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IMPLEMENTATION

7.1 Introduction

In this chapter, we develop the steering controller for one dimensional semilinear 
parabolic thermal system. The linear parabolic version of such thermal systems is 
already been studied by Alotaibi S. and et. al. (refer [1]).

We establish the controller for one dimensional semilinear parabolic system by dis­
cretizing the system with respect to the space variable. By doing so, the one di­
mensional parabolic system reduces into a finite dimensional state space form. We 
can take care of both distributed controls and boundary controls in this setup. We 
implement the steering control by using Artificial Neural Networks (ANN).
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The problem of controlled flow rate, which is common in thermal systems, is nonlinear 
in nature. Not much literature is available in the computation of steering controllers 
for such systems. We here make an attempt to obtain the controllers by approximat­
ing the thermal system by a finite dimensional system.

Consider a conductive bar of length L, It has a source at the end x = L, to be

x=Q x = L

Figure 7.1: One dimensional conducting rod of length L

used whenever required, as shown in the Figure 7.1. This source can be used for 
rising or lowering the temperature.

The temperature distribution is governed by the partial differential equation

dU d2U
«C7-y”> (7-L1)

where, U — U(x, t) is the state of the system representing the temperature distribu­
tion along the bar, here t is time and x is the longitudinal coordinate measured from
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one end. U00 is the temperature of the surroundings.

Also, here a is the thermal diffusivity and

C = hP/pcAc

where, h is the convection heat transfer coefficient, Ac is the constant cross-sectional 
area of the bar, P is the perimeter of the cross-section, p is the density, and c is the 
specific heat.

The environment temperature, U^ or the temperature of the end U(L,t) can be 
used for controlling the temperature of the rod. When Ua0 is used for controlling, it 
is referred to as distributed control problem, whereas, if U(L, t) is used as tempera­
ture control source then it is called boundary control with the control variable being 
introduced through the boundary condition.

7.2 Controllability of Thermal Systems

In this chapter, we develop the controllability results concerning the distributed con­
trol as well as boundary control for the phenomenon with nonlinear behavior. In 
practise the heat flow depends on some nonlinear phenomenon so we take the model 
as ^ = (t/-CU + 9(!W- (7.2.2)

where, g is a nonlinear function of U and Uoo

The parabolic system is said to be controllable if from the given heat profile at time 
t = 0 the system can be brought to the desired heat profile in the finite time t = tj. 
In the sequel we will assume, that the system initially is at uniform temperature Uq 
and at the end, x = 0 of the rod, (dU/dx)(fl, t) = 0.

System with Distributed Control :

In this section, we will analyze the system' with the control variable being the ambient 
temperature Uoo with a fixed boundary condition U(L,t) — Ul.

Using another variable y = U — UL the equation (7.2.2) becomes,
dy d2y , , , , f( s
"dt ^ adx? ~~^y + ^y°° + f y°°) (7.2.3)
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where, y00 = U00 + UL and f(y, y«,) = g(y + UL, y^ + UL).

The homogeneous boundary and initial conditions are given by (dy/dx)(0,t) = 0, 
y(L, t) — 0 and y(x, 0) = 0. For convenience, the initial temperature distribution has 
been taken to be zero.

Denoting, A = B =■ Q, u, — y^ in equation (7.2.3) we get the system
in the form

J=Ay + Bu + f(y,u) (7.2.4)

The system (7.2.4) is the semilinear dynamical system in infinite dimension.

The controllability of the linear part of (7.2.4) can be established by the following 
result

LEMMA 7.2.1 The linear part of the system (7.2.4) given by

g-«g-Cv + C*. W

is controllable.

Proof: Equation (7.2.5) can be written in the form

dy
dt Ay + Bu (7.2.6)

where, A = B = C,u = yo0

Since A is self adjoint, it has real eigen values (3rn, with m — 0,1,2,..., and a complete 
orthonormal set of eigenfunctions <f>m(x) which forms a spatial basis for the solution 
of system(7.2.6).

Kalmka (refer [40]) has proved that the system such as (7.2.6), is approximately 
controllable if and only if the inner product

< Anj 4*m >— f 0m<j>mdx ^ 0 for all m. (7.2.7)
Jo

For our system, the eigenvalues and eigenfunctions are:

_ + 1 )2^2
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, [2 (2m + 1 )itx
= V I”S- - 2L —

which satisfies inequality (7.2.7) for all m, hence the system is state controllable.

For such system as (7.2.4), since the linear part is controllable, the Lipschitz and 
uniformly bounded nonlinear function / allows to infer that the semilinear system 
(7.2.4) will be approximately controllable refer George, R. K. [27], Anil [3].

For the realization of controller using ANN we however, require finite dimnsional 
approximation, which we have obtained using the technique of spatial discretization.

7.3 Finite-dimensional spatial approximation :

The approximate system is obtained by applying spatial discretization to the system 
(7.2.4). That is, for our system dividing the domain [0,L], corresponding to x vari­
able, into n equal parts of size Ax.

For each Xi corresponding to i = 0,1, ...,n, we get iji = y{xiy t).

Hence, a finite difference spatial discretization of equation (7.2.3) for ith node i > 0, 
will be given as

(hi Vi -i ~ 2yi + yi+i 
dt a Axf Cvi + Cvoo(t) + f{yi, Voo)

That is,

dyj _ a 
dt Ax2^1'1 Vi + a

Ax2
Vi+l + CVoo{t) + f(yi,yoo) (7.3.8)

If we take a = a!Ax2, (7.3.8) will be given as

^ = cry»_i - (2a + C)Vi + PVi+i + CVoo + f(Vi,Voo) (7.3.9)

for i = 1,2, ...,n + 1.

Here i — 1 indicate the end x == 0 and i — n + 1 indicates the right end x = L
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of the rod.

Collecting the equations for all the nodes we get

^ = Ay + Bu + fn(y, u) 

where, y(t) = [yi,y2, -,y„}T € R” and u(t) = yx € R,

A =

(a + () a 0 
a -(2a + 0 cr

0

0

€ Rnxn

0 ••• 0 <7 -(2a + C)

/>’ - <[l.....l]r € Rn

arid the nonlinear Lipschitz function

(7.3.10)

(7.3.11)

In = (/l,/2, ••■,/«)

where, /» = f(yi,u).

The boundary conditions used at two ends are yu = y\ and yn+\ = 0, respectively. 
Here, the boundary conditions are applied so as to make A non-singular.

The system (7.3.10) is finite dimensional semilinear system, which is approximation 
of the parabolic semilinear system (7.2.3).

THEOREM 7.3.1 Suppose that the nonlinear function f is Lipschitz continuous 
and uniformly bounded. Then the finite dimensional discretized system (7.3.10) is 
controllable.

Proof: The corresponding linear portion of the system is

df = Ay + Bu (7.3.12)
at

For system (7.3.12), the controllability matrix Uc = [B\AB\A2B\...\An~1 B\ € Rnxn. 

If Uc has rank n, then the finite dimensional discretized system (7.3.10) is controllable.
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It can be shown here that

detC/c — (_i)K2Ja»<’*-1>/2Cn

hence rank(t/c) = n. Since fn is Lipschitz and uniformly bounded, the semilinear 
system (7.3.10) is controllable (refer Remark 4.4.5) with the steering signal applied 
from the environment.

System with Boundary Control :

Now suppose, for the system (7.2.2), we use U(L,t) = UiXt) as controller for steering 
the initial heat profile of the rod to the desired profile. Using the constant outside 
temperature, Uryo as reference and defining, y — U — U0Q, equation (7.2.2) becomes

If = Q:fj[~Cy + g(y) (7.3.13)

with the initial and boundary conditions (dy/dx)(0, t) — 0, y(L, t) = URt) — Uoo and 
y(x, 0) = 0.

Again, as in case of distributed control, we spatially discretize system (7.3.13) taking 
n parts of length Ax to obtain the finite dimensional approximation.

The obtained finite dimensional approximation in case of boundary control is given 
by equations:

^ = <?y%-1 - (2a + C)Vi + cryi+i + g(yf) ' (7.3.14)

for i = 1,2, ...,n + 1.

These equations in the matrix form can be written as

^ = Ay + Bu + Gn(y) (7.3.15)

where, y(t) = [y 1,7/2, ■■■,yn\T € Rn , u(t) = y(L,t) e R, A is same as given by equa­
tion (7.3.11) and B = [0,...,0,a]r € Rn, Gn{y) = bi(yi),52(2/2), ■■■>9n(yn)]T with 
9i(Vi) = g{Vi)-

The adiabatic condition on the left end, that is (<9y/<9£)(0, t) — 0, is same as be­
fore. However, the temperature at the right end is acting as the control variable.



Chapter 7 123

THEOREM 7.3.2 Suppose that the nonlinear function g is Lipschitz continuous and 
uniformly bunded then the approximate n-dimensional system (7.3.15) is controllable.

Proof: The controllability matrix, Uc for the linear system is given by

' 0 ... ... 0 an
0 ... 0 a-”"1 •••

0 0 cr3
0 <t2 -2ct2(2(t + C)

<j —a(2a + £) cr3 + c(2cr + £)2

€Rnxn (7.3.16)

Here, also rank([/c) = n.

Since, Uc is full rank it is indicated that the state of the linear system is control­
lable even when the control is applied through boundary. Now, by applying the 
result from Chapter 4, we obtain that nonlinear system (7.3.15) is controllable as Gn 
is Lipschitz and bounded.

For the simulation of controller demonstrated in the the next section for distributed 
as well as boundary control we take the value of cr = 1 and £ = 0.0118.

Neural Network implementation of Steering Control :

In this section, we demonstrate the implementation of the distributed and boundary 
control using Artificial Neural Network. We consider the spatial discritization with 
n = 4 for our simulations. Thus, our system would be 5-dimensional systems. We 
first consider the linear systems for the boundary and distributed control, that is, 
assuming the f{y) = 0. In the next phase we simulate the semilinear systems for 
both type of controllers.

In the simulation for the continuous version of the problems (distributed as well as 
boundary) difficulty is faced in computing the controllability matrix and its inverse 
due to the special form of the matrices. Hence, we mainly concentrate on the discrete 
forms of the linear as well as semilinear systems for the distributed and boundary 
control.

In our simulations, the input-output patterns required for training the Neural Net­
work are generated using definitions. In all the simulations our aim is to steer the
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initial temperature profile in the neighborhood of zero to the desired temperature 
profile

y(x,T) = x(x — 1).
The desired temperature distribution, D for 5-dimensional discretized problems is, 

£>=[■0 0.1875 0.2500 0.1875 0 ]T,, withL = 1.

ANN controller for Linear Systems :

The following linear system is considered with n = 5, a = 0.5 and ( = 0.0118.
x = Ax + Bu

where,

A =

-0.5118 0.5000
0.5000 -1.0118

0 0.5000
0 0
0 0

0 0 0
0.5000 0 0
-1.0118 0.5000 0
0.5000 -1.0118 0.5000

0 0.5000 -1.0118
in both the case for the steering control.

The control matrix B will be different in the case of distribute and. boundary con­
trol. To obtain the corresponding discrete systems the discretization is done using 
the sampling rate ST = 1. With this sampling factor the equivalent linear discrete 
system for the assumed parameters is given by

x(k + 1) = Fx + Gu

where,
F--_ &AxST

and
G = /ST A

eArBdr.

Thus, we have
' 0.6658 0.2548 0.0574 0.0091 0.0011

0.2548 0.4684 0.2065 0.0494 0.0080
F = 0.0574 0.2065 0.4604 0.2054 0.0484

0.0091 0.0494 0.2054 0.4593 0.1974
0.0011 0.0080 0.0484 0.1974 0.4109

and G is discretized form of B.
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Figure 7.2: Convergence of Training for distributed ANN controller

100 input-output patterns are generated for training the NN controller using Back- 
propagation algorithm.

Input: The 5-dimensional vector giving the initial temperature.

Linear System with Distributed control :

The control matrix B for the continuous system in case of the distributed control is 

B = [ 0.0118 0.0118 0.0118 0.0118 0.0118 Jf 

The control matrix G for the corresponding discrete linear system is given by 

G=[ 0.0117 0.0117 0.0117 0.0114 0.0095 jT

The Neural Network with the architecture :V|0 10 is trained to act as distributed con­
troller for the linear 5-dimensional system which brings the initial temperature to the 
desired temperature profile in 10-time steps.

Performance is 9.98217e-011. Goal is 1e-010 for the ANN distributed controller
10“
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Output: The 10-dimensional control vector produced using definition to steer the 
state from the initial state to the desired final temperature in 10 time steps. Each • 
component in the control vector gives the scalar controller in each step.

The training of Neural Network converges in 124 epochs. The trained NN controller 
is checked for the initial temperature in the neighborhood to zero to be steered to the 
desired temperature

D = [ 0 0.1875 0.2500 0.1875 0 ]T.

For example, for the initial temperature distribution
[ 0 .1 .15 .1 0 ]T 

the steering signal is given by NN is
' -3.8235 1T 

-2.2701 
-0.2228 
2.1024 

iq3 * 3.9658
iU * 3.7619

-0.4880 
-6.5395 
3.3228 

-0.4431

This NN signal steers the given initial temperature to the final temperature 
[ 0.0032 0.1906 0.2528 0.1898 0.0015 ]T

The comparison between the desired and the reached temperature distribution is as 
shown in the figure 7.3.

The MATLAB program for the simulation is given in Appendix-A, NNgPARABOLIC_d.m.

Linear System with Boundary control :

The control-matrix B for the continuous system in case of the distributed control is
B = [ 0 0 0 0 0.5000 f
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Temperature steered by the ANN Distributed Controller

Figure 7.3: The final temperature steered by the ANN distributed controller

For the corresponding discrete linear system G is given by

G = [ 0.0001 0.0012 0.0103 0.0080 0.3247 J?

The NN with the architecture jV|0 10 is trained to act as boundary controller.

The I/O training patterns are:

Input: 5-dimensional vector which indicated temperature perturbed about zero. 

Output: The 10-dimensional control signal

This signal steers the initial perturbed temperature to the desired temperature 

D= [ 0 0.1875 0.2500 0.1875 0 ]' .

After, the successful training for the NN boundary controller in 679 epochs, it is 
checked with the initial temperature distribution

[ o o.i o.i o.i o J7
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The steering NN signal generated is

l.Oe + 003*

-3.8235
-2.2700
-0.2227
2.1025
3.9660
3.7621

-0.4880
-6.5396
3.3228

-0.4431

This NN signal steers the given temperature profile to

[ 0.0023 0.1898 0.2522 0.1895 0.0015 J7

Temperature Steered by the ANN boundary Controller

Figure 7.4: The final temperature distribution obtained in linear system by the ANN 
boundary controller
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The Figure 7.4 shows the comparison of the desired and steered temperature dis­
tribution.

The MATLAB program for the simulation is given in Appendix-A, NNgPARABOLICLb.:

7.4 Simulation for Semilinear Thermal Systems :

The above simulation results convey that the linear parts of the corresponding semi­
linear systems are controllable using the ANN controllers in the boundary as well 
distributed forms.

For the simulation of semilinear system we consider the nonlinear function / = 
|sm(x). This function / is Lipschitz, hence, it satisfies our condition for control­
lability.

The controllability of semilinear system is multistep problem as it requires solving of 
the coupled equations giving the evolution of state and control in each iteration (refer 
Chapter 4).

The Neural Networks controllers for the semilinear systems are trained as A-step 
controllers. Here, N denotes the number of steps required by the coupled equations 
to converge, starting from arbitrary (x°,u°).

Semilinear System with Distributed control :

For the distributed control of the semilinear system with the nonlinear function / as 
gsm(jc-) it is observed that the solution converges to the desired one in 12-iterations 
for arbitrary (x°,ua). Hence, the NN with the architecture A|o g4 is trained to act as 
7 time step steering control.

50 input-output pairs are generated using definitions for the training of the NN.

Input: The input vector is the 5-dimensional vector which signifies any a:0 in the 
neighborhood of zero. It is generated using the random function of MATLAB.

Output: The output produced by the NN is 84-dimensional vector where, the chunk
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of seven components contribute to the steering signal for steering the state to the next 
state, the next seven component steers the current state to the next next step and 
last seven components contribute to the signal that steers the system to the desired 
temperature profile.

The training of the NN as distributed control converged in 156 epochs. The vali­
dation is done for arbitrary initial temperature distribution. For example, for the 
arbitrary

x°=[o o.i o.i o.i o]T
The NN distributed control signal is a 84 dimensional vector produced by the Neural 
Network, This NN signal steers the x° to the temperature profile

[ 0.0023 0.1898 0.2522 0.1895 0.0015 ]T

as desired.

The computations are in MATLAB program NNgPARABOLICjild.m shown in Appendix- 
A.

Semilinear System with Boundary control :

Neural Network with the architecture IVf>10)56 is trained to act as boundary Controller. 
As before 50 input-output patterns are generated using definitions to train the net­
work.

The network is trained for seven time steps and it is observed for such a setup the 
coupled equations converge in 8 iterations. In this case, the Neural Network acts 
as 7 time step controller, with the output vector having 56 components. The eight 
chunks of consecutive seven components steers the temperature nearer and nearer to 
the desired temperature.

For example, for the arbitrary

x° = [ 0 0.1 0.1 0.1 0 f

The NN boundary control signal is vector with 56-components. This NN signal steers 
the x° to the temperature profile

[ -0.0000 0.1875 0.2500 0.1875 -0.0001 ]T
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Figure 7.5: The evolution of state temperature distribution surface

Comparision between the temperature profiles

Figure 7.6: The temperature distribution steered in semilinear system by the ANN 
boundary controller
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as desired.

The Figure 7.5 shows the gradual change in the temperature in each iteration, that 
is evolution of state over the time and the Figure 7.6 gives the comparison between 
the steered final temperature distribution and the desired temperature distribution 
along the rod.

The MATLAB program NNgPARABOLICmlb.m shown in Appendix-A is used for 
computation.

7.5 Summary

In this chapter, it is shown that the ANN algorithms cam be implemented as steering 
controllers for thermal systems with boundary controller or distributed controller. It 
has been proved in the literature that parabolic system is approximately controllable. 
To implement the ANN controllers we first discretize the parabolic equation into a 
finite-dimensional discretized equation. Controllability of this approximate system is 
established both for the boundary control and distributed control. After generating 
sufficient data for training, an ANN based controller has been developed for linear 
system as well as semilinear system with boundary control and distributed control.

The simulation results demonstrates that ANN can be easily used as controllers for 
the automated thermal systems. Hence, in the automation industry the ANN con­
trollers have a role to play.


