NOMENCLATURE | Latin letters | • | | |-----------------------------|---|---| | a | interfacial specific surface area | $[m^2/m^3]$ | | A | cross section area | $[m^2]$ | | A _i , A* | physical solubility of chlorine | [kmol/m ³ or gmol/liter] | | b_0 , b_{ii} , b_{ij} | regression coefficients | [-] | | C | concentration | [kmol/m ³ or gmol/liter] | | C_{A0} | concentration of A bulk of liquid/ | [kmol/m ³ or gmol/liter] | | | Initial concentration in gas | | | C_{g} | concentration of gas | [kmol/m ³ or gmol/liter] | | C_{B0} | concentration of B in bulk of liquid/ | [kmol/m³ or gmol/liter] | | | Initial concentration | | | C_D | drag coefficient | [-] | | C_{DN} | modified drag coefficient | [-] | | d, D | diameter | [m] | | d_{32} | Sauter bubble diameter | [m] | | D_A | diffusion coefficient of species A in | $[m^2 s^{-1}]$ | | | the liquid phase | | | G | volumetric flow rate of gas | [m ³ s ⁻¹ or litre/hr] | | G' | molal flow rate | [moles/sec] | | g | acceleration due to gravity | $[m s^{-2}]$ | | F | volumetric flow rate | $[m^3 s^{-1}]$ | | H | Henry's law coefficient | [Pa m ³ mol ⁻¹] | | На | Hatta number | [-] | | R_A , N_A | rate of molar absorption with chemical reaction | $[\text{mol m}^{-2} \text{ s}^{-1}]$ | | | (flux) | • | | N_A^* | average rate of physical absorption (flux) | [mol m ⁻² s ⁻¹] | | k_{G} | gas sided mass transfer coefficient | [mol m ⁻² Pa ⁻¹ s ⁻¹] | | k_L | liquid sided mass transfer coefficient | [m s ⁻¹] | | k _{m, n} | chemical reaction rate constant for m th order | $[m^{3(m+n-1)} mol^{-(m+n-1)} s^{-1}]$ | | | in species A and n th order in species B | , | | $k_L a$ | volumetric mass transfer coefficient | [s ⁻¹] | | k _L a* | dimensionless k _L a | [-] | |-------------------|---|--| | 1 . | length | [meter] | | L | volumetric flow rate of liquid | [m ³ s ⁻¹ or litre/hr] | | M | molecular weight | [kg mol ⁻¹] | | m | number of moles | [-] | | n | number of nozzles | [-] | | P | system pressure | [Pa] | | p_A | partial pressure of component A | [Pa] | | r | radius | [m] | | r_{A} | chemical reaction rate of species A (volumetric) | [mol m ⁻³ s ⁻¹] | | R | gas constant | [J K ⁻¹ mol ⁻¹] | | t | time | [s] | | t _e | exposure time | [s] | | T | temperature | [K] | | V . | volume | $[m^3]$ | | v | velocity | [m s ⁻¹] | | V_{R, V_J} | volume of reactor/ejector | $[m^3]$ | | $\mathbf{w_i}$. | concentration of species i in the liquid phase | [kmol/m ³] | | \mathbf{w}_{ij} | concentration of species i in the liquid phase at x_j | [m s ⁻¹] | | X | distance from interface | [m] | | x_j | spatial variable at node j | [m] | | X | influencing parameter, dimensionless | [-] | | Y | target quantity, dimensionless | [-] | | у | mole percentage of solute in gas | [-] | | z | stoichiometric coefficient | [-] | | Z | distance along axis of ejector | [-] | | N ' | normality | | | | | | | | | • | | Greek letters | | - | | α | gas hold up | [-] | | β | enhancement factor | [-] | | Δ | difference | [-] | | | | | | δ | film thickness | [m] | |-------------------------|---|-----------------------| | χ_1 | liquid holdup | [-] | | \boldsymbol{k} | exponent | [-] | | σ | parameter defined by equation (4.2.13) | [-] | | $\sigma_{1,}\sigma_{2}$ | parameter defined by equation (4.2.15) & (4.2.16) | [-] | | σ | surface tension | [N m ⁻¹] | | μ_k | kinematic viscosity | [cm2/sec] | | μ | dynamic viscosity | [Pa s] | | ν | kinematic viscosity | $[m^2 s^{-1}]$ | | ρ | homogeneous flow model density | [kg m ⁻³] | ## Subscripts fluid bulk 0 A,B.... component A,B..... b bubble Dispersion disp exposure e G, g gas phase i interface in inlet j jet L, 1 . liquid phase chemical reaction order m, n N nozzle mixing tube M out outlet throat th tot total d desorption b bubble superficial S R reactor molal mo ## Superscripts O fluid bulk/initial * equilibrium, physical solubility , solute free basis