
Chapter 4

Zone Boundary
Identification : Use of
Dynamic Programming

T
he previous chapter illustrates the application of simple concept like slope
of a line for zone boundary detection. In this chapter we will show an
application of dynamic programming to overcome limitations of the method

shown in the previous chapter. First section in this chapter introduces basics
of dynamic programming and later sections are devoted to list the limitation
of the algorithm discribed in the previous chapter for zone boundary identifi
cation and proposed approach to overcome it.

4.1 Mathematical Preliminaries

4.1.1 Dynamic Programming [39]

Dynamic programming (DP) determines the optimum solution of a multivari
ate problem by decomposing it into stages, each stage comprising a single
variable subproblem. The advantage of the decomposition is that the opti
mization process at each stage involves one variable only, a computationally
simpler task than dealing with all the variables simultaneously. A DP model
is basically a recursive equation linking different stages of the problem in a
manner that guarantees that at each stage an optimal feasible solution is ob
tained for any given state at that stage, which in turn yields an optimal and
feasible solution for the entire problem for the given initial state.

Dynamic
Program
ming

53

4.1 Mathematical Preliminaries

4.1.1.1 Recursive Nature of Computation In DP

Computations in DP are done recursively, so that the optimum solution of one
subproblem is used as an input to the next subproblem. By the time the last
subproblem is solved the optimum solution for the entire problem is at hand.
The manner in which the recursive computations are carried out depends on
how we decompose the original problem. In particular, the subproblems are
normally linked by common constraints : as we move from the one subproblem
to the next, the feasibility of these common constraints must be maintained .
Let us try to understand the concepts in dynamic programming by an example.

Example 4.1.1 (Shortest Path) Consider a case wherein we have to find
a shortest highway route between two cities. The available highway network,
say for example, is as shown in the Fig. 4.1. Here, we have to find route
between the starting city at node 1 and the destination city at node 7. The
routes pass through intermediate cities designated by node 2 to 6.

We can solve this problem by exhaustively enumerating all the routes between
node 1 and 7. However, in a large network, exhaustive enumeration may be
intractable computationally.

To solve this problem by DP, we first decompose it into stages as shown in
Fig. 4.2. Next, we carry out the computations for each stage separately.

54

4.1 Mathematical Preliminaries

Figure 4.2: Decomposition of the Shortest Route Problem into Stages

The general idea for determining the shortest route is to compute the short
est (cumulative) distances to all the terminal nodes of a stage and then use

these distances as input data to the immediately succeeding stage. Starting
from nodel, stagel includes three end nodes (2, 3 and 4) and its computations

can be shown as follows:

°/
Stage 1 Summary :

Shortest distance from node 1 to node 2 = 7
Shortest distance from node 1 to node 3 = 8

Shortest distance from node 1 to node 4 = 5

Next, stage 2 has two end nodes, 5 and 6. Considering node 5 first, we see from
Fig. 4.2 that a node 5 can be reached from three nodes 2,3 and 4 by three

different routes : (2, 5), (3, 5), and (4. 5). This information together with
the shortest distances to node 2,3 and 4, determines the shortest (cumulative)

55

4.1 Mathematical Preliminaries

distance to node 5 as

/ Shortest Distance

\ to node 5

/ Shortest \

mm£=2,3,4

(Distance from \

node %
\ to node 5)

Distance +
\ to node i j

' 7 + 12 = 19
min 8 + 8 — 16 ^ = 12 (from node 3)

5 + 7 = 12

Node 6 can be reached from nodes 3 and 4 only. Thus

Shortest Distance
to node 6

f (Shortest

= min <
*=3,4 I

Distance
\ to node i /

. r 8 + 9 = 17]
= mm < 5 + 13 = 18

+

/ Distance from \

node i
\ to node 6 / ^

= 17 (from node 3)

Stage 2 Summery :

Shortest distance from node 1 to node 5 = 12 (from node Jf)
Shortest distance from node 1 to node 6 = 17 (from node 3)

The last step is to consider stage 3. The destination node 7 can be reached
from either node 5 or 6. Using the summary results from stage 2 and the
distances from nodes 5 and 6 to node 7, we get

(Shortest Distance

to node 7

f (Shortest ^ (Distance from \

= min <
i=5,6 J Distance + node i

\ to node i to node 7 /

= min <
12 + 9 = 21 '

17 + 6 = 23
(from node 5]

Stage 3 Summery :

Shortest distance from node 1 to node 7 = 21 (from node 5)

Stage 3 summery shows that the shortest distance between nodes 1 and 7 is
21. To determine the optimal route, stage 3 summery links node 7 to node 5,
stage 2 summery inks node 4 to node 5 and stage 1 summery links node 4 to
node 1. Thus, the shortest route is 1 —» 4 —> 5 —> 7. ■

The example reveals the basic properties of computations in DP:

1. The computations at each stage involves the feasible routes of that stage,
and that stage alone.

56

4.1 Mathematical Preliminaries

2. A current stage is linked to the immediately preceding stage only with
out regard to earlier stages. The linkage is in the form of the shortest-
distance summery that represents the output of the immediately preced
ing stage.

4.1.2 General DP Model

We now show how the recursive computations in Example 4.1.1 can be ex
pressed in general DP framework. Conventionally, Dynamic Programming
Technique is applied to Multistage Optimization problems as described be
low. Consider a system consisting of n stages as shown in the Fig. 4.3

D\ I?2 Di Di+1 Dn

fl{slixl) f2{s2ix2) fi+l{si+li ®t+l) /n(sni*n)

Figure 4.3: DP Stages

At each stage the system may be in some state and it is required to take certain
decisions depending on which the system yields an output at that stage. The
overall outcome of the system is a simple function (say, sum or product) of
all the stage-wise outputs. The state at any particular stage and the decision
taken at that stage changes the state of the system in the next stage. This
conversion is governed by some state conversion law. It is required to take
appropriate decisions at all the stages so as to optimize overall outcome of the
system.

Let Si and Di denote the sets of state and decision variables respectively at
stage-*. Suppose outcome at state-* is given by function fi(si,Xi) and the sate
conversion law is given as — S(si, Xi). Then the Multistage Optimization
problem is

n
max/min F(si, x\, X2,..., xn) = for any initial state si & Si

Xi€Di,l<i<n

(4.1)

57

4.1 Mathematical Preliminaries

The DP model not only optimizes a specific Optimization problem but decides
the Optimum Policy which states that at any stage what decision should be
taken with respect to any state resulting from the previous decisions, so that
the over all outcome of the system is optimized. This is achieved by splitting
this multistage n variable problem into n one variable parametric optimization
problems and using the following Principle.

Bellman’s Principle of Optimality : Future decision for the remaining
stages will constitute an optimal policy regardless of the policy adopted in
previous stages.

These n problems correspond to the n stages of the system and are solved re
cursively either from first stage onwards to the nth stage (forward recursion)
or starting from nth stage and moving backwards to the first stage (backward
recursion). At the ith stage the optimum policy (optimum decisions with re
spect to any possible input state Si £ Si at that stage) is decided on the basis
of the cumulative outcome up to the previous stage plus the outcome of the
current stage.

In forward pass, we compute the cumulative outcome jFi(s*+i) up to the ith

stage for reaching any possible state s*+i £ Si+i, by solving the recursive
equations,

Fi(si+1) = max/min Fi^i(si) + fi(si,Xi), for i = 1,2,...,n (4.2)
Xi €Di .Si+i=S(s, yXi)

with an assumption that Fq(si) = 0 for any sj £ S\. In this case, optimum
decision is denoted by r|(si+x) and corresponding initial state at the stage-i
is denoted by s|(sj+i). Fn(sn+1) gives the optimum overall outcome of the
system and optimum decisions can be computed in reverse order, first finding
*n(sn+l)> xn— l(sn(s«+l))> • • • > • •))•

In backward pass, we compute the cumulative outcome F{(si) up to the ith

stage for any possible initial state Si £ Si, by solving the recursive equations

Fi(si) = max/min Fi+1(s*+i) + fi(si,Xi), for i — n,n - 1,..., 1 (4.3)

with an assumption that Fn+i(sn+i) = 0 for any sn+i- In this case, opti
mum decision is denoted by a:|(si)and corresponding final state at stage-i is
denoted by s*+i(s*). Fi(si) gives the optimum overall outcome of the sys-

Bellman’s
Principle of
Optimality

Recursion

58

4.1 Mathematical Preliminaries

tem and optimum decisions can be computed in forward order, first finding
<«(•••))•

Example 4.1.1 uses forward recursion in which the computation proceed from Forward

stage 1 to stage 3. The state of the system is described by the city from Recursion

which the journey can begin at that state and the decision to be taken is to
which immediate next city we should reach. Thus, in this example S\ — {1},
S2 = {2,3,4}, S3 = {5,6} and S4 = {7}. Di = {2,3,4}, D2 = {5,6} and
D3 = {7}. The state conversion law is = X{. fi(si,Xi) = d(.s,, xf).

The same example can be solved by Backward recursion, starting at stage 3
and ending at stage l.Both the forward and backward recursions yield the
same solution. Although the forward procedure appears more logical, DP lit
erature invariably uses backward recursion. The reason for this preference is
that, in general, backward recursion may be more efficient computationally.

Example 4.1.2 (Backward Recursion for Shortest Path Problem)

The backward recursive equation .for Example 4.1.1 is

Fi(si)= min {Fi+i(si+i) + d(si, a;*)}, i = 1,2,3. .(4.4)
fzD j<S j.4-1 —

where 1*4(54) = 0 for 54 = 7. The associated order of computation is F3 -»
F2 -> F\.

Stage 3. Because node 7 (x3 — s4 — 7) is connected to nodes 5 and 6 (S3 = 5
and 6) with exactly one route each, there are no alternatives to choose from,
and stage 3 results can be summarized as shown in the following tableau:

S3
Fi{si) + d(s3,x3)

x3=7 F3(s3) a:|(s3)
5 0+9 9 7
6 0+6 6 7

Stage 2. Route (2,6) is blocked because it does not exist. Given F3(s3) from
stage 3, we can compare the feasible alternatives as shown in the following
tableau:

59

4.2 The Need

$2
^3(^3) +d(S2,«2)

3:2=5 0:2 = 6 ^2(32) *2 (*2)
2 9+12=21 - 21 5
3 9+8=17 6+9=15 15 6
4 9+7=16 6+13=19 16 5

The optimum solution of stage 2 reads as follows: if you are in cities 2 or 4,
the shortest route passes through city 5, and if in city 3, the shortest route
passes through city 6.

Stage 1. From node 1. we have three alternative routes : (1,2),(1.3), and
(1,4). Using 1*2(32) from stage 2, we compare these outcomes as shown in the
following tableau.

-^2(52) + d(si,3;i)
si 3:2=2 3:2 = 3 a:2=4 Fi(Sl)

1 7+21=28 8+15=23 5+16=21 21 4

Optimum solution at stage 1 shows that city 1 linked to city 4. Next, the
optimum solution at stage 2 links city 4 to city 5. Finally, the optimum solu
tion at stage 3 connects city 5 to city 7. Thus, the complete route is given as
1 -+ 4 —» 5 —» 7 and the associated optimum distance is 21. ■

4.2 The Need

We now come back to the problem of zone boundary identification. The algo
rithm presented in previous chapter gives reasonably good results, however it
has some limitations as follows:

1. It assumes the connected components of a word to be vertically aligned.

2. It assumes the zone separation path to be a straight line.

These assumptions together lead to problems when the connected components
of a word are not aligned, as shown in Fig.4.4 below:

Figure 4.4: Problem Due to Straight Line Zone Separator

It can easily be seen that for robust and reliable zone segmentation, the as
sumptions made in previous method need to be relaxed, i.e. any general path

60

4.3 Proposed Approach

can be zone separator and the selection of the path should depend only on the
connected component under consideration and it should not refer to any other
connected component in the word or line. An obvious question that anyone
can have in mind is, how to find this general path which can be a reliable zone
separator?

4.3 Proposed Approach

In search of an appropriate method, we have gone through many papers
wherein researchers have tried various approaches for different kinds of seg
mentations, like in [4], [8], [32], [34], [31]. Here we provide details about the
method that we have selected to find a path as mentioned above with justifi
cations wherever needed.

A careful analysis of the Gujarati Script revealed the following facts :

1. We can assume upper zone separation boundary just above a horizontal
stroke (run of horizontally oriented line / pixel).

2. There is a Zone constraint - viz. the zone boundary falls in the region
from 15% to 40% of the line height below the top of the text line.

Similar assumptions can be made for lower zone also. That is,

1. We can assume lower zone separation boundary just below a horizontal
stroke.

2. There is a Zone constraint - viz. the zone boundary falls in the region
from 15% to 40% of the line height above the bottom of the text line.

Now, finding the location of a zone separator is dependent on the existence
of a horizontally oriented portion at the top and bottom of the middle zone
component. This assumption is true for most of the Gujarati symbols that falls
into middle zone. The exceptions are listed in Fig.4.5(a). Zone boundary in
such cases can be identified by joining the ends of neighboring zone separators
by a straight line, without loss of precision(Fig.4.5(b)).

Exceptions
rt 6»l Exception handling

(a) Illustrations (b) Exception Handling

Figure 4.5: Exception

61

4.3 Proposed Approach

We know that in conventional setup the term touching glyphs means the glyphs
which are part of two different characters are touching horizontally. If we
refer to this as a horizontal touching then on the same lines we can look at
the intersection between glyphs in two different zones as vertical touching
(Fig.4.6).

The advantage of defining this concept is that now we can use the rich knowl
edge of touching character segmentation for zone separation.

In [32] authors have given size and style independent algorithm for touching
numeral segmentation which gives good results. However, this segmentation
algorithm assumes a touching component, detected using another algorithm
given in the same work, as input. But, in our case, as there are no touch
ing characters, the vertically touching glyphs do not satisfy criteria given in
[32] which are used to find the touching characters. Therefore, this vertically
touching glyphs cannot be identified as touching characters by the algorithm
and hence we cannot, apply the algorithm in [32] for our purpose.

Breuel [8] has described an approach to segment hand printed characters,
which allows the cuts to be curved (Curved Pre-Stroke Cuts (CPSC)). From
the observations made above and the analysis of the script, it is clear that
this approach can be adapted to find a zone separating path. We assume our
image to be of the size w x h.

The adapted version of the algorithm is as follows:

As in [8] we define a path P as a sequence of of pixels (Xi,yi), i — 0,.... to
€ N in an image of a connected component. Now out of all possible path

we have to find the path which is optimum in some sense and can be the zone
separator. The cost C assigned to a path can be modified as

Touching
Glyphs

Horizontal
Touching
Vertical
Touching

Figure 4.6: Touching Example

w
(4.5)

62

4.3 Proposed Approach

where,

{0, for |Ay| = 0 .
1, for |Ay| = 1 . (4.6)

oo, for \Ay\ > 1 .

This limits the set of paths with finite cost to paths that are contained inside
a cone within an angle of f of the horizontal. Further, for finding upper zone
the cost C should be minimum at just above the horizontal edge and for lower
zone it should be minimum at just below the horizontal stroke.

It is clear from the eq. 4.6 that cs depends only on step size. Therefore,
for finding upper zone separator, a should be defined in such a way that
it is smallest just above the horizontal stroke, largest at points inside the a
stroke (to discourage cuts from going through the strokes) and it should be
intermediate for background pixels. We have chosen these values as follows,

{—5, if (xi, yi) is just above a horizontal stroke .
2, if (xi,yi) is in a stroke . (4.7)

1, if (a"Hi Vi) is a background pixel .

For finding lower zone separator, c* should be defined in such a way that it is
smallest just below the horizontal stroke, largest at points inside the stroke (to
discourage cuts from going through the strokes) and it should be intermediate
for background pixels. cs for lower zone can be defined as

/

Ci(xi,yi;I) = <

V

-5,
2,

1,

if (a;*, yi) is just below a horizontal stroke
if (Xi,yi) is in a stroke .
if (Xi,yi) is a background pixel .

(4.8)

It is also important to note that we do not want path to progress in vertical
direction. Therefore, the selection of points on the path will be constrained
by Xi = i. We need to enforce some more constraints on selection of the point
that would be the member of the segmenting path due to the observation we
made regarding the location of the zone separator.

• Point (x, y) can be member of upper zone separator of a line with line
height Lh if and only if 0.15fr/j <y< OAL^.

• Similarly, point (x, y) can be member of lower zone separator of a line
with line height Lh, if and only if (Lh — 0.40L/,) < y < (Lh — 0.15L/j).

Application of these constraints will prevent the algorithm from producing

63

4.3 Proposed Approach

the zone separator in case of exceptional glyphs listed in Table 4.5(a). Such
cases can be handled by producing path by joining end points of the neigh
boring zone separators (right end point of the left neighbor and left end of the
right neighbor). If these characters occur as the first (last) character of the
line then the segmenting path from the right (left) is extended up to the left
(right) boundary of the text line. In other words, if for any part of the line,
if any of the zone separators are not identified after executing this algorithm,
then that region is assumed to have a straight line joining the ends of neigh
boring paths as its zone separator. (Fig.4.5(b))

The process starts by finding the connected component of a text line and for
each component we try to find cut locations. Here, the basic assumption is
that the connected region (potential connection point between symbols in mid
dle and upper / lower zone) is having dense population of the black pixels and
hence the separating path passes through the centroid.

Our goal is to find these two zone boundaries. Therefore, we divide the con
nected component array in two parts and process upper and lower half of the
connected component separately. First step is to compute the centroid of one
of the halves of the connected component say (xc , yc) and then we calculate
c(y) for all the paths passing through point (xc, y), for all y.

In order to compute c{y) efficiently, we use dynamic programming in two
stages: first by finding optimal path passing through each point (xc, y) be
tween pixels of row number 0 and row number xc and then finding it between
pixels of column number w and number xc. The procedure to compute opti
mum path starting at each (xc,y) and w is described as Algorithm 4.1

Algorithm 4.1 To Find Optimum path starting at each (xc, y) and w
Input: Binarized image, of a connected component.
Output: Arrays cost and source having same dimension as I. Where source is
used to trace the path and corresponding cost is stored in cost array. Process:

for i — 1 to w do
for j — 1 to h do

cost[i][j] 4— oo
source[i][j) 4— undefined

end for
end for

64

4.3 Proposed Approach

for i — 0 to h do
add point (to, i) to queue
cost[w, t] 0

end for
while queue ^ empty do

take point (i,j) from queue
if i > xc then

for delta = —1 to 1 do
newCost cs(delta) + d(i — 1 ,j + delta, image)
if newCost < cost[i — 1 ,j + delta] then

source[z — 1, j + delta] <— (i,j)
cost[i — 1 ,j + delta] <- newCost
add point (i — 1, j -f delta) to queue

end if
end for

end if
end while
for i = 0 to h do

add point (0, i) to queue
cost[0, t] \— 0

end for
while queue ^ empty do

take point (i,j) from queue
if i < xc then

for delta = —1 to 1 do
newCost •<— cs(delta) + ci(i — 1 ,j + delta,image)
if newCost < cost[i — 1 ,j + delta] then

source[i — 1 ,j + delta] <— (i,j)
cost[i — l,j + delta] <- newCost
add point (i — 1, j + delta) to queue

end if
end for

end if
end while

The algorithm is computed for upper and lower half separately.

Algorithm begins by initializing the cost array and source array, both with
the same size as the image, padded by one pixel in the x direction. Initially

65

4.4 Conclusions

all costs are set to oo and all source point are set to undefined.

During the execution of the algorithm, the value of the cost array at point
(i,j) is either the special value oo if the point has not been reached yet, or
the cost of the best path to pixel (i, j) found so far. Similarly, the value of
the source array is either the special value undefined if the pixel has not been
reached yet, or the immediate predecessor of the pixel (i, j) on the best path
to (i, j) from some point with x — w.

Next, the cost for the pixels on the line (w, 0)(w, end) is set to zero and those
pixels are added to a FIFO queue. Until the queue is empty, pixel coordinates
are taken from its front. The set of neighboring pixels that could be part of a
valid path and their corresponding costs are computed. If the cost of reaching
one of those neighboring pixels via a path through the current pixel is lower
than any previously known path to that neighboring pixel, the cost and source
arrays are updated, and the coordinates of the neighboring pixel are added to
the back of the queue.

It may be noted that the only difference between the algorithm presented in
[8] and Algorithm 4.1 is that the row operations in the first one is replaced
by column operations in our case. After calculating the cost we find out local
optima at the line x — xc. Then the optimal cut though the point (xc, y) is
obtained by following the content of the source array.

Fig. 4.7 shows result of applying this algorithm to a connected component.

Path points that wiU
it satisfy the

constraints

.Correct path

Figure 4.7: Result of Applying DP Based Zone Boundary Idnetification

4.4 Conclusions

This approach gives the zone separator which is not a straight line and hence
prevents over-segmentation. However, it is very time consuming and work is
needed to improve it further. The basic problem with this algorithm is that
it assumes, centroid to be located in the touching area [8], which need not be
true in all the cases for Gujarati script and hence, in the case where it is out
side touching area, the algorithm might fail to identify a correct zone separator.

66

