
Chapter 3

Zone Boundary
Identification : Slope based
approach

IT is clear from the justification given in the previous chapter that it is
mandatory to recognized components in the three zone separately. Hence,

we need a robust algorithm which can determine the presence of a glyph in a
particular zone and accurately locate the zone boundaries.

In this chapter we justify the need of a novel algorithm for documents of
Gujarati script, and present one of t he two algorithms that has been formulated
as part of this research work.

3.1 Mathematical Preliminaries

In the method proposed during this research work we have used concept of
slop^pf a line to locate the zone boundaries.

Definition 3.1.1 Let (x\,y\) and (x2,V‘i) be two points on a line l then the
slope of the line, say S, is given by

3.2 Zone Boundary Identification : State-of-the-Art

Y
y3-«B

Figure 3.1: Slope of a Line

Figure 3.2 shows a text line and the coordinates of its pixels in image coordi

nate.

(0.0)

qaartrFlwiH frwsIM m cfpkl
Figure 3.2: Text Line Coordinate System

We know that in the image coordinate system each pixel is referred by its row
and column number. For example, (iti,t>i). It should be noted from Figure

3.2 that when we superimpose this image coordinate system on to cartesian
coordinate system, the row coordinate in image coordinate system becomes
Y coordinate and column coordinate serves as X coordinate in the new frame
work.

3.2 Zone Boundary Identification : State-of-the-Art

Gujarati is not the only script for which zone boundary detection is mandatory.
Other Indo-Aryan scripts like Devanagari, Bangla and Gurmukhi also require

zone identification for reducing the number of symbols to be recognized.
In [6], Veena Bansal et. al. showed an approach for identifying zone boundary
for Devagnagari script. [10] documents efforts of B B Chaudhury and U. Pal

for carrying out this task for Bangla. Both of these approaches use maxima
in the horizontal projection [6] of a text line to decide the zone boundary.

Mathematically, their logic tries to find out the cut around the pixel row(s) r
such that,

hp[r] = max/ip[i] where hp[i] is horizontal projection.
i

1urfy
It is clear that the maximal is always located at the pixel row(s) corresponding

to shirorekha in these scripts (see Fig. 3.3(a)).It may be noted from the Fig.

44

3.3 Proposed Approach

3.3(b) that horizontal projection of the Gujarati text does not have any promi
nent peak. Hence, it is not possible to apply the algorithms proposed for zone
boundary identification for scripts like Devanagari and Bangla to Gujarati in
the same form.

3TRcT HlfCcfr ipBBSff—"

(a) Horizontal projection of Devanagari Text

(b) Horizontal projection of Gujarati Text

Figure 3.3: Horizontal Projection

It could be argued here, that instead of a peak at the header line, a trough
in the horizontal projection may be used to detect the upper zone boundary.
However, following are some of the instances in which this may not work to
the required accuracy:

1. In the case where the number of modifiers is significantly large this
trough will not be very prominent.

2. A slight misalignment of text may lead to cutting off of a significant
part of a glyph in the middle zone (eg. a small arc at the top left
corner of the letter /ya/) which can affect the recognition accuracy (in
case of previously sited example of /ya/ the shape after removal of that
curvature would be similar to alphabet /va/).

3. When the number of modifiers is less, the trough is shallow and hence
almost undetectable.

Before this work started there were no documented efforts for detecting zone
boundaries in documents printed in Gujarati text. It is also clear that we need
to devise a novel algorithm to handle this task.

3.3 Proposed Approach

In order to overcome the problems posed by the above-mentioned situations,
we devised a new algorithm to determine the zone boundaries.

3.3.1 Using Slopes of Lines Joining Top Left (Bottom Right)
Corners of Connected Components

The pseudo code of the algorithm for detecting the zone boundaries is de
scribed below. It is observed that in most of the cases a line / word has more

45

3.3 Proposed Approach

number of base line component without upper / lower modifier than those
withostfbmodifiers. This is used as basic assumption in this algorithm.

In our algorithm first we consider all the potential connected components (CC)
within a text line and compute the slopes of all the imaginary lines that join
top left corners of all possible pairs of CC. The row coordinate of the CC that
are end points of the maximum number of lines having the least slope would
identify the row of separation between the upper zone and the middle zone.
Similar procedure for the bottom right coordinates of the connected compo
nents would indicate the location separating the middle and the lower zones.
Algorithm 3.1 gives step by step procedure for the same.

Algorithm 3.1 To Find Zone Separation Boundary
Input: Binarized Image of a line of Gujarati text,
Output: Row numbers of the two lines that separate upper and lower modi
fiers from the middle zone.
Step 1: Extract the connected components in the line with the information
about their bounding boxes,as in Fig. 3.4.
Step 2: For each pair of distinct connected components, compute the follow
ing:

1. Identify the Coordinates (u\,v\) and (v,2,V2) of the top left corners of
the bounding boxes of the two components, (see Fig. 3.4)

2. Identify the Coordinates {h, rni) and (I2, m2) of the bottom right corners
of the bounding boxes of the two components.

3. Find the absolute values SI and S2 of the slopes of the lines connecting
to (tt2, U2) and (/i,mi) to (see Fig. 3.5)

(3.1)

(3.2)

Step 3: Identify the lines that give the minimum of slopes 51. Those lines
that fall in the region between 15% and 40% of line height below the top of the
text line are candidates for being considered as separators of upper zone from
the middle zone. If there is more than one line that satisfies this criterion,
choose the line that occurs maximum number of times as the zone separator.

51

52

\U2 ~ «l|
\V2 — V\ |

\h — hi
|m2 -mi|

46

3,3 Proposed Approach

Step 4: Identify the lines that give the minimum of slopes S2. Those lines
that fall in the region between 15% and 40% of line height above the bottom
of the text line are candidates for being considered as separators of lower zone
from the middle zone. If there is more than one line that satisfies this criterion,
choose the line that occurs maximum number of times as the zone separator.

sti<H H«il

Figure 3.4: Bounding Box with Coordinates

Btewn ktsttsKl m. qahl
Figure 3.5: Line Segment Joining Top Left (Bottom Right) Corners of Bound
ing Boxes

Doing this process only at line level may not be sufficient, because it still
leaves the possibility of errors in the situations where words are not horizon
tally aligned. Fig.3.6(a) illustrates this case for a sample line of text.

Due to this problem, the process mentioned above for a line, needs to be re
peated for the connected components of individual words also, for determining
the zonal boundaries. Here, there is a possibility of disagreement between the
boundaries detected at word level and line level. In such cases, if a new lo
cation for any of the two separators is detected then those are considered to
be valid, but if the word level execution removes a zone detected in the line
level execution then the line level decision is considered to be valid. Fig.3.6(b)
shows the correction after calculating the zone boundaries at word level.

(a) Line level zone detection(Notice over segmen
tation)

(b) world level improvement

Figure 3.6: Zone boundary detection

Following table gives details about the testing :

47

3.3 Proposed Approach

Table 3.1: Result of zone boundary detection using slope of imaginary lines

No. of Books No. of Pages No. of Lines Success(No. of lines)
5 43 935 858(91.76%)

The failure case analysis revealed the fact that the basic assumption that a
line would have more baseline component without modifier than those with
modifiers on upper and lower zones is not valid in general and there are sig
nificant number of cases which do not satisfy this (see Fig. 3.7(a)). Hence,
there is a need to improve this algorithm.

(a) Line Failing to Satisfy As
sumption in Algorithm 3.1

(b) Result of Applied Algorithm
3.1

Figure 3.7: Limitation of Algorithm 3.1

3.3.2 Improved Zone Boundary Identification

In order to find root cause of the problem we took out cases where it was
failing. They found to be satisfying one of the following :

• There is only one word in the line and all the base line components have
modifiers in upper (lower) zone connected to it.(Fig. 3.8)

iftael asi^t stsiS Bat
Hast M aaS asst sisst

ez sslS scfl: Hissi a&fea mz tst
sSS aaai ga sna, slai fss ksz at
sasi aptl. Issfe pt tost Pare gSt 1
M fss. aa gcsiMl asat Sse gM sit, at
S3 aa Ssi si3 gssiit, M a®H £ ss gAI

Figure 3.8: Failure Due to Only One Word

• None of the base line glyph has modifier and it also contains more than

48

49

3.3 Proposed Approach

Table 3.1: Result of zone boundary detection using slope of imaginary lines

No. of Books No. of Pages No. of Lines Success(No. of lines)
5 43 935 858(91.76%)

The failure case analysis revealed the fact that the basic assumption that a
line would have more baseline component without modifier than those with
modifiers on upper and lower zones is not valid in general and there are sig
nificant number of cases which do not satisfy this (see Fig. 3.7(a)). Hence,
there is a need to improve this algorithm.

(a) Line Failing to Satisfy As
sumption in Algorithm 3.1

(b) Result of Applied Algorithm
3.1

Figure 3.7: Limitation of Algorithm 3.1

3.3.2 Improved Zone Boundary Identification

In order to find root cause of the problem we took out cases where it was
failing. They found to be satisfying one of the following :

• There is only one word in the line and all the base line components have
modifiers in upper (lower) zone connected to it.(Fig. 3.8)

list bH, M wm wSk mmA
mi srfL sism a&fet mi mib nit

mum sra, its mi M
gait <Htoft. tesfe pet &iai Sas lit1
M ii°i em *ttiii€ wmi ms mic4 li,
M m Wssl m.5 usit, IhI mm. % m iM
miiML, a Htsimtotts sis. isl£l S: i4

mk M memi a^ii
5M]

Figure 3.8: Failure Due to Only One Word

• None of the base line glyph has modifier and it, also contains more' than

48

3.3 Proposed Approach

one alphabets like /ga/, /Na/ etc. , whore row coordinate of one of the
components satisfy zone constraints mentioned in the algorithm above
(Fig. 3.9)

Figure 3.9: Failure Due to glyphs like /ga/ and broken glyph

• There are broken glyph(s) giving rise to the connected components such
that it results in to situation described in second point.(Fig. 3.9)

It is also noticed that horizontal projection profile based algorithm for detect
ing zone boundary is performing much better in such cases. Therefore, we
utilized the complimenting nature of these two algorithms to overcome these
failures to a significant extent and devised a hybrid algorithm.
Following are the broad stops of the new procedure for finding zone boundary
between upper and middle zones. The details are given after that. Same can
be repeated for finding the boundary between middle and lower zone's.

1. Analyse line / word for deciding number of base line connected com
ponents with modifiers in upper zone. Let that number be NBCU and
NBC be total number of base line components.

2. If NBCU = 0 or NBCU > NBC/2, then use projection profile based
Algorithm 3.2 for zone detection else use Algorithm 3.1.

The challenge here is to find out how many base line glyphs in a text line / word
have modifiers attached to them. Here again we make use of an observation
that if NBCU — 0 or NBCU > NBC/2 then more than half of the imaginary
lines passing through top left corners of all possible pairs that have minimum
slope will be near the the first pixel row of line / word (Fig. 3.10).

Figure 3.10: Location of Imaginary Lines with Minimum Slopes

Hence, the algorithm mentioned above can be verbally expressed in more elab
orate way as follows :

1. Find out slopes of the lines joining the top left of all possible pairs of
potential connected components of lines / words.

2. Find out row coordinates of the top left corner of the connected compo
nents through which lines with the minimum slope passes.

49

3.3 Proposed Approach

3. Compute number of lines that passes through each of these points.

4. If the point through which more than half of these lines passes is near
the top boundary of line then NBCU = 0 or NBCU > NBC/2.

5. If NBCU = 0 or NBCU > NBC/2, then use projection profile based
Algorithm 3.2 for zone detection else use Algorithm 3.1.

The detailed projection profile based algorithm can be given as follows:

Algorithm 3.2 To Find Zone Separation Boundary
Input: Binarized image, IMij of a line/word of Gujarati text with m pixel
rows and n pixel columns
Output: Row numbers of the two lines that separate upper and lower modi
fiers from the middle zone.
Step 1: Compute horizontal projection

n
hp[i] = Vi = 1,2,..., m. (3.3)

i= i

Step 2:
isDecreasing 4— false
cutLevelFraction 4— 0.4
maxHPRow 4- 0 ' >
maxHP 4- 0
for i = 1 to m do

if hp[i] > maxHP then
maxHP4— hp[i\
maxHP Raw 4- i

end if
end for
for i — maxHPRow to 1 do

if hp[i] > hp[i — 1] then
isDecreasing 4- true

else
isDecreasing 4— false

end if
if isDecreasing = false then

if hp[i — 1] < (cutLevelFraction * maxHP) then
if i — 1 > m * 0.15 AND i — 1 < m * 0.30 then

uCutRowHP 4— i
else

uCutRowHP 4— 0

50

3.4 Conclusions

i 4— i — 1
end for
cGradient <- lip^CutRowHP+i}

for i — uCutRowHP + 1 to to do
nGradient 4-

if nGradient > cGradient then
cGradient 4- nGradient

else
if i > m * 0.15 AND i - 1 < to * 0.30 then

uCutRowHP 4— i
end if
break

end if
i i— i 1

end for

Fig. 3.11 shows the improvement of applying Algorithm 3.2 on image shown
in Fig. 3.7(a). The separating white line indicates the zone boundary.

rv* r% n-n n r» ^U#Ul&€ll*U VICTIM
Figure 3.11: Result of Applying Algorithm 2

The application of this algorithm on a sample data set improved accuracy by
2%.

3.4 Conclusions

It is clear from the discussion in this chapter that zone separation algorithms
that works satisfactorily for the Indo-Aryan scripts like Devanagari and Bangla
cannot be used readily for detecting zone boundaries in the documents of Gu
jarati script. A novel algorithm (Algorithm 3.1)based on slope of imaginary
lines passing through top left and bottom right corners of the bounding boxes
of all possible pairs of potential connected components is proposed. This al
gorithm assumes that in a text line / word there will be more baseline glyphs

51

3.4 Conclusions

without modifiers in upper / lower zones than those with modifiers and hence
it fails in the cases where this assumption is not satisfied. A method is pro
posed to detect the exceptional cases and a hybrid algorithm which uses both
slope of imaginary lines and horizontal projection is proposed to take care of
majority of the cases. However, both these algorithm performs poorly in case
where line / word detection algorithm gives incorrect boundaries or the text
is not aligned at word level.

52

