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Chapter 3

CONTROLLABILITY AND 
OBSERVABILITY OF HOPFIELD 
TYPE NEURAL NETWORKS

3.1 Introduction

Hopfield Neural Networks were designed by J. J. Hopfield in the beginning of the 
1980s (refer Hopfield[ [32]]). He used these networks for pattern completion and to 
solve optimization problems. The Hopfield Neural Network (HNN) is a single layered 
network, the connections in it are of recurrent type, that is, feed-forward as well as 
feedback. In this network each neuron is connected to the other but not back to itself. 
It is most widely known as auto-associative networks in the literature. This single 
layered network of interconnected neurons can store multiple stable states. Since net­
work have a set of stable states, given an input pattern the network can converge to 
the stable state nearest to that pattern. This implies that, we can use the network 
for auto-association in which a noisy or partial pattern can stablize to a nearby state 
corresponding to one of the originally stored pattern.

The mathematical model is derived in Section 3.2. In Section 3.3, we deal with
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the existence and uniqueness of solution of Hopfield model. Stability properties are 
studied in Section 3.4. The controllability result is proved in Section 3.5 and we 
conclude the chapter giving observability result in Section 3.6

3.2 Mathematical modeling for Hopfield networks

HOPFILED NEURAL NETWORK

Figure 3.1: Hopfield Neural Networks with n neurons

To setup a mathematical model for the Hopfield Neural Network, consider a network 
having n neurons, as depicted in Figure 3.1.

Each neuron in the network is connected to the other neuron but not back to it­
self. Let Wij be the strength of the connection (called weight) from jth neuron to ith 
neuron. Let xi(t), i = 1,2, ...,n be the information stored in the ith neuron at time 
t, which will be interchangeably called as state, potential or impulse as in case of 
biological nguron.
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Let Xi(0), be the initial information or input provided to the itli neuron at time t — 0. 
Because of the recurrent nature of the network the initial potential x,(0) passes to 
all other neurons and the ith neuron receives back the corresponding outputs from 
other neurons. This process continues for all neurons and there is a stage where the 
potentials of neurons are unchanged as t increases. .This is called the convergence of 
the network. We denote the converged state of the ith neuron aq(oo). For the faster 
convergence process we supply some external input to the ith neuron which is denoted 
by h{t). Transmission or non-transmission (firing or non-firing) of information from 
one neuron to other neuron is characterized by a function called transfer function 
(e.g. sigmoidal). At time t the ith neuron receives a potential Wijfj(xj(t)) due to 
connecting strength Wy and transfer function fj corresponding to the jth neuron. 
Thus, the contribution to the ith neuron over time, is given by

jQ WijfAxi(T))dT ' .. 0-2.1)

The potential that arrived early may decay. This forces to include a decay function 
in the above contribution of potential. Let us choose decay function given by

h(t) = e« (3.2.2)

The constant /q is the positive time constant for the ith neuron. A large /q means 
that only the most recent contributions to the neurons potential are effective. The 
function h(t — r) is small for large negative r, indicating that contributions from early 
arrived impulses are less. Assuming It(t) to be the external input applied to the ith 
neuron at time t, which also fades with time, it’s potential contribution to the neuron 
is given by

f h(t — T)Ii(r))d,T (3.2.3)Jo

Thus, the potential of the ith neuron after receiving contributions from all n neurons 
except itself is given by

” ft ( 1 \ -;t-r) ft ( 1 \ -(t-r)

xi(t) = IZ / Wij I J e « fj(xj(T))dT + (—) e « /d'rjdr (3.2.4)
j£j&J0 Jo \IMJ

The above equation (3.2.4) represents the state of the ith neuron at time t. For 
the sake of convenience we transform the above integral equation into the differential
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equation by taking the time derivative, on both the sides

n ndxi(t) _ d | A 1 \ zh-j.1 , , , , .'/“*/ 1 \ -fe-r).
dt “ fit 1.5=“^ •/0 V/^

Using the generalized Leibnitz rule, we get

i(xj(T))dT + jQ (“)e Mi ii(r)fir

L J*( 1
ti 30 \ Ui

dXj(t)
dt pi Jo \pi 

1

zhzzl 
e « H W/ry/j(%('r)) + ii(r) 

i=i
dr

Pi
'£wijf3(xm+im
3=1

- dxj(t) 
~~dt~ -OjXj(t) + Oj Y'WiMzM + m

J=1
where, Oj = 1/pi

(3.2.5)

The above equation represents the state for the ith neuron, which can be written 
down for all n neurons, so that we obtain a system of differential equations as

dr(t\ n
• ‘ rt-4r- = “®i(0 + J2 Wtf/jM*)) + £(*)ac - j=i

for i = 1,2,> 0.

This is the fundamental system of differential equations that governs the dynam­
ics of Hopfield networks. In fact, many other neural networks also have similar state 
equation.

The above equations can be written in the state space representation as follows:

(It1- = Ax + Bu + HF(x) (3.2.6)
(LL ,

x(0) = Xo
where, x = [xi,x2, ...,®«]T; u(t) - [h(t),I2(t),...Jn(t)]T

A and B are diagonal matrix of order n given by 

A — diag(—di, —a2,—On) and B = diag{ai,a2,...,an)
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where, a* = for i = 1,2,n.

Also, H —

0 OiWi2
U2W21 0

. QiWin 1
' * ;FW =

" h{xi) ' 
/2(®2)

. ®nWra2
0 . J . /n.(*Ui) .

The equation (3.2.6) is a time invariant continuous semilinear model for the Hop- 
field Network. We study the existence and uniqueness in the following section.

3.3 Existence and Uniqueness of Solution

By using the variation of parameter technique, the solution of equation (3.2.6) can 
be written as

x(t) = 4>(f, 0)xo + f $(t,r)Bu(r)dr 4- f $(t,T)HF(x(r))dT (3.3.7)Jo Jo

where, $(t,r) is the state transition matrix for the homogeneous linear part of (3.2.6) 
(refer Chapter 2, Section 2.2.1, Equation (2.2.8)), and is given by

<$>(t,r) 0A(t—r)

e-oi(t-r) 0 

0 g-oa (t-T)
0
0

g-On(t-r)

Thus (3.3.7) takes the form

x(t) = eMx0 + ['eA{t-T)Bu(T)dr + f eMt~r)HF{x{T))di 
Jo Jo

(3.3.8)

We prove the following result regarding the existence and uniqueness of solution of 
the Hopfield networks by using Generalized Banach Contraction Principle.

THEOREM 3.3.1 If the transfer functions fi’s are Lipschitz continuous then there 
exist a unique solution for any initial condition ®i(0) = x& for i = 1,2, ...,n and for 
any external control function u € L2([0, T']; Rn).

Proof : Under the assumptions given in the hypothesis equation (3.2.6) and (3.3.8) 
are equivalent. Hence, for the proving existence of solution of (3.2.6) we prove the
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solvability for (3.3.8). That is, we prove that for any initial condition x(0) — x0 £ Rn 
and for control u € L2([0,T\; Rn) there exists unique solution for (3.3.7) provided F 
is Lipschitz continuous. If /j’s are Lipschitz continuous with constant cq! s then F is 
Lipschitz continuous with constant a = max (a;).

We employ the tools from operator theory to establish the proof.

Define an operator K : C([0,T]; Rn) —> G’([0, T]; Rn) given by:

(Kx)(t) = eAtxo+ [ eA^~r^Bu(r)dr + f eA^~r^ H F(x(T))dr (3.3.9)
Jo Jo

Now,

II (Kx)(t) - (Ky)(t) ||fln = || Jo eA^T'sH(F(x(t)) — F(y(r)))dT ||jp»

< JS II r)H nil (F(x(t)) - F(V(t))) ||*» dr

< Pot /o || (x(r) - y(r)) ||h» dr

where, p = maxte\o,t\ || eA^~to^B || •

That is,
|| (Kx)(t) - (Ky)(t) ||i?«< pat \\x-y ||c([o,T]i«») (3.3.10)

Hence,

Similarly,

Kx - Ky ||c([o,T];Kn) = supt6[0>r] || (Kx)(t) —\Ky)(t) ||Rn 

< paT || x — y ||(7([o,T];Jin)

(K2x — K2y)(t) || = \\ K(Kx){t) ~ K(Ky)(t) \\Rn

< pa Jo || (Kx)(t) - (Ky)(r) j| dr by using (3.3.10)

< p2a2 Jo T || x - y ||c([0,T];K») dr

< p2a2^ || X-y ||c([0,jT];i2n)

(K3x - K3y) (t) || < p3a35 II x-y ||c([o,T];ieq
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In general,

\\(Kmx-Kmym\\cmnR«) < ^^\\x-y\\c(m^) (3.3.11)

As m tends to infinity the quantity (Tpa)rn/m\ tends to zero'. That is, there exists 
some m such that the Lipschitz constant (Tpa)m/rn,l of Km is less than 1 and hence 
Km is a contraction mapping for some m > 1.

Therefore, by the generalized Banach Contraction Principle there exists a unique 
fixed point for the operator K which is solution to the system (3.3.7). Moreover, the 
solution can be computed by using the following successive approximation algorithm.

xn+1(t) = eAtxo+ [ eA(t~T')Bu(r)dT + / eA^~T^HF{xP{t))dr (3.3.12)
Jo . Jo

x°(t) - arbitrary.

3.4 Stability Analysis of Hopfield networks

In this section, we deal with the stability of the Hopfield network (3.2.6), which is 
equivalent to (3.3.7). We will show that slightly perturbed initial condition or external 
inputs do not lead to a drastic change in the solution. That is, the system is able to 
tolerate the noisy initial conditions and converge to the stable state. We prove that 
the Hopfield system is Bounded Input Bounded Output (BIBO) stable and also prove 
its asymptotic stability.

THEOREM 3.4.1 The system (3.2.6) is BIBO stable on [0,T].

Proof : We again use operator theory to show this. Define the solution operator

5 : 12” x C([0,T];2T) -► C([0,T];i2n)

by
3(x0,u) — x(.)

where, x(.) is the unique solution of (3.3.7) corresponding to the initial state xq and 
external input u. Let (x0, u) be the pair of initial condition and external input to the 
system and (xo,u) be slightly changed initial condition and external input.
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Let S(xo, u) = x and S(x0, u) = x .

Therefore,

8(x0,u) — S(x0,u) = eAt(xo — xo) + f B(u{t) — u(r))dr
JO

+ t eA{t~T)H(F(x(r)) - F(x{t)))<1t 
Jo

Hence,

II S(x0,u) - S(x0,u) ]|<|| eAt nil Xq Xq || + f || e^^“T) |||| B |||| u{r) - u(t) || dr
Jo

+ f || eA^~T^ HU H HU F(x(t)) — F(x(t)) || dr 
Jo

|| x{t) — x(t) ||< || xQ — £q || +/q ax& || u(t) — u(t) j| dr

+ f pa || adr) — x(t) || dr 
Jo

where, ax = sup || eAt [j, 6 = || B ||

By using Gronwal’s inequality we get

II x(t) - x(t) || < [oi(T6 || « - U II + II xo ~ Xq H)]epaT

That is, || x — x || < ep“T[ax(T6 || u — u || + || %o — xo ||)]

This implies that the solution operator S is Lipschitz continuous with respect to the 
initial state and the external stimulus u{.). Therefore, bounded inputs results in 
bounded outputs and hence the theorem.

The next result shows that the Hopfield Neural Networks are asymptotically stable.

THEOREM 3.4.2 The state of the Hopfield network is bounded as t —> oo for 
bounded input xq and control u{.).

Proof : We know that

x(t) = eAtxo+ [ eA^~T^Bu(r)dr + f eA^~T^HF(x(r))dT.
Jo Jo

(3.4.13)
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Hence,

il x(t) ||<|| eMx0 || + f 1 eA^ DU B |||| u(t) || dr+ 11| eA(t"r) |||| H || F(x(t)) II dr 
Jo Jo

Since A is the diagonal matrix given by A = diag(—ai, —o2,— an).

We have,

jt

e~ait 0
-a^t

o
o

„At }|2_

i=1

Thus, there exists a A > 0, such that

°At || < e (3.4.14)

Using (3.4.14) in (3.4.13) and using Gronwal’s inequality we get,

II x(t) ||< ||| xq || e“At + «o J e~^hdr + j e~x^t~"r^b || u(t) || drj i 

where, h =|| H ||; c«o =|| .F(O) || .

,hae

Taking limit as t —> oo, we get || x(t) ||< oo for £ —> oo, if || x0 || and || u || are 
finite. Thus, || x(t) || is bounded as t —► oo for bounded input and control. Hence the 
system is asymptotically stable.

3.5 Controllability of Hopfield network

In this section, we investigate the controllability property of the Hopfield network 
(3.2.6). The controllability aspect of Hopfield and recurrent networks are studied by 
Anke Meyer Base [51] and Levin, A. U. [57].

We give sufficient conditions for the controllability of (3.2.6). Here we do not as­
sume that the transfer functions f-s axe of sigmoidal type. However, sigmoidal type 
functions are also included in the class of our functions.

THEOREM 3.5.1 Suppose that the transfer functions f-s satisfy:
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1. \ffix) — fi(y)\ < a*|x — j/|Vx,y e R for some constant cq > 0

2. \fi(x)\ < Mfix € R for some positive constant M*

Then, the Hopfield network (3.2.6) is controllable on any finite interval [0,T].

Proof: We will first show that the linear part of (3.2.6) i.e.

x — Ax 4- Bu(t)

x(0) = xQ (3.5.15)

is controllable , and subsequently using fixed-point argument we prove that the non­
linear system is also controllable.

Since B matrix is the identity matrix in Rn, the rank of the Kalman’s controlla­
bility matrix

Q=[B\AB\A2B\...\AnB\

is n. Hence the linear system is controllable by the condition given in chapter 2, 
(refer Gopal [30]). Also, the controllability Grammian W(Q,T) for the system (3.2.6) 
is given by

W(0,T)

/ f [1 - e-2aiT] 0 ... 0 \
0 f[l —e~2a2T] ... 0

V 0 0 ^[1 — e_2a"T] j

This controllability Grammian is invertible, hence the control

u(t) = B*eAt{T-T)W~1(0,T)(xf - eATx0)

( 2e-«i_py (X/1 - e~a,Txm) N 
(Xf2 - e ~a2Tx02)

(3.5.16)
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’ ®01 ' " Xfl ’

steers the linear system (3.5.15) from x0 =
x02

to Xf =
®/2

_ *^0 n _ . xfn _

during [0,Tj.

Now we define a control for the nonlinear system

x = Ax + Bu(t) + HF(x) 

*(0) = Xq

as

u(t) = B*eA^T-T)W-1(Q,T) xf-eATx0- F eA{T~s)HF{x{s))d&
Jo

(3.5.17)

(3.5.18)

and show that the above control (3.5.18) steers the nonlinear system (3.5.17) from x0 
to xf.

We know that the state of (3.5.17) satisfies

x(t) — eMxo+ f eA(4~T)Bu(r)d,T + / eA^t_T^i7F(a:(r))dr (3.5.19)
Jo Jo

With the control given in (3.5.18) the state (3.5.19) becomes

x{t) = eAtx0+ [*eA(-t-^BB*eA*{T-r)W-1{0,T) xf - eATx0 - F eA{T~s)HF(x(s))ds 
Jo Jo

+ f* eA^HF(x(T))dT 
Jo

At, i = 0 we get x(0) = xq which is obvious and putting i = Twe get

x(T) = eATx0+ FeA{T-T)BB*eA^T-r)W-1{Q,T){xf~eATxo~ FeA(T-s)HF(x(s))ds)d 
Jo .Jo

+ [ eA('T~T'jHF{x{r))dr 
Jo

dr

= eATx0 + WW”1 \xf - eATx0 - F eA(-T~s)HF(x{s))ds
j V 0

dr

+ £ eA{-T-T)HF(x(T))di 

= xf
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Thus, the control defined by (3.5.18) is a steering control provided (3.5.19) possess 
a solution. For proving the existence of solution for (3.5.19) we define an operator 
S : C{[0, T]; Rn) -> C([0, T]; IF) given as

(Sx)(t) = eAtx0+ f* eA(t-T)BB*eA*iT-r^W~1(0,T) 
Jo

Xf — eATxo— f eA(^ s> II F(x(sj)ds
v0

dr

+ f eA[t-T)HF{x{r))dT 
Jo

If there exists a fixed point for the operator S then the fixed point will be the solution 
of the nonlinear equation (3.5.19). We use Schauder’s fixed-point theorem for this 
purpose. First we show that S maps a closed bounded ball Sb into itself, i.e.S(Sb) C Sb

We know that,
|| Sx ||c= sup || (Sx)(t) ||i*»

< sup II eM mi xq II + f II eA{t~r) III) B |||| B* |[|| eA^T~T) |||| W~l(0,T) || 
Jo

(II xf II + II eAT II xo II + / || eA^T~s^H || Mds)dr + J eA^~r^HMdr 

where, M — max{Mi} for i — 1,2,..., n.

By assumption, there exists Mq such that

II Sz ||c< M0

Choose Sb — {®(0 € C([0,T]; Rn) :|| x ||< Mo}, which would imply S maps Sb into 
itself. Since F is Lipschitz continuous it follows that S is also continuous. Similarly, 
it can be shown that S is compact operator from Sb to Sb (refer Joshi & George [36]).

Therefore, by using Schauder’s fixed point theorem S has fixed point x. Hence, 
the system is controllable.

The iterative formula for computing the steering control which steers the initial state 
Xq to the desired final state Xf is given by

uk+1{t) = B*eA~{T-T)W-1(0,T)(xf - eATx0- [TeA(T~s)HF(x(s))ds) (3.5.20)
J 0

xn+1(t) = eAtx 0+ I* eA^Bu(r)dr+ I* eA^HF(xn{r))dT 
Jo Jo

where,
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3.6 Observability of Hopfield Networks

Suppose the associated output equation to the Hopfield Neural Network when the 
network reach stable state is

y(x) — Cx(t) (3.6.21)

Definition : The Neural Networks represented by (3.2.6) is said to be completely ob­
servable if from the knowledge of observations y(t) on the interval [0, T] it is possible 
to find initial state Xq.

We prove the observability of the neural network represented by (3.2.6) with Lip- 
schitz continuous nonlinearity /.

THEOREM 3.6.1 Suppose that

1. rank{C\CA\C A1 \...\CAn~l) =n

2. fi is Lipschitz continuous, and that there exist constant cq > 0 such that \ffix) — 
fi(y)\ < Qi\x — y\ for all x, y € R

3. a — rnax(a.i) « 1

Then the Hopfield network (3.2.6) is completely observable. Moreover, the initial state 
x0 can be computed from the following iterative, scheme:

xkQ+1 = M 1 £ eATsCT{y{s)-j* CeA(s~T)Bu^drds-£ CeA(-s~rAlF{(Sxk0)(T))dT}ds 

starting from any where,

M = [T eATtCTCeMdt 
Jo

Proof : We have seen that system of equations

dxfit)
dt = ..a.,x,U) + n, I] Wijfjixjir)) + Lfir)

j=i
i = l,2,...,n (3.6.22)
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and ' '■
x(t) = eMx0+ f eA{t~T)Bu(T)dT+ [ eAit-T)HF{x(T))dT (3.6.23)

Jo Jo
are equivalent.

Using (3.5.19) we have

y{t) = Cx(t) = CeAtx0 + CeA^Bu{T)dT + f CeA^HF(x(r))dT (3.6.24)
t/Q «0

From theorem (3.3.1), we have for each xo in I?”, there exists a unique solution 
(Sxo)(.) = x(.) in C([0,T], IF). Hence (3.6.24) becomes

y{t) = CeAtxo + r CeA{t~T)Bu{T)d,T + [* CeA^T}HF(Sx0)(r)dT (3.6.25) 
Jq </o

Multiplying both sides of (3.6.25) by eATtCT, we get

eATtCfry{t) = eATtCTCeMx0 + f eAVtCrCeA{^T)Bu{r)dT
Jo

+ /'* eATtCrCeA{t-^ HF(Sx0)dr (3.6.26)
Jo .

Integrating from 0 to T we get

£ eATtCTy{t)dt = j\ATtCTCeAtx0 + J* j* eATsCTCeA^Bu{r)drds

+ [T f eATsCrCeA(s-T)HF(Sx0)dTd.s (3.6.27)
Jo Jo

We know that the first integral on the right is given by

• M(0,T) = FeATtCTCeMdt (3.6.28)
Jo

is the observability Grammian, From hypothesis (1) it is clear that M(0,T) is in­
vertible, refer Brockett [14]. This has been shown by Anke Mayer Base [51] by using 
Kalman’s rank condition, with C — In. Pre-multiplying (3.6.26) by the inverse of 
observability Grammian we get

M~l f eATtCTy(t)dt = xq + AT-1 [ f eATsCTCeA's~T>Bu(T)drds Jo Jo Jo

+M-1 J\ATsCFCeA^HF{Sxo)dTds . (3.6.29)
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Define an operator N : Rn —> Rn by

Nx0 ~ M~l F eATtCTy{t)dt - AN1 F eATsCT f CeA[s-r)Bu{T)drds 
Jo Jo Jo
-M-1 F eATsCT r CeA(s-T)HF{Sx0)drds (3.6.30)

Jo Jo
Using the above definitions (3.6.29) becomes

x0 = Nx0 (3.6.31)

For xq and x0 in Rn, we have

Nxo - Nxo = M~x F I* eATsCTCeA(s-T)H(F{Sx0) - F(Sxo))drds Jo Jo
Therefore,

II Nx0 “ Nx0 ||< 13 || Xq - Xq || 
where, j3 = niia3baeabaT^ with, mi =|| M_1 ||.

Since for sufficiently small a; the value of /? is strictly less than 1 and hence N 
is contraction.

Therefore, by Generalized Banach Contraction principle, (3.6.31) has unique solu­
tion x0 and the solution can be computed from the iterates

= Nxq (3.6.32)

starting from arbitrary

This proves the observability of the Hopfield Neural Networks and hence the initial 
state can be computed from

£§+1 - ikT1 FeATsCT{y(s)- f CeA{^r)Bu{T)dTds- f CeA{s-T)HF({Sxk0){T))dT}ds 
Jo Jo Jo

starting from any x0.

The observability of Neural Network can also be established without the condition 3. 
in the above theorem if / is uniformly bounded.

THEOREM 3.6.2 Suppose that

1. rank[C\CA\CA?\...\CAn~1) = n
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2. the transfer functions fi is continuous. ' .

3. fi is uniformly bounded, that is there exists a constant ki > 0 such that \ fi(x) < 
ki for all x G R.

Then the Hopfield network is completely observable.

Proof: We have shown in the previous theorem that the observability of the Hopfield 
system (3.2,6) with (3.6.21) is equivalent to the solvability of the operator equation 
(3.6.31). We now show that N defined by (3.6.30) has the fixed point by using 
Schauder’s fixed point theorem.

We have
II Nxo ||fln<|| M~x j\ATtCTy{t)dt |1 + || M-1 || jf || |||] C3, ||

f || G HI eA(s~r^ HI B || F((Sxq)(t)) || drds
Jo

m2 -|| M-1 $ eATiCTy{t)dt || 
mx -II M~l || 
c -|| C || 
k — max {ki}

Therefore,

Let Bms be the compact

T2Nxo |[h"< m2 + mia2c2bk— 

ball in RN defined by
= m3

Bm3 = {x€Rn :|| x ||< m3}

Since the solution operator S and F are continuous, N is also continuous. Moreover, 
N is a finite rank operator. Hence N is compact.

Therefore by the Schauder’s fixed point theorem there exists a fixed point for this 
operator. Hence the system is completely observable.

3.T Summary

In this chapter, we have defined a class of nonlinear functions, which on applying as 
transfer function to the Hopfield networks we obtain controllability and stability of
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the network. Also, such networks are observable. The study of controllability and 
stability of Neural Networks are important for understanding the behavior of net­
work see Haykin [31] and Levin and Narendra [57]. Observe that the Hopfield Neural 
Network is represented by a semilinear dynamical system in which the nonlinearity 
depends only on the state variable. The controllability and observability have been 
obtained by using fixed point theorems and stability properties has been stuided us­
ing the spectral properties of the linear part.


