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CHAPTER - V

HHOB OPTICAL MODEL THEORY

5 ol INTRODUCTION

The elastic scattering of electrons and posi

trons by atoms and molecules in the intermediate energy 

region can be conveniently analysed by the optical model 

potential. For complex atomic targets it is a convenient 

model to describe both the effects of the distortion of 

the incident charged particle in the atomic field and 

the distortion of the target atom in the presence of the 

incident charged particle. Once the optical potential 

is determined, the original many - body elastic scattering 

problem reduces to a one-body problem, namely the 

scattering of a particle by a potential. Furthermore, 

depending on the way an optical potential is set up, it 

can also offer a computationally simpler solution of the 

differential equation of scattering ( Joachain 1975 ). 

However this reduction is impossible at present and 

approximation methods are necessary. A number of calcu

lations for the elastic scattering of electrons and 

positrons by H, He , Li, Be, C, N, 0, F, Ne, Na, Mg,

Ar, K, Kr, Xe ( Jhanwar and Khare 1976 ; Jhanwar
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et al 1978b ; Khare and Kumar 1978 ; Khare and *
Raj 1979, 1980 ; Khare et al 1982 ; Kaushik et al 1982, 
1983 ; Furness and Me Carthy 1973 $ Me Carthy et al 
1977 ; Lucas and Me Carthy 1978 ; Joachain et al 
1977 ; Byron and Joachain 1977a ; Vanderpoorten 1975, 
1976 ; Teubner et al 1978 ; Buckman et al 1979 ;
Schwenke et al 1983 )» Therefore it would be interesting 
to apply the optical model formalism to the scattering 
of charged particles by complex atoms which we shall 
analyse by means of Higher energy Higher order Born 
(HHOB) approximation ( Yates 1979 ). We have taken 
a study to formulate the optical HHOB approximation 
model in a form suitable for application to scattering 
by complex atoms. The HHOB approximation proposed by 
Yates (1979) has several attractive feature. The expre
ssions are obtainable in the closed form thus avoiding 
complex numerical procedure1 . The method is simple 
and computationally feasible and the problem of diver
gent integrals ( like those in GES ) is absent,.

The optical potential comprised of static, 
absorption and polarisation potentials. In the following 
sections after discussing briefly the static contribu
tion to the HHOB phase, we analyse in detail the role 
of absorption and polarisation interactions. The 
absorption and polarisation phase shift function are
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written down for an arbitary atom interms of an excita
tion energy and other known quantities.

The optical potential so constructed is spheri
cally symmetric, the differential equation is solved
using the method of partial waves and the scattering

2ijC rmatrix Sj = e 1, where 0| is the phase shift
JLil

in the J partial wave and hence the DCS are 
obtained. Calculations are carried out for elastic e 
scattering from hydrogen of energies 50 eV and 100 eV.

5.2 THEORY :

Let us consider the non-relativistic elastic 
scattering of an electron by a neutral atom having z 
electrons. We assume that the centre of mass of the 
atom coincides with its nucleus and choose it as the 
origin of our co-ordinate systems. We begin by writing 
the equivalent one body Schrodinger equation for elastic 

scattering namely,

( K + Vopt - 2 k2 ) = 0, (5.1)

+where |J^ is the elastic scattering wave function

describing the motion of the projectile in the optical 
VQpt » we may write the optical potential,
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(1) (2)
V . = V + Vopt

(1)
where V is the static potential.

(2)
V " Vpol + iVabs

(5.2)

(5.3)

where vpoi and vabs are PurelY real but energy 

dependent.

The total optical potential thus becomes

'opt = Vst + Vpol + iVabs + Vex (5.4)

Following the method used for optical eikonal scattering 

amplitude ( Byron et al 1977 ) we can write the first 

Born optical approximation as

foB _i_ r2* J e
2

[ v Xe+ + V
L o st o Xpol

2 1 2 2 n
+ Vo Xabs + 1 Vo XstJ db (5.5)

wh ere V
o

OO

Xst m - I
am OO

Vvst (b, z) dz (5.6)

2 OO

V
o

*pol “ - /
■OO

V . pol (k, b, z) dz (5.7)

2 OO

Vo Xabs ~ ~ f
—OO

vabs (k, b, z) dz (5.8)
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Here VQ is the strength of the coulomb potential ' 

and equal to 1 in atomic units* In the HHOB 

approximation ( Yates 1979) taking the first and 

second terms, the amplitude is written as,

f
HHOB

1
= " 2% ■ / db e •H

>

dz

* i
iq.b

I / db e 
n

OO

/ Vfn
•OO

dz / dV 
* o

G0Cr' ) V . (r - r’)
-ik. .r 

e 1
1

(5.9)

where V
nm

< Pn(x) | V(r - £') 1 PmCx) >

(5.10)

Comp airing the terms in (5.5) and (5.9) we find

that -

Xst =

OO

- fvu
—OO

dz (5.11)

and
1
2

2
Xst + X , pol + X . = 2 Zabs n

OO

f Vfn
•OO

dz / dv^

-ik..r
G0Cr,) Vni(^-£,) e

. °° °° t — ip. z
= - < f | / dz V / dz* H(z ) e

V(r - z y, r.) | U ^
1 b 1 =0

(5.12)
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where H(z) is the Heaviside function

The above equation can be written for the ground state 

as

i Xst + Xpol * 1 Xabs = k. < 0 I 7 Vdz
X -«

2
/ dz' ( cos p^z - i Sin 0.z )

—09 ^

V(r - r') H(z') | 0 > (5.13)

Now the real part of the above can be written as

>ol
00 Z If

£ < 0 | / V dz / Sin ^z V dz |0>
i —«> —<»

(5.14)

The quantity Xpoi ^-n general very complicated but 

if we are interested in the small momentum - transfer 

behaviour of fgg we need large b behaviour of V. 

Therefore we can write V as

V
zz + bb, *Cos<{).

(5.15)

Substituting the value of V in equation (5.14) we can 

write

pol ki < 0
00 (z z, + bb, Cos^3.)
1 —1—^----------- 1 dz
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z , (z z, + bb, Cosd).) ,
/ Sin pAz---- ——-----±- dz | 0 >

(5.16)

Changing the integration variables x and
y = £ , we can write the above equation as

< 0 |
pol k.b

0 > «---“ C / dx / dy (xy + l)
• CO —CO

Sin ( p^yb )
o 3/2 0 3/2 3

(1 + x2) (1 + y2)
(5.17)

If we now insert this into expression (5.5) it will 
gives a contribution to which we may denote by
pol

f . It is given by 
OB

pol
f
OB

1_
2n

< 0

/ <*b 

2
z
k.x

0 > CO

f dx
— OO

(, X.Y. -±.il
(1 + X2) 372

Sin^yb)
,1 2,3/2(l + y )

00 J (qb) db
dy I —£----O

The above equation tends to glauber term when P^ > 1 
We can also see that the above equation is similar to
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pol
Byron et al's fgg except that Sine term is having 

only one interaction term.

pol
f
OB

= < O I z2 I 0 > / dx / dy -

(1+x2) (1+y2)

“ qti Sin T)t
l Jo ( ——
o ri

(5.19)

where r) = ^b

The integral involving the Bessel function canji be 

evaluated analytically to give

<Kt) jr j ( ) Sin (t)t)

o
P: r\

2L Z < t2 ’ p * 1

-i / M
Sin ( —*!j- ) * >/ t (5.20)

So we may write

pol
f
OB

< 0 | z J 0 > 
“ — — / dx

(1 + x )
2 3/2 I1

(5.21)

where I,
x (xy + 1)
f dv--------------7^75 ♦

(1 + y2)
(5.22)

Integrating by parts the above equation and substituting
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in (5.21) we will get

pol
F
OB

< 0 | z2 | 0 >
icT
1

r , 2 7 dxc 11 - ?i i — 7372(1 + X2)

'r2 Sin Q d6
j — 2] 1/2
0 (1 + ( f sino) y

< ° I *2 1° > r , . 7 dx x Sin-l(^ )
ki o 0 2

(1 + x2)

Q 00§ /-
^i -00

dx %/2
s SinQ dQ

(1 + x2)3/2 ° (1 + § Sin20)3/2
Pi

Tl < 0 |z2| 0 >
[ 1 - 8qa

qa
(l +. (qa)^) 

(5.23)

1/2

where a 1
2pj

It is interesting to note thatt the above expression is 
exactly same as that of Byron et al (1977) except one 

additional term which has Less significant value. We 
can find out the V ^ from (5.23) as follows.

pol
< 0 U I 0 > , ia-i , r , _x_471k, e dq [ 1 - 8qa
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_ga
jl + (qa)J2 3/2

< 0 |z2| 0 > / Sin(nf) F 1
k a f o

1
8^1

u
(n + 1)172 ] p. dp.

where f j H != qa

(5.24)

(5.25)

The above V ^ is different from the Byron et al by 

an additional term -g— . Integrating by parts twice 

we find that the expression for V is sa®e as that 

of Byron et al. The contribution of the term (—gjj ) 

is not present because it amounts to an additional 

constant which when differentiate twice for tthe evalua

tion of the integral will be zero. Hence the expression

for V , will be pol

pol ki a3 f
< 0 |z2| 0 > [ 3 / .gfe

o (n + 1) 7

7 s4*i (£&).^j 3j20 u2 + 1)
(5.26)

Integrating the above expression we will get

Vpol
%

2k. a3 
1

< 0 |z2| 0 > [ Ic(f) - Loin
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- f {h <« - Li <«} ]
(5 ©27)

Where L and I are modified struve and Bessel functions, 
n n

Using the asymptotic expansion of ( I - L ) and 

( 1^ - ) the large r - behavior of V ^ is obtained.

pol 2r
[ 1 + ila4

] (5.28)

Where a is the polarisability,

The V thus obtained is exactly the same as that of

Byron et al (1974).

How we will turn our attention to the imaginary 

part of equation (5.13).

2 ^ oo z
< 0 I / V dz / dz*2 Xst + Xabs _1_

k.

Cos(piz*) V(r-r') H(z') | 0 >

. OO z ,= i <0 I / V dz / dz
Ki —1oo —OO

Cos (PiZ') Y( r - z'y, r^ | 0 >

(5.29)

In order to simplify the above equation we will write 

the interaction potential in Fourier form given In
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equation Hence the above equation can be

written as

1
2 + Xabs

-r~~ < Of / Vdz / H ( z ) dz‘e *
Ki

oo

/ / dpdp^
— OO

I

-ip.r + ipz z

V ( p + pz y , rA )

< °! / V d I | 0 > (5o30)

Here I
t I

n
- "M/ dz H(z ) e 1 f f dp dp eip.r + xpzz

V ( p + pz y , rx ) (5.31)

•lxotUsing the result fdxe H(x)=it<£( a)- i/*(”)
—OO

(5.32)

We can write the equation ( 5.31) as

n
/dp f dp e

ip .r
V ( p + pzy , rA )

[ * pz - Pi ) - ifi.
Cp2-Pi) ) ]
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-ip.b - ip. z .
it / dp e V (p + pA y , rx )

i <Pi **
(p2-?i)

-ip.b - ip z 
/ dp e

V(p + pz y , z1 ) (5.33)

From XARq we can find out the value of V usingABS

the below formula,

abs
7" { - Z^U2 -db~ 1 Xabs > *> (5-34>

The first Born scattering amplitude for V ^ as 

given by (5.28) is

Bl

pol
JL_
4d

a(3 - q d) t ~c*c:1
-------7—-----  J e (5.35)

3a

The static potential is = - I y^ —
j=1

(5.36)

values of X -s and y - s are given in earlier v chapter, 

The first Born scattering amplitude for V ^ is

Bl

st

3
2 Z 

j=l Cq^ + Xj )

(5.37)
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For the inclusion of exchange effects we have 

taken the equivalent local exchange potential«follow

ing Vanderpoorten ( 1975 ). According to him, V is
V. i?V

given as

V ( r ) 
ex

v„ 3 - ft jL Lr

2 Ki Vo >

8(2 + 1)
n

-2r 1/2
(5*38)

wi th V 
o

V. + V v st pal-

For the determination of the exact phase 

shift we have to solve the second order differential 

equation. We have employed the Numerov method for 

the step by step integration of the radial Schrodinger 

equation out from the origin into the asymptotic region 

where the potential has a negligible effect. In this 

region x > x^ , the,range of the potential, we know 

the values of -the unknown variable and its derivative. 

So the phase shifts can be computed. The details of 

this procedure is given below .

Consider the second order ordina ry 

tion of the form
nY = F (x) Yj

differential equa-

(5.39)

It can be written as

n
Yj - F Yj (5.40)



169

Using Newtonls formula for forward interpolation and 

the method of replacing the derivative of a function by 

a polynomial over an interval we get the Numerov 

formula.

Cl Y. , «. 23+1
( 1

,.2

12

(i - fe fj-i > Vi+1,2 fj yj

(5.41)

Thus for j = 1 we have a formula for determining Y2 

provided we know the two previous ordinates yQ and y. 

Here h denote the step interval.

Now in the scattering problem for example 

electron hydrogen scattering, the second order differen 

tial equation is given as

( + kj2 - LLL+^J-L _ 2 V(x) ) F^k-x)
dx x

= O (5.42)

where k^ is the incident momentum and V(x) is the 

interaction potential.

Comparing equations (5.39) and (5.42) 

Y = F, (k.x) and

F(x) «

fj (k£x)

1(1 + 1)
ki + 2V e. (5.43)
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Thus if the original two values of Fj(k^x) at x = 0 

and x = 0 + h are known, using the Numerov's formula 

(5,41), the value of Fj(k^x) at x « x^ can be 

computed. For x > xA , the potential V(x) can be 

neglected. At such distances, the differential equation 

being solved is simply Bessel's equation with the solu

tions FjC^x) k±x [ A^Ck^ jj(k^x) - B1(ki) nj(kjx)]

(5.44)

At x = xA , our algorahtm for solving the radial 

equation (5.42) using Numerou method repetitively

x^ yields number for ^(x^)out from the origin to x 
dF

and —-j*- /x^ . The functions jj(k^x) and Oj(k^xA)

can be obtained, for example from tables. Therefore, 

the unknown coefficients Aj(k^) and Bj(k^) of (5.44) 

can be obtained from the pair of equations

F,(xa)

Va
AjOcj) - BjCk.) n, (kixA)

AjCkj)
dj

dx ',A - W
(5.45)

2
for each value of- the energy k^ . 

given by

The phase shift is
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tan <£i £k.)

aJTFJT (5.46)

Thus it is obvious that if the two initial values of 

the solution of (5.42) are known, the phase

shift for different'J values for corresponding energies 

can be computed, using (5.46) through the procedure 

disscussed above. Hence the remaining task is the com

putation of these initial values. For starting the solu

tion, we assume that at small values of x it is possi

ble to expand the solution in an ascending power series 

in x.
co n+e

F.(k.x) - Z an x (5.47)
1 1 n=0 n

Substitution of this in (5.42) yields Fj(k^x) 
x,+ F , since it is regular at the origin and we 

want physically significant solutions ( i.e. no infi

nite probabilities ). Hence, the physical solution 

demands that at the origin, Fj(O) = 0.

If the numerical integration is begun at x=0,
for 1 > 1 then. F.(k.x) and dFl are zeros and we

1 1 dx
get the trival solution Fj(x) = 0 for all x. How

ever, if we step a very small increment h away from the 

origin, then Fj and its derivative can be computed 

from the first few terms of their series expansion (5.47).
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Hence Fj(k^x) 3
X

n=0 n
n+ |+1 

h

5 o 3 CALCULATIONS

The real analysis of any theoretical formula

tion should be its application to the practical problem. 
Now we apply this formulation to the elastic scattering 

of electrons by hydrogen atom. The ground state wave 
function for the hydrogen atom can be written as

H -1/2
0 (r.)" = (%) exp(-r) (5.48)
Is 1

Using (5.36) we will get X ^ as

wst I V3t dZ

2 jSl ko (b ) y3 (5.49)

For the polarisation potential given in (5.28) we have 

used a = 4.552 and = .465.

For the calculation of *abs' the interaction 

potential taken is

V _Lr
o -o “ -l1

Hence V (g + pz y,------- rN)

(5 .50)

ip.b, ipz.z.
l(e e

"2...22% (p + pz )
(5.51)
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Substituting (5.51) in (5.33) and carrying out the 

integration we will get

k + Xabs - 5^
-2Ko(p.b) + 2 e 1PiZl ^(p-l^-bl)

- k± ^o(Pib) ^hb) +

2 e ^0(PiIbrb|) ]|0>

(5.52)

Substituting the value of wave function from (5.39) 

and carrying out the integration we will get,

Xabs X - 1
2

2
Xst » (5.53)

where X = ^ [ - £ ( - ) *0Ojb}

1 A2
Ko (fi.b) - kQ(b V XZ+ )

+ 16 ko
Ojb) -

2kQ( Ab) + 4 ( XQ(P1b) ) ] (5.54)

iokh X = 2.
X . for helium atom also can be find out in the same abs
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way as that of hydrogen. Using Hyllerass wave function,

, r2) = *jr exp (- y(r^ + r2) ) (5.55)

with y = 1.69 we will get the expression as

He
X

abs

6 „ i k (p.b)

t [ - t (- ar ) 9 l W>
X ( b V , n 2 ) + 16 / (

V + Pi dy

(y - ^ >
2 ( K (p.b) - k (yb) )

+ 4 +

X *s
(Ko(p.b) - kQ(yb) ) ] - 2 ( Z Yiko()y.b))

1=1

(5 .56)

The values of y^ - s and 7^- s are given in 3rc*

Chap ter.

From Xgbs we can find out Vabs using the formula

Vabs - * J (b2 - r2)V2 (Xabs) db (5.57)

we have solved the above integration numerically.
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Thus having the optical' potential (5.38), 
(5.49) and (5.58), the radial equation (l.59) is 
solved numerically by Numerov method for the first 
M values of the angular momentum number | and scat
tering matrix Sj for the first M values are obtained. 
The scattering amplitude is obtained from the following 
relation,

f(e) 1
2ik.1

I (2 f + 1) (S. 1=0 *
1) Pj(CosQ)

B . M f B,+ f (©) - ~~ £ (21 + l) oj Pj (Cos©)
1=0

(5.58)

rBwhere 0| represents the phase shifts due to the
static, polarisation and absorption potentials in the

Bfirst Born approximation, f (©) is the scattering
amplitude in the first Born approximation due to the 
above mentioned potentials. Here M is an integer an<I 2:Sj is related to the exact phase shift d\ as = e

Since the determination of matrix takes a good 
amount of computer time and also the contribution of 

for higher values of ! is very small, we have calcu 
lated Sj matrix upto I = 15. The Born phase shifts 
can be obtained from the relation.
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s, -2k /dr r2 V(r) [ j.Ck.r) ]
X o * 3L

(5.59)

Hence the phase shift for V , is obtained as
S w

1 3 X; + 2k.2 ,
= £ l Q, ( J ■ j. )Ki j=l 3 J 2k/ (5.60)

where Qj represents the defined polynomials tabulated

as
Q0(x) = | !;n (

Q,(x) - p 3r> ^ 1

1 + x 
1 - x
1 +_x

)
) - 1

(5.61)

(n+l) Qn+1 = (2n + l)x (% - n (5.62)

Following Deo Raj (1981), we have calculated 

the phase shifts for polarisation from the semiclassical 
expression given by LaBahn and Callaway (1969). The 

relation is

$
pol
\

1k\ /
17 VDOl(r) *
7T 2\l/2 (r - r ) '' o

(5.63)

with rQ = ( J + 0.5 ) | k^

Thus the semiclassical phase shifts are given by the - 

analytical expression

it
8k. a 3 a d 

4c5 (5.64)
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2 2with c = r + d 
o

The phase shifts for absorption are found to be

i| = Xabs/2 O-®)

The first Born amplitude for absorption is

, iq»r
fabs = * ~k / e - vabs dv t5'66)

This we have done numerically,,

The exchange amplitude.is calculated using 

the formula

f
ex

where

ex
and f

Bl

1
- 2k.

S (21 + 1)
p=0

(Sj-1) Pj(CosO)

ex 
- rB1 - b “ki 1=0 1

ex
1 Pj(Cos©) (5.67)

: - 2
oo

k* ldr v« [
Vkir) ] (5.68)

__ 1 
q

oo

/ dr r Sin(qr) V
r, eX

(5.69)

We have done the above integrations numerically.

Thus having the scattering amplitude f(Q) 

from (5.59) the differential cross sections are 

obtained from the relation.i

H 2 2
f (o) = f I f(e) + fex| + ||f(e)-fex|
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5.4 RESULTS /WD DISCUSSION

The values of exact phase shifts for the 

elastic scattering of electrons from hydrogen atom are 

tabulated in tables (5.1) and (5.2). For the purpose 

of checking the computer programme set up in the present 

study for the evaluation of the Born and the exact 

phased shifts for a potential, both the phase shifts 

were evaluated for the Yukawa type of potential. The 

results obtained for different J values ranging from 

0 to 10 are shown in table (5.3). It may be noted 

that for higher values of J both the phase shifts 

approach each other.

In table (5.4) and (5.5) the present results 

are given at certain sample energies 50 eV and 100 eV. 

Since the summation of the partial waves requires the 

evaluation of the phase shifts in two ways, comparison 

of the values etc it takes more computer time and hence 

the present studies were carried out only at certain 

energies, at which quite a lot of data is available for 

comparison. Since the motivation behind our study is to 

calculate the absorption potential using HHOB approxima

tion and finding out the DCS including that also, 

tWo data will be sufficient to compare the present results 

with other data. However the present work can be carried
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out far other energies also if required without 

much difficulty.

In Table ( 5.4 ) we have compared our 

results for 50 eV with the results of EBS , MG, PI 

( Kusum Lata 1984 ) and the experimental results of 

Williams ( 1975 ). We can see that the present 

results are slightly higher than the experimental 

results in the whole angular region. EBS results 

increases our results up to 20®. After that EBS 

^results are lower than our present results. PI res

ults are lower than our results in the whole angular 

region. Same is the case of MG. But the differences 

between the various results are found to be less 

than 10 A-. We can see from the Table ( 5.4 ) that 

other theoretical values are less than the experimen

tal values except small angles. But our results are 

higher may be due to the fact we have included the 

absorption potential for the present calculation .

In Table ( 5.5 ) we have compared the 

present results for 100 eV with' the other theoretical 

and experimental results. Here also we can see that 

present results are quite comparable with the experi

mental results in the whole angular region. Our 
results are higher than the EBS results from 10° 

onwards. The M3 and PI results are also slightly
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lower than our present calculations.

Thus from the above presented results 

and discussion, we can conclude that the inclusion 

of absorption potential for the calculation of DCS 

in the partial wave analysis method is justified.
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r 5.1 : The values of the exact phase shifts

for elastic scattering of electrons 

by hydrogen atom. E = 50 eV.

s sti st po1
S abs

0.7079 0,67l6(-l) 0.1563(-l)

0.2192’v 0.7358(-l) 0.1715(-1)

0.7584C-1) 0o6245(-1) 0.1796C-1)

0.2774(-l) Q.46G2(—l) 0ol803(-l)

0.1037C-1) 0.3222(-l) 0.1654C-1)

0.3935(~2) 0.223l(-l) 0.1485C-1)

0.1476C-2) 0.1575C-1) 0.1252(-1)

0.5632(^3) 0.1124(-1) 0.1075(-1)

0.2144C-3) 0 »8346(-2) 0.8729C-2)

0.1476(~3) 0.6180(-2) 0.7468(-2)

0.6434(-4) 0.4841(-2) 0.5983(-2)

0.3841(»4) 0.3825 (--2) 0.5193(-2)

0.1424(-4) 0.315l(-2) 0.415l(-2)

0.7097(-5) 0.2962(-2) 0.3662(-2)

0.3667(»5) 0.1135(~2) 0.2959(-2)

0.1437C-5) 0.1017(-2) 0.210l(-2)



Ta&te?'t 5p*^. !; The values of exact the phase shifts.

E = 100 eV.

II
fSt £ Pol r abs

0) Q;.6Q24 -0.1269 0.1504

1 0;.24'58 0.7087C-1) 0.4588C-1)

2 0.1125 0.2795(-1) 0.6941C-2)

•>V 0.5378(-l) 0.1858(-l) 0.9370C-2)

4 0,^22^-1) 0.1459C-1) 0.6555(-2)

5 0.1295C-1) O-U03(-l) 0.7868(-2)

6 0o6458(-2) C\ l'i i'.f 1 }
v o *4.0W \ JL. J

0.7247C-2)

7 0.3195(-2) 0.5166C-2) 0.3645(-2)

8 0»1582(-2) 0.1036(-2) 0.3145(-2)

9 Q.8136(-3) 0.635l(-3) 0.1635(-2)

10 0.3656(-3) 0.2188C-3) 0.1393C-2)

11 0.2045(-3) 0.7154C-4) 0.1298C-2)

12 0.102l(-3) 0.602l(-4) 0.1117(t-2)

13 0.2093(-4) 0.2102C-4) 0.10l2(-2)

14 0.3277(-4) 0.4947(-4) 0.0925(-2)

15 0.2925(-4) 0.2562(-4) 0.0853C-2)
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: 5.3 : Phase shift analysis for the Yukawa
irpotential - — for the wave number 5.

Born phase shift Exact phase shift

0.2308
0.1354
9.1739(-2)
6.5710C-2)
4.8488(-2)
3.6456(-2)
2.7766(-2)
2.1348(-2)
1.6533C-2)
1.2878(-2)
1.0078(-2)

0.2384
0.1383
9.2820(-2)
6.6315C-2)
4.8843(-2)
3.6629(-2)
2.7618C-2)
2.1254(-2)
1.6498(-2)
1.2776C-2)
1.0076(-2)
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but depend on energy in this method. In HII method

the parameters are calculated by making the difference

between output and input scattering amplitudes equal to

zero. In both the methods the terms up to the order 
2 are retained in the expression for scattering amp

litude. In WI method only one parameter'a’ is needed. 

The third Born term is replaced by the third Glauber 

term. The exchange effects are included through ochkur 

exchange scattering amplitude . In ml method and

ojll method term of real part of HI and HII
ki

methods are replaced by the corresponding Wallace 

term. In the third chapter we have applied HI, HII, 

ml, and wll methods to calculate the elastic scattering 

of electrons by hydrogen, helium and lithium atoms for 

energies varying from 100 eV to 400 ev. The following 

conclusions are drawn from these results.

1«. The technique used for the partial inclusion of higher 

order Born terms is computationally simple and 

gives good results.

2. The comparison of results in HI and ml shows that 

at large angles ml yields better agreement with 

experiments.

3. The comparison of the results in HI and HII methods 

HII method is in better agreement with the experimental

results.
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4- The total elastic cross sections using Cox and Bonham 

static potential also show better agreement with the 

experimental results. Hence this method can be extend 

to other atoms also.

In the fourth chapter modifications to the HHOB 

approximation were attempted. Wallace!1973) has improved 

the eikonal method by applying a trajectory correction in 

the Green's function and carried out further analysis of 

the perturbation series. The similarity between the modes 

of expansion of the Green's function in the eikonal and 

HHOB approximations gives much scope for similar attempt 

in the HHOB approximation also. The HHOB analysis was car

ried out after incorporating the correction in Green's fun

ction and scattering amplitude is derived accordingly. The 
1
—if— term in the HHOB real term is not present in the new
k . i
real term. Instead second Wallace term is present in the

new calculation. The real 0 )and imaginary terms of
Ri

the present calculations are different from the HHOB' terms 

by (l +X) and 11 — A) respectively.

The Wallace corrected HHOB amplitude is applied 

to study the elastic scattering of electrons by hydrogen, 

helium and lithium atoms in chapter IV. A comparison of 

DCS and TCS results reveals the

1. The present results shows better agreement with the 

experimental results than the HHOB results in small 

angle region.
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2. The second Wallace term is smaller than the
ki

real term in HHGB approximation. Hence the DCS 

obtained by the present method is lower than that 

due to HHOB approximation.

3. The total cross section for hydrogen atom shows 

better agreement with experimental results than 

simple HHOB .

4. The present method can be extend to other atoms 

also.

In the fifth chapter the elastic scattering 

of electrons by hydrogen atom is found out using optical 

potential method. In the optical potential method many 

body collisional problem is reduced to one body problem 

in which the effects of the rest of the particles is 

included through an equivalent potential known as optical 

potential. This optical potential is generally complex 

non spherical an non local. It consists of static, 

exchange , polarisation and absorption potential . The 

absorption and polarisation potentials are formulated 

using the HHOB approximation. The second order pola

risation effects are included through an energy dependent 

and spherically symmetric polarxsation. This polarisation 

potential contains a cut off parameter rQ which removes
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the divergency of the potential at the origin. The 

static potential given here is the static potential given 

by Cox and Bonham ( 1967 ). The exchange potential 

given here is the one given by Vanderpoorten ( 1975 ). 

With this optical potential the radial differential 

equations for elastic e - H scattering have been 

solved numerically using Numerov method to obtain 

scattering matrices S| for first few partial waves. 

The contribution of higher order partial waves included 

through the Born phase shifts. With these scattering 

matrices Sj and Born phase shifts, the DCS for 

elastic e - H scattering is calculated for 50 eV and 

100 eV. The following conclusions can be drawn.

1. The absorption and polarisation potentials formulated 

in the HHOB approximation is used for the calcula

tion of DCS for elastic e - H scattering to 

test the correctness of these potentials. The 

absorption potential has a significant effect on 

DCS.

2. The results for DCS are in good agreement with the 

experimental data of Williams .

3. The present method can be extend to other atoms also 

without much difficulty when compared to the applica

tion to hydrogen atom.


