References

i-xxv

LIST OF FIGURES

Figure No.	TITLE	Page No.
Chapter 1	Review of literature and Introduction	
Figure 1.1	Mechanism by which Probiotic safeguard our health	8
Figure 1.2	Diagramatic longitudinal cross-section and cell wall structure of a gram-negative <i>E. coli</i> serotype O6:K5:H1	13
Figure 1.3	E. coli virulence factors can be encoded by mobile genetic elements	16
Figure 1.4	Antagonism of <i>E. coli</i> Nissle 1917 (EcN) against various micro- organisms under <i>in vitro</i> condition	18
Figure 1.5	Therapeutic potential of Mutaflor®	19
Chapter 2	Isolation and characterization of potential probiotic <i>Escherichia</i> coli strains from rat faecal samples	
Figure 2.1	Antimicrobial activity of <i>E. coli</i> isolates upon induction by Mitomycin C	31
Figure 2.2	Loss of antimicrobial activity of cell free extract upon treatment with Trypsin and Proteinase K	32
Figure 2.3	Pathogenic PCR of activated sludge samples	35
Figure 2.4	PCR amplification of colicin genes	35
Chapter 3	In vivo localization of probiotic Escherichia coli containing Vitreoscilla hemoglobin (vgb) gene in rats and its effects in colonization	
Figure 3.1	Change in oxygen tension at different levels of the GI tract	40
Figure 3.2	Overview of mechanism of Arc/Fnr system	40
Figure 3.3	Mechanism of ARC system	41
Figure 3.4	Mechanism of FNR system	42
Figure 3.5	Growth curves of <i>E. coli</i> 16 pUC <i>gfp</i> and pUC8-16 <i>gfp</i> transformants	49
Figure 3.6A	SDS-PAGE analysis of <i>E. coli</i> BL21 pUC8-16 <i>gfp</i> lysate under aerobic condition	50
Figure 3.6B	SDS-PAGE analysis for expression of <i>E. coli</i> BL21 pUC8-16 <i>gfp</i> by NaNO ₃ induction condition.	50
Figure 3.7	<i>In vitro</i> catalase activity of potential probiotic <i>E. coli</i> isolates containing pUC8-16 <i>gfp</i> plasmid	51
Figure 3.8A	Feacal counts of <i>E. coli</i> 16 containing pUC-gfp and pUC8-16gfp plasmid transformants.	53

Figure 3.8B	Antimicrobial activity of <i>E. coli</i> 16 transformed with pUC8-16gfp plasmid in fecal samples of Charles Foster rats	53
Figure 3.8C	Colony PCR amplification of vgb gene	54
Figure 3.9 A ,B	SGOT and SGPT activitiy in plasma sample of rats	55
Figure 3.9 C ,D	Catalase and lipid peroxidation activity in liver	56-57
Figure 3.10	Effect of probiotic <i>E. coli</i> harboring vgb gene on CCL ₄ -induced toxicity in liver.	58
Figure 3.11	Fluorescence microscopy of histological sections of the small intestine of rats challenged with <i>gfp</i> tagged <i>E. coli</i> 16	59
Chapter 4	Molecular fingerprinting of the feacal microbiota in relation to high fructose induced metabolic disorder.	
Figure 4.1	Flow chart of molecular approaches used to analyse the human intestinal microbial community	65
Figure 4.2	Hepatic fructose metabolism: A highly lipogenic pathway	67
Figure 4.3	16S rRNA gene PCR of starch and fructose treated feacal microbial population.	70
Figure 4.4	DGGE profile and dendrogram of faecal genomic DNA samples from rats receiving starch and fructose -base diet	73
Figure 4.5	Oral glucose tolerance tests in plasma samples of different groups of rat fed with Starch and Fructose.	74
Figure 4.6	Lipid profile in serum samples of different groups of rat fed with Starch and Fructose.	75-76
Chapter 5	Effect of probiotic <i>E. coli</i> 16 strain containing inulosucrase gene in alleviation of sucrose mediated metabolic disorder.	
Figure 5.1	Per captia consumption of calorific sweeteners (U.S. department of agriculture, Economic research service, 2010)	81
Figure 5.2	Fructose absorption in presence and absence of glucose	82
Figure 5.3	Pathway of fructose metabolism in liver	83
Figure 5.4	Propionate production in Bifidobacterium spps	87
Figure 5.5	Mechanism of FOS formation by inulosucrase	89
Figure 5.6	Ampicillin sensitivity and green fluorescence of integrant of <i>E. coli</i> 16 strain	99
Figure 5.7	Phenotypic confirmation of pMAL-p2 $\Delta lacI^Q$ clones	100
Figure 5.8	Restriction digestion pattern for pMAL-p2∆lacI ^Q - <i>inuJ</i> plasmids	100

Figure 5.9	SDS-PAGE analysis of the <i>E. coli</i> BL21 transformants containing the recombinant pMAL-p2∆lacI ^Q - <i>inuJ</i> plasmids	101
Figure 5.10	Optimization of inulosucrase activity in different condition	102-103
Figure 5.11	Activity of inulosucrase enzyme in <i>E. coli</i> 16 integrant and BL21 containing pMAL-p2 Δ lacI ^Q - <i>inuJ</i>	104
Figure 5.12	Specific activities of Inulosucrase enzyme in supernatant, periplasm and lysate of <i>E. coli</i> 16 integrants and BL-21 strain containing (pMAL-p2 Δ lacI ^Q - <i>inuJ</i>).	107
Figure 5.13	Growth of inulosucrase transformants in presence of sucrose	107
Figure 5.14	Activity staining of E. coli 16 harboring inulosucrase	108
Figure 5.15	Change in TG level after 21 days	110
Figure 5.16	Serum lipids profile in rats fed sucrose diet for 28 days	111
Figure 5.17	Antioxidant status of liver tissue in rats fed sucrose diet for 28 days	113-114
Figure 5.18	Cytokine levels in intestinal tissue of rats fed sucrose diet for 28 days	115-117
Figure 5.19	Serum lipids profile in rats fed sucrose diet for 120 days	118-119
Figure 5.20	Liver function tests in rats fed sucrose diet for 120 days	120-124

LIST OF TABLES

Table No.	TITLE	Page No.
Chapter 1	Review of literature and Introduction	
Table 1.1	Probiotic products marketed worldwide with targeted health benefits	3
Table 1.2	Probiotic products marketed in India	4
Table 1.3	Desirable properties of probiotics	5
Table 1.4	Selection of probiotic strains fulfilling the FAO/WHO Guidelines	9
Chapter 2	Isolation and characterization of potential probiotic <i>Escherichia</i> coli strains from rat faecal samples	
Table 2.1	Size of amplicon target for identification of different E. coli pathogen	28
Table 2.2	Primers used for amplification of colicin genes	30
Table 2.3	Antimicrobial activity of E. coli against enteropathogens	32
Table 2.4	Antibiotic susceptibility pattern of E. coli isolates	33
Table 2.5	Acid tolerance tests for <i>E. coli</i> isolates	34
Chapter 3	<i>In vivo</i> localization of probiotic <i>Escherichia coli</i> containing <i>Vitreoscilla</i> hemoglobin (<i>vgb</i>) gene in rats and its effects in colonization	

•

Table 3.1	List of bacterial strains and plasmids used	45
Chapter 4	Molecular fingerprinting of the feacal microbiota in relation to high fructose induced metabolic disorder.	
Table 4.1	Potential use and drawbacks of various methods for analysis of complec microbial communities	64
Chapter 5	Effect of probiotic <i>E. coli</i> 16 strain containing inulosucrase gene in alleviation of sucrose mediated metabolic disorder.	
Table 5.1	Relative sweetness of sugars	80
Table 5.2	World per capita consumption of sugar	81
Table 5.3	Classification of carbohydrates used as colonic food prebiotics	85
Table 5.4	List of bacterial strains and plasmids used.	92
Table 5.5	Diet regime	95
Table 5.6	Short term effects (28 days) of probiotic on 20% sucrose received by animals	96
Table 5.7	Bacterial isolates count in feacal samples of rats	109

•

· ·