LIST OF FIGURES

l

			Page No	
	2.1	Relationships between luminescence	7	
	2.2	TL glow curve for LiF	9	
ŀ	2.3	Energy level diagram at absolute	15	
		zero temperature		
	2.4	Energy level diagram for metal, semiconductor	16	
	,	and insulator		
	3.1	Schematic drawing of the structure of the Sun	22	
	3.2	Spectral irradiance of the Sun	24	
	3.3	Sun-earth geometrical relationship	25	
	3.4	Position of earth with respect to sun at	27	
		solstices and equinoxes		
	3.5	Summer and winter solstice	27	
	3.6	Solar path for one day	28	
	3.7	Equation of time	30	
	3.8	Pyranometer	32	
	3.9	Pyrheliometer	33	
	3.10	Sun shine recorder	34	
	3.11	Flat plate collector	38	
	3.12	Radiation booster arrangement	41	
	4.1	Fundamental tetrahedral unit	49	
	4.2	Secondary building units	51	

		、	
	4.3	Isotherms for the adsorption	62
		of water in 13X powder	
	4.4	Adsorption isotherms for water vapour	62
		on zeolite 13X pellets	
	5.1	Schematic diagram of VCS	68
	5.2	Vapour Absorption System	70
	5.3	Components of VJS	74
	5.4	Open cycle adsorption cooling system	76
i	5.5	Adsorption isotherm for zeolite	79
'n	5.6	Working principle of the zeolite water	84
		refrigeration system	
	6.1	Structure of Molecular Sieve Type X	92
	6.2	Zeolite pellets used in the study	94
	6.3	Block diagram of TL set up	95
	6.4	Photographs of TL unit	97
	6.5	TL glow curve for 13X annealed upto	99
		800 degree C	
	6.6	TL glow curve for 13X annealed at	101
		850 degree C for one hour	
	6.7	TL glow curve for 13X annealed at	102
		900 degree C for one hour	
	6.8	TL glow curve for 13X annealed at	103
		1000 degree C for one hour	
	6.9	IR spectrum for fresh 13X	105 [·]
	6.10	IR for 13X annealed at 900 degree C	107
	6.11	IR for 13X annealed at 1000 degree C	108

,

•

v

•

6.12	Laboratory level experimental setup	110
6.13	Tube network in laboratory experiments	111
6.14	Photograph of laboratory setup	112
6.15	Photograph of ice formed	115
6.16	Temperature profile during desorption cycle	116
6.17	Temperature profile during adsorption cycle	117
6.18	Ideal cycle of zeolite refrigerator	120
6.19	Details of the collector	124
6.20	Condenser operating temperatures	127
6.21	Condenser pipe network	129
6.22	Evaporator details	132
7.1	Temperature gain during experiment with ice	136
7.2	Photograph of the zeolite refrigerator	138
	prototype	
7.3	Ice formed in the prototype	139
7.4	Double mirror booster	141
7.5	Eight sided booster	142
7.6	Prototype with eight sided booster arrangement	143
7.7	Engineered model of the refrigerator	147
7.8	Front view of the model	148
7.9	Back view of the model	149
7.10	Cold box details	150
7.11	Temperature profile during desorption cycle	152
7.12	Temperature profile during adsorption cycle	153
7.13	Whole day temperature profile - 1	154
7.14	Whole day temperature profile - 2	155

•

.

•

7.15 One year performance data	156
7.16 Whole day temperature profile with load	158
7.17 One day performance data of engineered model	159

•

-

,