
Chapter 5

Feature Extraction

AS mentioned earlier feature extraction is one of the subtasks of recogni
tion process. Classification and post processing being the other two. The 

glyphs extracted from each of the zones are to be recognized independently. 
The first step in this process is feature extraction. In this chapter we present 
mathematical concepts used for feature extraction process during this study 
and also describe its exact application to the problem of Gujarati character 
recognitoin. There are two major types of the features used in the recognition 
process: (1) Structural (2) Mathematical / Statistical.

In this chapter we present a detailed study of the effectiveness of some of the 
features of each type. We have carried out experiments with mathematical 
features like Discrete Cosine Transform, Wavelets, Fringe Maps and structural 
features such as aspect ratio, zone information etc..

5.1 Introduction

Feature extraction is a process in which we transform an image from space of 
all images to a new space where, it is hoped, the pattern recognition problem 
will be easier to solve [7]. Purpose of this transformation is many fold : to 
reduce the variability among the images of the same class, to make data less 
sensitive towards noise, reducing the dimensionality etc.. The new space of 
transformed images are called feature space and elements in this space (set of 
features for image) are called feature vectors. Mathematically, let

X = Space of all images of dimension mx n and

Feature

space
Feature
vector

67



5.2 Mathematical Preliminaries

F(i) = Feature extractor (vector) of dimension p for image iel, then,

the mapping F transforms m ■ n dimension image vector i in image space into 
a p-dimension feature vector in feature space.

For example, if we take height and width of a connected component as two 
features then the resultant feature space will be a 2-dimensional feature space. 
Therefore, the connected component, which can be considered as a vector 
/ point in m ■ n dimensional image space, is mapped on to a point in two 
dimensional feature space as shown in Figure 5.1.

Figure 5.1: Image Represented in Feature Space

Several Mathematical and statistical techniques have been used by researchers 
for finding the ’’best” features. Fourier Descriptors, Discrete Cosine Trans
form, Principal Component Analysis, Moments, Projection Profile, Edge pro
file, Gabor filters, Pixel Density, Aspect Ratio are a few examples of the 
mathematical techniques used for feature extraction.

5.2 Mathematical Preliminaries

In this section we briefly describe the mathematical techniques applied to the 
feature extraction process.

5.2.1 Distance Measure[19]

For pixels p(x, y),q(s, t) and z(v, w) of a digital image, D is a distance function 
or metric if

a- D(p,q) > 0 (D(p,q) = 0iffp = q), 

b. D(p,q) = D(q,p), and

Distance / 
Metric

68



5.3 Image Scaling

c- D(p,q) < D(p, z) + D(z,q).

A special type of distance called D4 distance between p and q is defined as

D4,(p,q) = \x-s\ + \y-t\. (5.1)

This is also known as city-block distance. In this case, the pixels having D4 
disance from (x, y) less than or equal to some value r form a diamond centered 
at (x,y). For example, the pixels with £>4 distance < 2 from (x, y) (center 
point) form the following contours of constant distance :

2
2 1 2 

2 10 12 
2 1 2 

2

5.2.2 Discrete Cosine Transform

Discrete Cosine Transform(DCT), D(u, v) of an image, say J(ar, y) of size nxn 
is given by equation (5.2). It is a very important tool in image compression 
[19] where reduction of the memory requirement is the main goal. In the 
case of recognition also we try to reduce the number of elements in feature 
vectors as it directly implies faster calculation at the time of classification with 
less storage required. Considering this fact we have selected this as feature 
extractor.

n—1n—1
D(u, v) = C(u)C(v) y)cos

y—Q x=0

where C(u) — \ — for u = 0 and C(u) 
V n

u, v — 0,1,2,... ,n — 1.

(2X + 1)U7T (2 y + l)wr
2 n 2 n

otherwise,
(5.2)

5.3 Image Scaling

The type of features we have used for this work and not scale invariant. Hence, 
we have to scale all the connected components to a common size, exapt one, 
before we perform any feature extraction from them. We have used the fol
lowing scaling algorithm for this purpose.

D4 Distance

City-block
Distance

69



5.4 Features

Algorithm 5.1 Scaling Connected Component
Input: Array of Os and Is, say IM[i}[j], with m rows and n columns corre
sponding to a binarized connected component,
Output: Scaled array, say scaledIM[i}[j], with newM rows and newN 
columns
Process: Scaling

hr <- m/newM 
wr«— n/newN 
for i = 0 to newM do 

ti <— round(i * hr)-, 
for j — 0 to tow do 

tj i— round(j * wr); 
scaledlM[i][j] <- IM[ti][tj] 

end for 
end for

5.4 Features

The attempts for Gujarati character recognition so far was using Hu-moments 
[1] and wavelets coefficients [38], [46], [47]. As a part of this research we 
have investigated effectiveness of three types of feature extractors viz. Fringe 
Map, Discrete Cosine Transform Coefficients and aspect ratio of a connected 
component as features. In addition to these three we have also used zone 
information as features.

5.4.1 Fringe Map

Template based recognition is a known method and Fringe map has been used
as template earlier for Telugu script recognition[29]. Fringe map of a binary Fringe Map

image is generated by replacing each pixel by its distance from nearest black
pixel. The distance here is the ^-Distance or the eiti-block distance discussed
eariler in this chapter. Figure 5.2 shows an example of fringe map for character
/tha/.

Algorithm 5.2 Compute Fringe Map
Input: Array of Os and Is, say glyph[i][j], with m rows and n columns corre
sponding to a binarized connected component.
Output: Fring map, say fring[i][j] of the same size as IM.
Process:

for * = 0 to to do
DistFromBlack <---- 1

70



5.4 Features

for j — 0 to n do
if glyph[i]\j] 7^ 0 and cDistFromBlack = — 1 then 

fringe[i][j] 4— 9999 
end if
if glyph[i] [j] = 0 then 

fringe[i]{j} 4- 0 
cDistFromBlack 4— 0

end if
if glyph[i]\j] ^ 0 and cDistFromBlack ^ — 1 then 

cDistFromBlack 4— cDistFromBlack + 1 
fringe[i]\j] <— cDistFromBlack

end if 
end for
cDistFromBlack <---- 1
for j — n to 0 do

if glyph[i]\j] = 0 then 
cDistFromBlack 4- 0 

end if
if glyph[i]\j] 0 and cDistFromBlack ^ — 1 then 

cDistFromBlack 4- cDistFromBlack + 1 
if fringe[i]\j] > cDistFromBlack then 

fringe[i]\j] 4- cDistFromBlack 
end if 

end if 
end for 

end for
for j = 0 to n do

cDistFromBlack <---- 1
for i — 0 to to do

if glyph[i][j] = 0 then 
cDistFromBlack 4— 0 

end if
if glyph[i]\j] 7^ 0 and cDistFromBlack ^ — 1 then 

cDistFromBlack 4— cDistFromBlack + 1 
if fringe[i][j] > cDistFromBlack then 

fringe[i]\j] 4— cDistFromBlack
end if 

end if 
end for

71



5.4 Features

cDistFromBlack <-----1
for i = m to 0 do

if glyph[i)[j] = 0 then 
cDistFromBlack <— 0

end if
if glyph[i][j] 0 and cDistFromBlack ^ — 1 then 

cDistFromBlack cDistFromBlack + 1 
if fringe[i][j] > cDistFromBlack then 

fringeli) [j] <— cDistFromBlack 
end if 

end if 
end for 

end for

2 1 10 0 0 0 0 1 1 1 1 2 3 4 5 5 4 3 2 1 1 1 2 2 3 4 5 6 7 8 9
1 0 0 0 0 0 0 0 0 0 0 0 12 3 4 4 3 2 1 0 0 0 1 1 2 3 4 5 6 7 8
1 0 0 O 0 0 0 0 U 0 ft 0 0 12 3 4 3 2 1 ft 0 ft U 0 1 2 3 4 5 6 7
O 0 0 0 0 o 1 1 1 1 1 1 0 0 1 2 3 3 2 1 0 0 0 0 0 1 2 3 4 5 G 7
n n 0 0.0 1 2 2 2 2 2 1 0 ft 0 1 2 3 3 2 1 0 n ft 0 1 2 3 4 5 6 7
0 o 0 0 0 1 2 3 3 3 2 1 0 0 0 1 2 3 2 1 0 0 0 0 0 1 2 3 4 5 6 7
0 0 0 0 0 1 2 3 3 2 1 0 0 0 0 0 1 2 3 2 1 0 0 0 0 1 2 3 4 5 6 7
i i 0 O 0 0 1 2 2 2 1 0 0 0 0 o 1 2 3 2 1 0 0 0 0 1 2 3 4 5 6 7
2 l 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 2 2 1 0 0 0 0 0 1 2 3 4 5 6 7
3 2 10 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 2 1 0 0 0 0 1 2 3 4 5 6 7
4 3 2 10 0 0 0 0 0 0 0 0 0 0 1 2 3 3 2 1 0 0 0 0 1 2 3 4 5 6 7
4 3 2 2 1 1 0 0 0 0 0 0 O 0 1 2 3 4 3 2 1 ft o 0 ft 1 2 3 4 5 6 7
3 2 ill 0 0 0 0 0 0 0 0 12 3 4 4 3 2 1 0 0 0 0 1 2 3 4 5 6 7
2 1 nnfl 0 o n n ft 0 ft 12 3 4 4 3 2 1 n 0 0 ft 0 1 2 3 4 5 6 7
1 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 5 4 3 2 l 0 0 0 0 1 2 3 4 5 6 7
1 0 0 0 0 0 0 0 0 1 1 2 3 4 5 6 5 4 3 2 l 0 0 0 0 1 2 3 4 5 6 7
1 0 0 0 0 0 0 0 i 2 2 3 4 5 5 5 4 3 2 1 0 0 0 0 0 1 2 3 4 5 6 7
1 0 0 0 0 0 112 3 3 4 4 4 4 4 3 2 1 0 0 0 0 0 0 1 2 3 4 5 6 7
2 1 0 0 0 1 2 2 3 3 3 4 3 3 3 3 2 1 0 0 0 0 0 0 0 1 2 3 4 5 6 7
3 2 10 0 0 2 2 2 2 2 3 2 2 2 2 2 1 0 0 0 0 0 0 0 1 2 3 4 5 6 7
4 3 2 10 0 0 1 1 1 1 2 I 1 1 1 1 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7
5 4 3 2 1 0 0 0 0 0 0 J 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 G 7
6 5 4 3 2 1 n n n n 0 ft non 0 ft n ft 0 0 n 0 0 0 1 2 3 4 4 5 G
7 6 5 4 3 2 1 1 1 0 0 0 0 0 0 0 0 0 0 1 i 0 0 0 0 1 2 3 3 3 4 5
8 7 6 5 4 3 2 2 2 l 1 1 ill 1 1 i 1 2 l 0 0 0 0 1 2 3 2 2 3 4
9 8 7 6 5 4 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0 1 2 2 1 12 3
0 9 8 7 6 5 4 4 4 3 3 3 3 3 3 3 3 3 3 2 1 0 0 0 0 1 2 1 0 0 1 2

11 10 9 8 7 8 5 5 :54444444443:2 :i 0 0 0 0 i :2 :1 0 0 0 1
12 11 10 9 8 7 6 8 6 5 5 5 5 5 5 5 5 4 3 2 1 0 0 0 ft i i ft ft 0 ft ft
13 12 11 10 9 8 7 7 7 6 6 6 6 6 6 G 5 4 3 2 1 o 0 0 O 0 i O 0 0 O 0

14 13 12 11 10 988877777776543210000000001
15 14 13 12 11 10 9998888888765432110000011

Figure 5.2: Fringe Map for Alphabet /tha/

As can be seen from the method of template generation, this feature is not 
size invariant. Hence, we scale all our recognizable components to 32 x 32. All 
these 1024 elements constitute the feature vector for this alphabet /tha/.

5.4.2 Discrete Cosine Transform (DCT) Coefficients

For a connected component DCT coefficients are computed using eq. 5.2. Ob
viously we get as many coefficients as the number of elements in the input 
matrix. It is clear from the definition that the DCT coeffiecients are real num-

72



5.4 Features

bers. In [43] DCT is reported to be one of the best transformations in terms 
of energy compaction. DCT coefficients are used in JPEG image compression 
where the main goal is to reduce the storage requirements while preserving 
important features of the image. The same property is useful in character 
recognition for reducing the size of the feature vector and thereby reducing 
the storage requirement for features of all possible connected components. 
This also helps in optimizing the searching for a class to which the connected 
component belongs.

It is clear from the theory of DCT that it is also not scale invariant and the 
process of calculating DCT can be optimized in terms of time and space if the 
dimension of input matrix is some power of 2. Hence, here too we scale the 
images to a common size before subjecting them to DCT. Although the total 
energy remains the same, the energy distribution changes with most of the 
energy being compacted to the low frequecy coefficients. That is the original 
image can be approximated by only few low frequecency coefficients. In case 
of 2-D DCT of an image, such coefficients lie on the top left comer of the 
matrix. Therefore we select top left coefficients in the zig-zag order as shown 
in Fig.5.3 to constitute feature vector.

7 / /
/ / /
1/

Figure 5.3: Zig-Zag Direction for DCT 

5.4.3 Aspect Ratio

The Aspect Ratio of an image is the ratio of the width of the image to its 
height, expressed as two numbers separated by a colon. That is, for an x : y 
aspect ratio, no matter how big or small the image is, if the width is divided 
into x units of equal length and the height is measured using this same length 
unit, the height will be measured to be y units.

One of the most frequently occurring glyphs in Gujarati is a bar (vertical line) 
sign corresponding to vowel modifier for /AA/. The aspect ratio of this glyph 
is very much different from other glyphs and also the scaled version of this

Aspect
Ratio

73



5.4 Features

glyph will cover entire 32 x 32 matrix with black pixel and it can generate 
match for any random glyph when compared using any of the conventional 
features. Hence, for each of the glyph we calculate aspect ratio and we use 
this information to classify glyph corresponding to vowel modifier /AA/.

5.4.4 Zone Information

As mentioned in section 2.5 zone identification is done before extracting unit 
of recognition. Hence, we use the relative position of the glyph viz. its zone 
as one of the features.

This reduces the complexity of classifier design as classification of upper and 
lower zone glyphs will involve less than 10 classes. Also, for middle zone glyphs 
search will be limited to only features of middle zone glyphs. In other words, 
we will build three classifiers, one for classifying glyphs from each of the three 

zones.

5.4.5 Conclusions

Feature extraction is an important task. Features should be selected such 
that the glyphs of the same class have similar features and the features for the 
glyphs of the different classes should be much different. Use of DCT and fringe 
map as features has been discussed in this chapter. Further, some of other 
structural features like Aspect ratio and Zone information are also shown. It 
is also discussed that use of zone information reduces the classifier complexity.

74


