LIST OF TABLES

Table No.	Title	Page No.
Table 1	Major stores of carbon on the Earth	9
Table 2	An overview of the magnitude of global carbon stocks in	
	terrestrial systems (vegetation and soil carbon pools)	
	down to a depth of 1 m	17
Table 3	Number of districts selected, mean annual precipitation	
	(MAP, mm yr ⁻¹) of past 50 years, number of plots (250	
	m ²) and quadrats (0.1 ha) laid down across all RFZs	33
Table 4	Mean values of density (trees ha ⁻¹), diversity (tree species	
	ha ⁻¹) of trees, and total number of trees enumerated	
	across the four rainfall zones (RFZs)	54
Table 5	Mean AGB (Mg ha ⁻¹) values for the plots with different	
	NDVI values across the four RFZs	58
Table 6	Measured leaf characteristics for selected species for litter	
	decomposition experiment	67
Table 7	Regression equations and correlation values (r) of mean	
	values of the observed parameters with mean annual	
	precipitation (MAP, mm yr ⁻¹) across four rainfall zones	
	(RFZs) (n = 4, <i>P</i> <0.05)	75

APPENDIX

Table No.	Title	Page
		No.
Table A1	Tree species across four rainfall zones (RFZs)	96
Table A2	Distribution of trees across the four rainfall zones (RFZs).	
	Frequency classes were made according to diameter at breast	
	height (DBH, cm) range of trees	99
Table A3	R^2 values of correlation between k values at different intervals	
	and leaf traits	99

LIST OF FIGURES

Figure No.	Title	Page No.
Figure 1	Graphical representation of the movement of carbon	
	between land, atmosphere, and oceans	5
Figure 2	Global Flow of Carbon	6
Figure 3	Mean Global Temperature (1 °F = -17.22 °C) and	
	Global CO ₂ levels	8
Figure 4	Emissions of carbon dioxide by human activities have	
	been growing steadily since the onset of the industrial	
	revolution	12
Figure 5	Separating Human and Natural Influences on Climate	13
Figure 6	Global forest site data for above-ground living biomass	
	carbon (t C ha ^{-1}) (A), and total biomass carbon (t C	
	ha ⁻¹) (B), in relation to mean annual temperature and	
	mean annual precipitation	20
Figure 7	22 selected districts (highlighted with yellow colour) of	
	Gujarat state (INDIA) as on 2009	28
Figure 8	A world map illustrating global classification of forests	
	by FAO	29
Figure 9	Figure illustrates how natural forest vegetation has been	
	classified across India	32
Figure 10	Map of study area (Gujarat) showing distribution of 95	
	plots (blue bullet points) and mean annual precipitation	
	(MAP, mm yr ⁻¹) of each RFZ	33
Figure 11	Plot outline (250 m ²) and four sub-plots (quadrats) of	
	0.1 ha (31.62 m ²)	35
Figure 12	Pictures of study area across RFZ-1 showing vegetation	
	spread, tagged trees	37

Figure 13	Pictures of study area across RFZ-2 showing vegetation	
	spread, tagged trees	38
Figure 14	Pictures of study area across RFZ-3 showing vegetation	
	spread, tagged trees	39
Figure 15	Pictures of study area across RFZ-4 showing vegetation	
	spread, tagged trees	40
Figure 16	Percentage variation in annual rainfall received by each	
	RFZ from MAP (50 year mean) during past decade	
	across RFZs 1-4	52
Figure 17	Mean diameter at breast height (DBH, cm) and mean	
	stand height (m) of trees across RFZs 1-4	55
Figure 18	Mean above-ground biomass (AGB, Mg ha ⁻¹) for all the	
	rainfall zones (RFZ)	57
Figure 19	Mean pH values of soil for each rainfall zone (RFZ)	59
Figure 20	Soil particle fractions (particle size distribution) for each	
	rainfall zone (RFZ)	60
Figure 21	Soil particle size distribution (mean values) across the	
	RFZ – 1 to 4 (red, blue, green, and yellow points	
	respectively)	60
Figure 22	Mean soil organic carbon (SOC, Mg ha ⁻¹) for different	
	depths (top 0–5, 5–10, 10–15, 15–20, and bottom 20–25	
	cm) in soil for each rainfall zone (RFZ)	61
Figure 23	Mean soil organic carbon (SOC, Mg ha ⁻¹) up to 25 cm	
	depth in soil in each rainfall zone (RFZ)	63
Figure 24	Relationship between SOC ₂₅ (Soil organic carbon, SOC	
	at 25 cm soil depth) and SOC_{100} (SOC at 100 cm soil	
	depth) across four rainfall zones (RFZs) (n = 95)	63
Figure 25	Mean microbial biomass carbon (MBC, Mg ha ⁻¹) for	
	different depths (top 0-5, 5-10, 10-15, 15-20, and	
	bottom 20–25 cm) in soil in each rainfall zone (RFZ)	65
Figure 26	Mean microbial biomass carbon (MBC, Mg ha ⁻¹) up to	
	25 cm depth in soil in each rainfall zone (RFZ)	65

Figure 27	Decomposition pattern for Nonstructural components	
	(a) and Holocellulose (b) in all the species	68
Figure 28	Weight loss of whole litter mass (a), structural	
	components (b) and lignin (c) during decomposition	
	(from 0-270 days, Vadodara site) of selected plant	
	species. (Values in parenthesis indicate range of	
	standard deviation from the mean)	70
Figure 29	k values (g g ⁻¹ yr ⁻¹) of all the species at different	
	intervals (a) and a representative of trees, shrubs and	
	herbs (b)	71
Figure 30	Changes in MBC levels (%) up to 270 days.	72
Figure 31	Relationship between above ground biomass (AGB, Mg	
	ha ⁻¹) and soil organic carbon (SOC, Mg ha ⁻¹) up to 25	
	cm soil depth, n=95 across the rainfall zones (RFZs)	73
Figure 32	Relationship between soil organic carbon (SOC, Mg ha	
	¹) and soil microbial biomass carbon (MBC, Mg ha ⁻¹) up	
	to 25 cm soil depth, n=95 across the rainfall zones	
	(RFZs)	73
Figure 33	Relationship between aboveground biomass (AGB) and	
	soil organic carbon (SOC, up to 25 cm soil depth) across	
	four rainfall zones (RFZs), a) RFZ-1 (n = 22), b) RFZ-	
	2 (n = 31), c) RFZ–3 (n = 20), and d) RFZ–4 (n = 22)	74
Figure 34	Relationship between soil organic carbon (SOC) and	
	microbial biomass carbon (MBC) across four rainfall	
	zones (RFZs) for, a) $0-5$ cm soil depth (n = 95), and b)	
	20-25 cm soil depth (n = 95)	75

VII