
Chapter 2

Preliminaries

Xi

XL

Oi



Chapter 2

PRELIMINARIES

2.1 Introduction to Artificial Neural Networks

Artificial Neural Network (ANN) is an information processing paradigm that is in­
spired by the way biological nervous systems, such as the brain, process information. 
The key element of this paradigm is the novel structure of the information process­
ing system. It is composed of a large number of highly interconnected processing 
elements (neurons) working in unison to solve specific problems. ANNs, like people, 
learn by examples. An ANN is configured for a specific application, such as pattern 
recognition or data classification, through a learning process. Learning in biological 
systems involves adjustments to the synaptic connections that exist between the neu­
rons. This is true of ANNs as well. They are extremely simplified model of brain. 
They' act essentially as function approximator, which transforms inputs into outputs 
to the best of its ability.

The similarity between the two is as shown in the Figure 2.1. Basically, Neural 
Network is composed of many neurons that co-operate to perform the desired func­
tion. The architectures of ANN are inspired by the working of the brain structure 
which is made up of numerous neurons and connections between them.
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Inputs Outputs

Figure 2.1: Similarity between brain and ANN working

Brief History of Neural Networks :

Neural network simulations appear to be a recent, development. However, this field 
was established before the advent of computers, and Inis survived at least one major 
setback and several eras.

Many important advances have been boosted bv the use of inexpensive computer 
emulations. Following an initial period of enthusiasm, the field survived a period of 
frustration and disrepute. During this period, when funding and professional support 
was minimal, important advances were made by relatively few researchers. These 
pioneers were able to develop convincing technology which surpassed the limitations 
identified by Minsky and Papert. Minsky and Papert, published a book (in 1969) 
in which they summed up a general feeling of frustration (against neural networks) 
among researchers and was thus accepted by most without further analysis. Cur­
rently. the neural network field enjoys a resurgence of interest and a corresponding 
increase in funding.
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The first artificial neuron was produced in 1941? by the neurophysiologist Warren 
McCulloch and Ihe logician Waller Pills. In order lo describe how neurons in Ihe 
brain might work, they modeled a simple neural network using electrical circuits. 
This simple neuron was able to emitate the simple boolean functions like AND. OR

W1

Figure 2.2: McCulloe-Pitts’s Artificial Neuron

and NOT. The weights in this neuron can be ±1.

In 1949, Donald Hcbb published ’’The. Organization of Behavior”, a work which 
pointed out the fact that neural pathways are strengthened each time they are used, 
a concept fundamentally essential lo the ways in which humans learn. If two nerves 
fire at the same time, he argued, the connection between them is enhanced.

In 1959. Bernard Widrow and Marcian Hoff of Stanford developed models called 
” AD ALINE” (ADAptive LINear Elements) and ”M ADA LINE” (Multiple ADAptive 
LI Near Elements). ADALINE was developed to recognize binary patterns so that if 
it was reading streaming bits from a phone line, it could predict the next bit. MADA-
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LINE was the first neural network applied to a real world problem, using an adaptive 
filter that eliminates echoes on phone lines. While the system is as ancient as air 
traffic control systems, like air traffic control systems, it is still in commercial use.

In 1962, Widrow & Hoff developed a learning procedure that examines the value 
before the weight adjusts it (i.e. 0 or 1) according to the rule: Weight Change = 
(Pre-Weight line value) * (Error / (Number of Inputs)).

Despite the later success of the neural network, traditional Von Neumann architecture 
took over the computing scene, and neural research was left b'ehind. Ironically, John 
Von Neumann himself suggested the limitation of neural functions by using telegraph 
relays or vacuum tubes.

In 1972, Kohonen and Anderson developed a similar network independently of one 
another, in which they were creating an array of analog AD ALINE circuits.

The first multilayered network was developed in 1975, an unsupervised network.

In 1982, John Hopfield of Caltech presented a paper to the National Academy of 
Sciences. His approach was to create more useful machines by using bidirectional 
lines. Previously, the connections between neurons was only one way. That same 
year, Reilly and Cooper used a ”Hybrid network” with multiple layers, each layer 
using a different problem-solving strategy.

Also in 1982, there was a joint US-Japan conference on Cooperative/Competitive 
Neural Networks. Japan announced a new Fifth Generation effort on neural net­
works, and US papers generated worry that the US could be left behind in the field. 
(Fifth generation computing involves artificial intelligence. First generation used 
switches and wires, second generation used the transistor, third state used solid-state 
technology like integrated circuits and higher level programming languages, and the 
fourth generation is code generators.) As a result, there was more funding and thus 
more research in the field.

In 1986, with multiple layered neural networks in the news, the problem was how 
to extend the Widrow-Hoff rule to multiple layers. Three independent groups of 
researchers, one of which included David Rumelhart, a former member of Stan­
ford’s psychology department, came up with similar ideas which are now called back- 
propagation networks because it distributes pattern recognition errors throughout the 
network. Hybrid networks used just two layers, these back-propagation networks use 
many. The result is that, back-propagation networks are ’’slow learners,” needing 
possibly thousands of iterations (epochs) to learn.
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Now, neural networks are used in several applications. The fundamental idea be­
hind the nature of neural networks is that, if it works in nature, it must be able to 
work in computers. The future of neural networks, though, lies in the development of 
hardware. Much like the advanced chess-playing machines like Deep Blue, fast and 
efficient neural networks depend on hardware being specified for its eventual use.

Research that concentrates on developing neural networks is relatively, slow. Due 
to the limitations of processors, neural networks take weeks to learn. Some compa­
nies are trying to create what is called a ’’silicon compiler” to generate a specific type 
of integrated circuit that is optimized for the application of neural networks. Digital, 
analog, and optical chips are the different types of chips being developed. One might 
immediately discount analog signals as a thing of the past. However neurons in the 
brain actually work more like analog signals than digital signals. While digital signals 
have two distinct states (1 or 0, on or off), analog signals vary between minimum and 
maximum values. It may be a while, though, before optical chips can be used in 
commercial applications.

Similarities - Human and Artificial Neurons :

Biological Neurons :

The brain is principally composed of about 10 billion neurons, each connected to 
about 10,000 other neurons. Each of the blobs in the Figure 2.3 are neuronal cell 
bodies (soma), and the lines are the input and output channels (dendrites and axons) 
which connect them.

Each neuron receives electrochemical inputs from other neurons at the dendrites. 
If the summation of these electrical inputs is sufficiently powerful to activate the neu­
ron, it transmits an electrochemical signal along the axon, and passes this signal to 
the other neurons whose dendrites are attached at any of the axon terminals. These 
attached neurons may then fire. It is important to note that a neuron fires, only if 
the total signal received at the cell body exceeds a certain level. The neuron either 
fires or it doesn’t, there aren’t different grades of firing. That is, our entire brain 
is composed of these interconnected electro-chemical transmitting neurons. From a 
very large number of extremely simple processing units (each performing a weighted 
sum of its inputs, and then firing a binary signal if the total input exceeds a certain 
level) the brain manages to perform extremely complex tasks.



Chapter 2 17

Dendrites
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Figure 2.3: Components of a biological neuron

Artificial Neurons :

The simplest Artificial neuron was formulated by McCulloch and Pitts (1943) . shown 
in Figure 2.2, as described before.
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Figure 2.4: Perceptron

A simple neuron - Perceptron :

The perceptron. introduced by Rosenblatt(1958) is an advanced mathematical model 
of a biological neuron. While in actual neurons the dendrite receives electrical sig­
nals from the axons of other neurons, in the perceptron these electrical signals are 
represented as numerical values. At the synapses between the dendrite and axons, 
electrical signals are modulated in various amounts. This is also modeled in the 
perceptron by multiplying each input value by a value called the weight. An actual 
neuron fires an output signal only when the total strength of the input signals exceed 
a certain threshold. This phenomenon inm perceptron is modeled by calculating the 
weighted sum of the inputs to represent 'the total strength of the input signals, and 
applying a step function on the sum to determine its output, as shown in the Figure 
2.4. As in biological neural networks, this output is fed to other perceptrons. Thus, 
an artificial neuron is a device with many inputs and one output.

This neuron has two modes of operation; the training mode and the using mode. 
In the training mode, the neuron can be trained to fire (or not), for particular input 
patterns. In the using mode, when a taught input pattern is detected at the input, its 
associated output becomes the current output. If the input pattern does not belong



Chapter 2 19

in the taught list of input patterns, the firing rule is used to determine whether to 
fire or not. In mathematical terms, the neuron fires if and only if

Xxwx + X2W2 + X3W3 + ... > T
where, X\, X2,... are inputs, Wi, W2,... are weights and T is the threshold. The 
inclusion of input weights and the threshold makes this neuron a very flexible and 
powerful one. This neuron has the ability to adapt to a particular situation by 
changing its weights and/or threshold. Various algorithms exist that cause the neuron 
to ’adapt’; the most used ones are the Delta rule and the Back-propagation. The 
former is used in feed-forward single layer networks and the latter in feed-forward 
multi layered networks. Hence forth we will interchangeably use the words perceptron, 
neuron or node they all mean the processing units in ANNs:

Transfer Function :

The behavior of an ANN (Artificial Neural Network) depends on both the weights 
and the input-output function (transfer function) that is specified for the processing 
units. This function typically falls into one of three categories:

• linear (or ramp)

• threshold

• sigmoid

Figure 2.5: Activation Functions.

For linear units, the output activity is proportional to the total weighted output.
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For threshold units, the output is set at one of two levels, depending on whether 
the total input is greater than or less than some threshold value.

For sigmoid units, the output varies continuously but not linearly as the input changes. 
Sigmoid units bear a greater resemblance to real neurones than do linear or threshold 
units, but all three must be considered rough approximations.

Utility of Neural Networks :

Neural networks, with their remarkable ability to derive meaning from complicated 
or imprecise data, can be used to extract patterns and detect trends that are too 
complex to be noticed by either humans or other computer techniques. A trained 
neural network can be thought of as an ’’expert” in the category of information it 
has been given to analyse. This expert can then be used to provide projections given 
new situations of interest and answer ’’what if’ questions. Other advantages include:

1. Adaptive learning: An ability to learn how to do tasks based on the data given 
for training or initial experience.

2. Self-Organization: An ANN can create its own organization or representation 
of the information it receives during learning time.

3. Real Time Operation: ANN computations may be carried out in parallel, and 
special hardware devices are being designed and manufactured which take ad­
vantage of this capability.

4. Fault Tolerance via Redundant Information Coding: Partial destruction of a 
network leads to the corresponding degradation of performance. However, some 
network capabilities may be retained even with major network damage.

Applications of Neural Networks :

Character Recognition -

The idea of character recognition has become very important, as handheld devices 
like the Palm Pilot are becoming increasingly popular. Neural networks can be used 
to recognize handwritten characters.
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Image Compression -

Neural networks can receive and process vast amounts of information at once, making 
them useful in image compression. With the Internet explosion and more sites using 
more images on their sites, using neural networks for image compression is worth a 
look.

Stock Market Prediction -

The day-to-day business of the stock market is extremely complicated. Many factors 
weigh in whether a given stock will go up or down on any given day. Since neural 
networks can examine a lot of information quickly and sort it all out, they can be 
used to predict stock prices.

Traveling Salesman’s Problem -

Interestingly enough, neural networks can solve the traveling salesman problem, but 
only to a certain degree of approximation.

Medicine, Electronic Nose, Security, and Loan Applications -

These are some applications that are in their proof-of-concept stage, with the accep- 
tion of a neural network that will decide whether or not to grant a loan, something 
that has already been used more successfully than many humans.

Architecture of neural networks :

Single-Layer Feedforward networks :

In a layered neural network the neurons are organized in the form of layers. In the 
simplest form of a layered network, we have an input layer of source nodes that 
projects onto an output layer of neurons (computation neurons). In other words, the 
network is strictly a feedforward or acyclic type. It is shown in Figure 2.6. The name 
’single-layer’ refers to the output layer of computation nodes. Hence, such a network 
is called single-layer network.
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Figure 2.6: Single layered Architecture

Multilayer Feed-forward networks :

The common type of artificial neural network consists of three layers, of units: a layer 
of ’’input” units is connected to a layer of ’’hidden” units, which is connected to a 
layer of ’’output” units. Feed-forward networks, as shown in Figure 2.7, have the 
following characteristics:

1. Nodes are arranged in layers, with the first layer taking in inputs and the last 
layer producing outputs. The middle layers have no connection with the external 
world, and hence are called hidden layers.

2. Each node in one layer is connected to every node on the next layer. Hence 
information is constantly ’’fed forward” from one layer to the next., and this 
explains why these networks are called feed-forward networks.

3. There is no connection among nodes in the same layer.
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h

Figure 2.7: A multilayer feedforward network

Feed-forward ANNs, Figure 2.7 allow signals to travel one way only; from input to 
output. There is no feedback (loops) i.e. the output of any layer does not afTect that 
same layer. Feed-forward ANNs tend to be straight forward networks that associate 
inputs with outputs. They are extensively used in pattern recognition. This type of 
organization is also referred to as bottom-up or top-down. Working of such networks 
can be summed up as follows:

• The activity of the input units represents the raw information that is fed into 
the network.

• The activity of each hidden unit is determined by the activities of the input 
units and the weights on the connections between the input and the hidden 
units.

• The behavior of the output units depends on the activity of the hidden units 
and the weights between the hidden and output units.
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This type of network is interesting because the hidden units are free to construct 
their own representations of the input. The weights between the input and hidden 
units determine when each hidden unit is active, and so by modifying these weights, 
a hidden unit can choose what it represents.

Feedback networks :

Figure 2.8: A recurrent network

Feedback networks, as shown in Figure 2.8, can have signals traveling in both direc­
tions by introducing loops in the network. Feedback networks are very powerful and 
can get extremely complicated. They are dynamic, that is, their ’state’ is changing 
continuously until they reach an equilibrium point. They remain at the equilibrium 
point until the input changes and a new equilibrium needs to be found. Feedback 
architectures are also referred to as interactive or recurrent, although the latter term 
is often used to denote feedback connections in single-layer organizations.
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The Learning Process

The learning of patterns and the subsequent response of the network can be catego­
rized into two general paradigms:

Associative mapping in which the network learns to produce a particular pattern 
on the set of input units whenever another particular pattern is applied on the set 
of input units. The associative mapping can generally be broken down into two 
mechanisms:

• Auto-association: An input pattern is associated with itself and the states of 
input and output units coincide. This is used to provide pattern completion, ie 
to produce a pattern whenever a portion of it or a distorted pattern is presented.

• Hetero-association: In this case, the network actually stores pairs of patterns 
building an association between two sets of patterns.

It is related to two recall mechanisms:

1. Nearest-neighbor recall, where the output pattern produced corresponds 
to the input pattern stored, which is closest to the pattern presented, and

2. Interpolative recall, where the output pattern is a similarity dependent in­
terpolation of the patterns stored corresponding to the pattern presented. 
Yet another paradigm, which is a variant associative mapping is classifica­
tion, ie when there is a fixed set of categories into which the input patterns 
are to be classified.

Regularity detection in which units learn to respond to particular properties of the 
input patterns. Whereas in associative mapping the network stores the relationships 
among patterns, in regularity detection the response of each unit has a particular 
’meaning’. This type of learning mechanism is essential for feature discovery and 
knowledge representation.

Every neural network possess knowledge which is contained in the values of the con­
nections weights. Modifying the knowledge stored in the network as a function of 
experience implies a learning rule for changing the values of the weights.

Information is stored in the weight matrix W of a neural network. Learning is the 
determination of the weights. The learning is performed in the following way, based 
on it one can distinguish two major categories of neural networks:
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• Fixed networks: in which the weights cannot be changed, That is, ^ = 0. In 
such networks, the weights are fixed a priori according to the problem to solve.

• Adaptive networks: which are able to change their weights, That is, ^ ^ 0.

All learning methods used for adaptive neural networks can be classified into two 
major categories:

• Supervised: learning which incorporates an external teacher, so that each output 
unit is told what its desired response to input signals ought to be. During the 
learning process global information may be required. Paradigms of supervised 
learning include error-correction learning, reinforcement learning and stochastic 
learning.
An important issue concerning supervised learning is the problem of error con­
vergence, that is, the minimization of error between the desired and computed 
unit values. The aim is to determine a set of weights which minimizes the error.- 
One well-known method, which is common to many learning paradigms is the 
least mean square (LMS) convergence.

• Unsupervised: learning uses no , external teacher and is based upon only lo­
cal information. It is also referred to as self-organization, in the sense that it 
self-organizes data presented to the network and detects their emergent collec­
tive properties. Paradigms of unsupervised learning are Hebbian learning and 
competitive learning.

From Human Neurons to Artificial Neurons the aspect of learning concerns the distinc­
tion or not of a separate phase, during which the network is trained, and a subsequent 
operation phase. We say that a neural network learns off-line if the learning phase 
and the operation phase are distinct. A neural network learns on-line if it learns and 
operates at the same time. Usually, supervised learning is performed off-line, whereas 
unsupervised learning is performed on-line.

To design a neural network that performs some specific task, we must choose how the 
units are connected to one another, and we must set the weights on the connections 
appropriately. The connections determine whether it is possible for one unit to influ­
ence another. The weights specify the strength of the influence.

We can teach a three-layer network to perform a particular task by using the fol­
lowing- procedure:
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1. We present the network with training examples, which consist of a pattern of 
activities for the input units together with the desired pattern of activities for 
the output units.

2. We determine how closely the actual output of the network matches the desired 
output.

3. We change the weight of each connection so that the network produces a better 
approximation of the desired output.

The Back-Propagation Algorithm :

In order to train a neural network to perform some task, we must adjust the weights 
of each unit in such a way that the error between the desired output and the actual 
output is reduced. One such form of supervised training is done using an algorithm 
known as Backpropagation algorithm.

The basic Backpropagation algorithm is based on minimizing the error of the net­
work using the derivatives of the error function. Most common measure of error is 
the mean square error: E = (target — output)2.

Let / be the activation function then partial derivatives of the error with respect 
to the weights for the output as well hidden neurons are:

Output Neurons:
8j = f (netj) (tar getj — Outputj) 

dE/du)ji = —outputiSj

where, j = output neuron and i = neuron in last hidden layer.

Hidden Neurons:
Sj = finetj) Y^ihwkj) 

dE/dwji = —outputiSj

where, j = hidden neuron and i — neuron in previous layer and k = neuron in next 
layer.

Since, the calculation of the derivatives flows backwards through the network, hence 
the name, Backpropagation. These derivatives point in the direction of maximum 
increase of the error function.
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The correction Awji applied to the synaptic weight connecting neuron i to neuron j 
is defined by the delta rule.

.Weight correction = learning rate parameter * local gradient * input to neuron j

That is, 

Hence,

A Wji(n) — a.5j(n).yi(n)

wnew = wM - adE/dwoid

The learning rate is very important, if it is too small the convergence will be extremely 
slow and if the a is too large there may not be any convergence.

A small step (learning rate) in the opposite direction will result in the maximum - 
decrease of the (local) error function.

There are issues of local minimum with Backpropagation algorithm to overcome it 
we use Backpropagation with momentum as it tends to aid convergence and applies 
smoothed averaging to the change in weights as follows

^new @A0id OtdE!Sw0id

where, 0 is the momentum coefficient. And we get new weight change rule as

Wnew ~ W0id T Anew

Such a modification in a Backpropagation algorithm acts as a low-pass filter by re­
ducing rapid fluctuations.

Basically, training in the algorithm is essentially minimizing the mean square er­
ror function keeping in mind to avoid local minima.

Traditional techniques for avoiding local minima are:

Simulated annealing: Perturb the weights in progressively smaller amounts

Genetic algorithms: Use the weights as chromosomes, Apply natural selection, mat-, 
ing, and mutations to these chromosomes.
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An incident to share :

(By Neil Fraser, September 1998)

In the 1980s, the Pentagon wanted to harness computer technology to make their 
tanks harder to attack.

The Plan: The preliminary plan was to fit each tank with a digital camera hooked 
up to a computer. The computer would continually scan the environment outside for 
possible threats (such as an enemy tank hiding behind a tree), and alert the tank crew 
to anything suspicious. Computers are really good at doing repetitive tasks without 
taking a break, but they are generally bad at interpreting images. The only possible 
way to solve the problem was to employ a neural network.

The Implementation: The research team went out and took 100 photographs of 
tanks hiding behind trees, and then took 100 photographs of trees - with no tanks. 
They took half the photos from each group and put them in a vault for safe-keeping, 
then scanned the other half into their mainframe computer. The huge neural network 
was fed each photo one at a time and asked if there was a tank hiding behind the 
trees. Of course at the beginning its answers were completely random since the net­
work didn’t know what was going on or what it was supposed to do. But each time 
it was fed a photo and it generated an answer, the scientists told it if it was right or 
wrong. If it was wrong it would randomly change the weights in its network until it 
gave the correct answer. Over time it got better and better until eventually it was 
getting each photo correct. It could correctly determine if there was a tank hiding 
behind the trees in any one of the photos.

Verification: But the scientists were worried: had it actually found a way to recog­
nize if there was a tank in the photo, or had it merely memorized which photos had 
tanks and which did not? This is a big problem with neural networks, after they have 
been trained you have no idea how they arrive at their answers, they just do. The 
question was did it understand the concept of tanks vs. no tanks, or had it merely 
memorized the answers? So the scientists took out the photos they had been keeping 
in the vault and fed them through the computer. The computer had never seen these 
photos before - this would be the big test. To their immense relief the neural net 
correctly identified each photo as either having a tank or not having one,

Independent testing:The Pentagon was very pleased with this, but a little bit 
suspicious. They commissioned another set of photos (half with tanks and half with­
out) and scanned them into the computer and through the neural network. The
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results were completely random. For a long time nobody could figure out why. After 
all nobody understood how the neural had trained itself.

Grey skies for the US military: Eventually, someone noticed that in the orig­
inal set of 200 photos, all the images with tanks had been taken on a cloudy day 
while all the images without tanks had been taken on a sunny day. The neural net­
work had been asked to separate the two groups of photos and it had chosen the most 
obvious way to do it - not by looking for a camouflaged tank hiding behind a tree, 
but merely by looking at the color of the sky. The military was now the proud owner 
of a multi-million dollar mainframe computer that could tell you if it was sunny or not.

The Lesson: Training and testing are the most vital phases of using neural net­
works for any application.

Neural Network Control :

A lot of research has been done on using feed-forward neural networks as the adap- • 
tive component in a learning controller [76]. The network weights can be adjusted 
using the Backpropagation algorithm, genetic algorithms [59], or various stochastic 
search algorithms (for example, Alopex [77] and statistical gradient following [63]). 
Supervised training is usually performed using error signals derived from the systems 
performance error, although other approaches which transfer expert information from 
a rule base are common. Such an approach is implemented in [53], and other author 
have used a fuzzy rule base. Several control approaches have been developed which 
perform training on the system with its controlling neural network unfolded over 
discrete time. Backpropagation through time [9] propagates error information back­
wards through time, and forward propagation algorithms [63] do the reverse. Such 
algorithms can also train recurrent neural network controllers that have their own 
dynamical properties. These algorithms have been generalized to continuous systems 
[39] and made more efficient in various ways. Although theoretically elegant, forward 
and backward propagation approaches are ill suited to practical on-line control. Oth­
ers have used a more successful analytical control-theory approach to train a neural 
network so that it becomes an inverse (in some sense) of the system being controlled 
([25], [79], [45],).

Neural networks can be used for approximating a controller because of two facts:

• Firstly, Multilayer feed-forward Neural Networks are universal approximator, 
(refer [22] and [33])



Chapter 2 31

• Secondly, due to the Backpropagation Algorithm.

The Backpropagation Algorithm performs gradient descent. Recall that the change 
in weights after k iterations can be given as

w(k + 1) — w(k) — a(k)e(k).

For the dynamical system

x(k + 1) = f(x(k), u(k))

s(0) = 0

neural network approximation for system with the controller being implemented using 
neural network can be given as:

x(k + 1) = NNfi[x, NNu(x(k))) (2.1.1)

with .
AW/[0,0] = 0.

2.2 Basics of Control Theory

In Control Theory one is interested in the behavior of model of the physical system 
working under the influence of physical laws and external inputs. Once the system is 
modeled it analyzed for the existence and uniqueness of solution, stability, controlla­
bility, observability etc. The dynamical systems can be classified into being Linear, 
Nonlinear; Time variant, Time-invariant; Continuous, Discrete; Autonomous, Non- 
Autonomous etc. '

In this work we will be mainly dealing with the semilinear systems both in the dis­
crete as well as the continuous form. The semilinear system is the one which has the 
linear part as well as the nonlinear part. In this section we present required results 
of the Linear Systems.

Continuous Linear System

The continuous time variant linear system is given by:

x(t) = A(t)x(t) + )
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x(t0) = x0 (2.2.2)
where, A(t)nxn. is the system matrix, which is assumed to be continuous for all t, 
B(t)nxm is the control matrix. The state x(t) € X C Rn, u(t) 6 U C Rm is the 
control input to the system.

DEFINITION 2.2.1 Controllability: A dynamical system (2.2.2) is said to be 
completely controllable, if for any initial and final states Xi and xT in the state space 
X, there exist control u that will steer the system from x(to) — xt to x(T) = xt, 
during [t0, T].

The state transition matrix for the homogeneous part of the system (2.2.2) is denoted 
by <P(t, t0) and is given by

$(f, t0) = 'if(t)i)~1 (t) (2.2.3)

where ip(t) is called fundamental matrix whose n columns consist of n linearly inde­
pendent solutions of the homogeneous part of (2.2.2). The state transition matrix 
given by (2.2.3) satisfies the differential equation

f$(t,to) = A(t)<P(t,t0) (2.2.4)

and the boundary conditions
$(*o,*o) == I

The solution for the system (2.2.2) is given by

x(t) = <3>(i, t0)xo + f $(t,T)B(T)u(r)dT (2.2.5)
Jto

The controllability for the system (2.2.2) is guaranteed if the controllability grammian 
is invertible (refer Brockett citeBRW. The controllability grammian for the system 
(2.2.2) is given by

W(to,T) = F <P(t0,t)B(t)B*(t)$*(to,t)dt
Jto

and the minimum norm steering control for the system (2.2.2) is given by

u(t) = -B'WitorfW-'faTXxo - Q(to,T)x(T)) (2.2.6)

In the system (2.2.2) if A(t) and B(t) are time invariant then the system can be 
written as

x(t) = Ax(t) + Bu(t)
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x{t0) = x0

for which the state transition matrix is given by

The solution for the system (2.2.7) is given by

x(t) = + f e^(*o-T)Bu{r)dr)
JtQ

The controllability grammian is given by

W{t0,T) = fT eA(t0...t")BB*eA,i:-t0...^dt

and the minimum norm controller is given by

u(t) = -B*eA'{to~t)W~1(t0, T)(x0 - eA(-t0-Th;(T))

(2.2.7)

(2.2.8)

(2.2.9)

(2.2.10)

Discrete Linear System :

The discrete time variant linear system is given by:

x(k + 1) = F(k)x(k) + G(k)u(k)

x(ko) = xq (2.2.11)
where, F(k)nxn, G(k)nxm are time dependent matrices and F(k) is non-singular for 
all k. The state x(k) SIC Rn, u(k) e U C Rm is the control input to the system.

For the system (2.2.11) the state transition matrix is given by $(fc, ko) = nLko -^(0 
The solution for the system (2.2.11), for k > k0 is given by

k
x(k) = $(k,k0)x0 + <h(k,k0) £ $-1(<,Ato)G(*-l)«(*-l)

i=fco-fl

The controllability Grammian matrix is given by

k\ — l
W(k0,kx) = £ ®(k0,j'F l)G{j)GT(j)$T(k0,j + 1)

J=*0
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The system (2.2.11) is controllable if and only if the controllability Grammian W(ko, k\) 
is invertible. Thus, System (2.2.11) will be controllable if and only if n rows of nxm 
matrix functions 4>(fc0. k + l)G(k) are linearly independent on [ko, ki].

In this case, a control u(k) which steers the system (2.2.11) from % to xx is given by
u(k) = -Cfr(k)<hT(k0>k + l)W-1{k0,k1)[xo-${k0,k1)x1] (2.2.12)

In case when F(k) and G(k) are time invariant the system (2.2.11) becomes

x(k + 1) = Fx(k) + Gu{k)

x(k0) = x0 (2.2.13)
where, FnXn, Gnxm are time independent matrices and F is invertible. The state 
x(k) G X C Rn, u(k) G U C Rm is the control input to the system. For the system 
(2.2.13) the state transition matrix is given by

$(*, ko) = $(A - k0) = F<*-*■»)

The solution for the system (2.2.13), for k > ko is given by

kx(k)=F{k-ko)Xo + F{k-ko) F-V-^Guii - 1) .

If ko = 0, as is usually assumed in the time-invariant case, we get solution as
fc

x(k) - Fkxo + Fk~*Gu(i - 1)
i=t

The discrete-time system (2.2.13) is controllable if and only if the rank of (n x nm) 
controllability matrix U where, U = [G\FG\...\Fn~lG] is n. That is, p(U) — n. In 
this case, a control u which steers the system (2.2.13) from Xq to xx is given by

u=U~1[x1-Fnx o] (2.2.14)

2.3 Definitions :

Consider the dynamical system

x(t) — Ax(t) + Bu{t) + f(x(t),u(t))

x(to) = Xi (2.3.15)
For a dynamical system state controllability usually mean that it is possible - by 
admissible inputs - to steer the states from any initial state to>any final state within 
some finite time. Putting into mathematical perspective



Chapter 2 35

DEFINITION 2.3.1 Controllability: A dynamical system (2.3.15) is said to be 
completely controllable, if for any initial and final states Xi and xt in the state space 
X, there exist control u that will steer the system from x(t0) — Xi to x(T) = xt, 
during [t0, -

For linear systems (2.2.2) there is a test to check if a system is controllable or not 
(called Kalman’s condition). For a system with n dimensional state vector, if the 
rank of the following controllability matrix

[ B\AB\A2B\ • • • \An~lB ] .

is equal to n, then the system is controllable.

DEFINITION 2.3.2 Local Controllability: A dynamical system is locally con­
trollable around an equilibrium state x — 0, if for every neighborhood Wx of the 
origin, there is some neighborhood Vx of the origin such that for any two states xit xt 

.in Vx, there exist a control that will transfer the system from xt to Xf without leaving 
Wx.

DEFINITION 2.3.3 Reachability: Let T > 0. We define for any initial data 
xq G X, the set of reachable state as

R(T]Xo) = x(T) : x is a solution of (2.3.15) with u G L2(0,T-,X)

DEFINITION 2.3.4 Exactly Controllable: The dynamical system (2.3.15) is 
said to be exactly controllable on [0. T\ if, for given Xq and x in Rn, there exists a 
control u G L2(0,T\ Rm) such that the corresponding solution x{t) of (2.3.15) satisfies 
x(T) = x. In other words, if the set of reachable states R(T, xq) coincides with Rn, 
system (2.3.15) is exactly controllable.

DEFINITION 2.3.5 Approximately Controllable: Let X and U be Hilbert 
Spaces. The dynamical system (2.3.15) is said to be approximately controllable on 
[0, T\ if, for every initial state x0 G X, the set of reachable states R{T, xq) is dense in 
X. That is, the system (2.3.15) is approximately controllable, if for any given xo and 
x in X and any e > 0, there exists a control u G L2(0, T; U) such that || x(T) — x ||< e.

In control theory, Observability is a measure for how well internal states of a sys­
tem can be inferred by knowledge of its external outputs. The observability and* 
controllability of a system are mathematical duals.

i

i
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DEFINITION 2.3.6 Observability: A dynamical system is said to be observable 
if from current state its previous state cun be observed, or, from observations it is 
possible to get the complete state or initial state.

For linear systems in the state space representation, with the associated output equa­
tion y(t) = Cx(t), there is a convenient test to check if a system is observable. For a 
system with n states, if the rank of the following observability matrix

C 
CA 
CA2

_ CM" 1

is equal to n, then the system is observable. The rationale for this test is that if n 
rows are linearly independent, then each of the n states is viewable through linear 
combinations of the output variables y(t).

DEFINITION 2.3.7 BIBO Stable: BIBO stands for Bounded-Input Bounded- 
Output,. A dynamical system is said to be BIBO stable if the the output will be 
bounded for every input to the system that is bounded.

DEFINITION 2.3.8 Asymptotic Stable: A dynamical system is said to be asymp­
totic stable if there is no change in the system for t > T.

DEFINITION 2.3.9 Moore Penrose Inverse: Given an m x n matrix B, the 
Moore-Penrose inverse of B is a unique nxm generalized inverse of B and is denoted 
by B+. This matrix is variously known as the generalized inverse, pseudoinverse, or 
Moore-Penrose inverse.
The Moore-Penrose inverse satisfies

BB+B = B 

B+BB+ = B+
(BB+f = BB+
(B+B f = B+B

DEFINITION 2.3.10 C0-Semigroup: Let X be a Banach space and A be linear 
operator on X. A strongly continuous family {T(t)}t>o of bounded operators in X is 
called a C0-semigroup generated by A if
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(i) T(t + s)x = T(t)T(s)x, x € X and t,s> 0,

(it) T{0)x — x, x € X

(Hi) 11-4- T(t)x is continuous for t > 0, x £ X,

(iv) Ax = linw mf=* = X e D(A),

where D(A) = {x € X : limt->o+ T^*~x } exists.

Here D(A) is the domain of A.

We have following property of Co-semigroup. Let S(t) be a strongly continuous 
semigroup and let A be its infinitesimal generator. Then, for x € D(A) we have that 
S(t)x € D(A) and

•^S(t)x = AS(t)x = S(t)Ax,Vt>0.

2.4 Theorems form functional Analysis :

THEOREM 2.4.1 Inverse Function Theorem: Let E and F be normed vector 
spaces. Let U be open in E, let a € U and let f : U —y.F be Cp (i.e. continuous p 
derivative) map. Assume that the Jacobian Df{a) : E —> F is invertible. Then f is 
locally Cp-invertible at a.

THEOREM 2.4.2 Implicit Function Theorem: Let E, F and G be normed 
vector spaces. Let U be open in E x F, let f : TJ —> G be Cp map. Let (a, b) be a 
point of U with a € E and b € F. Let f{a,b) = 0. Assume that the Jacobian of f 
with respect to y denoted by Dif(a,b) : F —* G is invertible. Then there is an open 
ball V centered at a in E and a continuous map g : V —> F such that g(a) = b and 
f(x,g(x)) = 0 for all x € V. If V is a sufficiently small ball, then g is uniquely 
determined and is of class Gp.

THEOREM 2.4.3 Banach Contraction Mapping Theorem: Let T be a con­
traction mapping of a Banach space X onto itself, i. e.
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Then, T f has a fixed point in X. That is, there exists x* € X such that

Tx* = x*

and
zn+1 = Txn

converges to this fixed point for arbitrary x°.

THEOJiEM 2.4.4 Generalized Contraction Principle: Let T : X —>■ X be an 
operator on a Banach space and if Tn is a contraction for some n > 1 then T has a 
fixed point

THEOREM 2.4.5 Schauder’s Fixed Point Theorem: The Schauder fixed point 
theorem asserts that if K is a compact, convex subset of a Banach space and T is a 
mapping of K into itself, then T has a fixed point.

THEOREM 2.4.6 Gronwall’s Inequality: Let f be a positive continuous function 
satisfying the following integral inequality

f(t) <C+ [ g(s)f(s)ds, 
Jo

where, C is a positive constant and g{t) > 0(Vi € [0,T]) is a continuous function. 
Then t

f{t)<Ce^^ds,te{0,T].

This chapter has the essentials for developing the work. In the next chapter we ex­
plore the properties of the Hopfield type Neural Networks.


