 x + B x + E$ For estamating the regression coefficient the following procedure is followed. Four equations are fitted as follows. $\beta 1 \mathbf{i} = \beta 2 \mathbf{i} = \beta 2 \mathbf{i} = \beta \mathbf{i} = \beta \mathbf{i} = \mathbf{i} = \mathbf{i}$ $\begin{array}{c} \beta \\ \underline{z} \\ \underline{z}$ $\begin{array}{c} \mathbf{B} \mathbf{\xi} \mathbf{a} \mathbf{c} + \mathbf{\beta} \mathbf{\xi} \mathbf{b} \mathbf{c} \mathbf{i} + \mathbf{\beta} \mathbf{\xi} \mathbf{c} + \mathbf{B} = \mathbf{\xi} \mathbf{b} \mathbf{d} \\ \mathbf{1} \mathbf{i} \mathbf{i} \mathbf{2} \mathbf{i} \mathbf{i} \mathbf{3} \mathbf{i} \mathbf{0} \mathbf{i} \mathbf{i} \end{array}$ B + B2 + B3 - = 1

Where a = $(X - \overline{X}_{l})$ i li b = $(X - \overline{X}_{l})$ i 2i c = $(X - \overline{X}_{l})$ i 3i d = $(Y_{1} - \overline{Y})$

In the above four equations, there are four unknowns β_1 , $\beta_{2,\cdot}$, β_3 , and β_1 . Hence these can be solved.

If the estimates arrived at between these two equations are significantly different from one another then, ω_{e} , re_{J} ect the null hypothesis that $\beta_{1} + \beta_{2} + \beta_{3} = 1$. Therefore the industry doesnot face constant returns to scale. For this F-ratio estimated and tested for significance.

Where e = Sum of squres of the deviation from the regression 1 equation fitted by the method of least square without restriction.

e 2

= Sum of squres of the devitions from the other

regression equation fitted with restriction. (i.e. $\beta_1 + \beta_2 + \beta_3 = 1$)

N - K = Degrees of fredom.

If the estimated F - ratio is greater than table value at 5% significance level, then we regect in null hypothesis that $\beta_1 + \beta_2 + \beta_3 = 1$ and accept the alternative hypothesis $\beta_1 + \beta_2 + \beta_3 \neq 1.$

•

320