
CHAPTER - I

INTRODUCTION

The analysis of scattering phenomena plays 

an important role in numerous scientific and technical 

fields like astrophysics, aeronomy, gas lasers, con­

trolled thermonuclear fusion, biophysics, aurora, air 

glow, chemical composition etc. Elastic and inelastic 

cross - sections for electron and photon scattering 

by atoms and molecules are required for the study of 

the energy spectrum of secondary electrons ejected 

during the bombardment of the upper atmosphere by 

electrons, ions, cosmic particles and electromagnetic 

radiation in the UV and X-ray region. This infor­

mation in turn gives an idea of the chemical composition, 

temperature and density of the constituents of the upper 

atmosphere. Auroral and airglow emissions are visual 

manifestations of the scattering processes in the 

atmosphere.

In laser systems, the electron impact 

excitation of various modes of COg molecule and other 

species are required to be known. Thb mechanism for 

the cooling of interstellar gases can be understood 

through collisional process. Accurate cross-sections
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are also necessary if plasma heating is done by injection 

of fast neutral particles into the beam*

Various parameters dependent on collision 

cross sections, like the stopping power and mean 

energy expended per ion pair etc are required to 

estimate the necessary radiation dos$ and duration 

of exposure in radiation therapy. In the present 

day energy crisis, the magnet© hydro dynamic ( MiD ) 

generators have their own significance. Some alkali 

atoms like caesium are used in it. The study of the 

collision process is an important design parameter in 

such uses. Collisional cross-sections are required 

to monitor the impurity content introduced in fusion 

plasma due to its striking the container walls on 

cooling off. Fast electron scattering can be used 

as a probe to map the charge distribution within 

the target atoms and molecules. The electrical 

conductivity of an ionised gas depends on the number 

of free electrons and their frequency of collision 

with molecules. The frequency in turn, depends on 

the momentum transfer cross-section. These mani­

fold applications make atomic and molecular coll­

ision physics a very important subject of experim­

ental and theoretical investigations.
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In a typical scattering experiment, a veil 

defined collimated homogeneous beam of mono energetic 

projectile is directed towards a target from a large 

distance. After the impact, the particles of the
i

incident beam are scattered in all directions and 

their angular distribution is observed at large dist­

ances from the scatterer. The number of particles 

scattered into the detector per unit solid angle per 

unit time per unit incident flux is called the dif­

ferential cross-section for that particular direct­

ions. The integration of the differential cross- 

sections over all solid angles yields the total 

collisional cross-sections.

All the scattering processes can be classi­

fied into 3 broad catagories namely, the elastic, 

inelastic and super elastic. The scattering process 

in which the internal states and structures of the 

colliding particles do not change are characterised 

as elastic. If the internal states and/or the stru- 

cturer of the colliding particle change, the collision 

is called inelastic. The super elastic collision is 

one in which the incident particle gains some energy 

from the target. The probability, of observing a 

certain final state out of the infinite set of possible 

states belonging to the above 3 categories is usually
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expressed in terms of the collision cross-sections 

which can be determined by means of the quantum 

collision theory.

To calculate collision cross-sections exac­

tly, we need accurate knowledge of relevant interac­

tions. The interaction can be decomposed to a 

good approximation, into the following parts, static, 

polarisation, exchange and absorption. The static 

part of the interaction is the electrostatic intera­

ction between the incident charged particle aid the 

undeformed charge distribution of the target. ' The 

polarisation interaction comes from the deformation 

of the atomic charge cloud by the approach of the 

point charge of the incident particle. If the inci­

dent particle is an electron, then its indistinguish- 

ability from the target electron gives rise to exchange 

interaction. The effect of inelastic processes on 

the elastic scattering are termed the absorption 

effects which arise in the energy region where the 

inelastic channels are open.

An exact evaluation of schrodinger equation 

corresponding to particular scattering process is a 

formidable task even if the interaction potential is 

known . This is because the exact wave functions of
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target atoms except hydrogen and hydregenic Ions are 

not known. However, even if the wave functions of 

the atoms are known, the schredinger equation cont­

ains infinite set of coupled integro - differen­

tial equations which can not be exactly solved even 

with the fast digital computers. In view of the 

limitations of obtaining the exact analytical sol­

ution of a many body problem in the quantum mecha­

nical frame work, approximate methods acquire 

paramount importance. To date no single theory is 

available which can give uniformly satisfactory 

results at all impact energies. It has been a usual 

practice to divide the incident impact energies into 

3 regions-low, intermediate and high. The energy 

region lying below the first excitation threshold of 

the target is taken as the low energy region. The 

energies at which the first Born approximation gives 

reliable results belong to the high energy region.

The energy region lying between the two is referred 

to as the intermediate energy region. Different app-i 

roximations are then devised to explain the scattering 

process in these energy regions. A detailed account 

of the numerous approximate methods can be obtained 

from a no. of books, reviews and selected papers 

( Bates, 1962 ; Mott and Massey, 1965 ; Massey et al 

1969 . Moiseiwitsch and Smith 1968; Rudge 1968 ;
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Gerjuoy and Thomas, 1974 ; Walters, 1976a ? Joachain, 

1977 ; Burke and Williams, 1977 ; Byron and 

Joachain, 1977a ; Bransden and McDowell, 1977,1978 ; 

Ishihara, 1978 ; Jhanwar et al, 1978a ; Burke, 1979 ; 

Lane, 1980 ; Joachain, 1980 ; Kessler, 1982 ;

Schwenke et al, 1983 ; Staszewska et al, 1984 ). Our
« ' \

area of interest is confined to the elastic scatte­

ring of electrons by atoms in the intermediate 

energy region. All ‘die physical concepts described 

thus far can be seen to arise from a rigorous mathe­

matical formulation of the scattering problem. We 

now proceed to formulate the collision problem in 

a mathematical frame work.

Let us consider the scattering of an ele­

ctron by a neutral atom of atomic number Z . The 

spatial co-ordinates of the incident particle and 

the atomic electrons denoted by r and r^

( i = 1, 2, 3,...., Z ) refer to the atomic nucleus 

which.is taken as the origin of our co-ordinate 

system. The non-relativistic, time - independent 

schrodinger equation for the system is

( H - H ) f ( x, ^ ) = 0 (1.1)

where, H is the Hamiltonian of the system, E is 

the total energy of the system and (x, jc^) is 

the wave function of the system.
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The initial state of the system is given 

as -3/2 i ki#r
^ki *-i^ = ® ~ ' U.2)

The interaction potential between the incident particle

and the target atom is given by
Z

V(r,ri) = Q[ f - iii I x t r I ^1*3^
The solution of

(Id) denoted by (r,r^) satisfies the boundary 

condition

-3/2 ik, „r
If (r.rj) -------> (2n) [ e 1 ^r) + E fnl

(0, (j)) e-1 ~ ], (1.4)

where f(© , <j) ) is the scattering amplitude.

The differential cross section ( DCS ) can be written 

as

S = T7 I f (o, $) \ U.5)

For the elastic scattering | k^ 1 = | k^ | = k.

The DCS for elastic scattering becomes

a® = i f c o, ) |2- u.6)

The total collisional cross-sections ( TCS ) are 

obtained from the optical thorem
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crtot 4ft
m

f ( © = 0 ) (1.7)

For the study of any collision problem DCS and TCS 

are the key quantities which can be determined by 

solving (l.l). The exact solution of it is a formid­

able task. There are 2 approaches in which this 

equation is solved for any collision problem. One is 

a differential equation approach, non-iterative in 

nature and another is an integral equation approach 

which is iterative. In the differential equation 

approach one has to solve infinite no. of coupled 

integro - differential equations, whereas in the inte­

gral equation approach summation over infinite 

number of terms is required. Various approximations 

have been devised to obtain the wave function and 

hence the scattering amplitude. Now a brief account 

of those various approximate methods which are relevent 

for the present dissertation is considered.

Born Series Expansion : The differential equation(l.l)

can be solved using the Green's function technique 

to obtain a formal solution for the wave function 

^(£.*3^) in form> of an integral equation, known 

as Lippmann Schwinger equation, given as

I I’m > - I fyci > + Q0+ v I Ha > ’
(1.8)
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+
Gq represents the out going Green's function for 

the unperturbed system and has the form

G0 < £» ri» E » ri ) =
ik _| r - r j
e x “

^n^-i'^n^i^ U*9)

in the configuration space. Here ($n (r) is the

eigen of the target atom.

+ , -3
G (r i £* » * t r. ) = - 2 x (2x) Z /
01 n

dqj. exP [iqj_.CE - £ ) ] *
2------T2----------- ---------  x VEi}VV (1<

n i(-

where is an intermediate momentum and

2 2kn = k^ - 2 ( (-n - ^ ) (l.ll)

substituting (1.9) in (1.8) and compairing the 

asymptotic expansion of the resultant with(1.4) one 

obtains a general expression for the scattering 

amplitude as

fni Ui ,% ) = - (2*)2 < <t>kf I V j > U.12)

The integral equation (1.8) when solved by iteration 

and substituted in (1.12) gives the Born series expan­

sion for the direct scattering amplitude given as

10)
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fni ( h> if ) = - (2n)2 < $k I V + V Go+ V +

V G V G + + I*. >oo %

oo

- Z^ Tgj (1.13)

where fR, = - (2ti)2 < <f) | V Z (G + V)P | <j). >
CJ Kf p=0 0 Ki

(1.14)

The n**1 Born approximation to the scattering amplitude 

is defined as

fBn = J^Bj

The first Born amplitude for a large no. of charged 

particle - atom elastic and inelastic scatt-ering pro­

cesses had calculated by Bell and Kingston (1974).

For the elastic scattering the first Born amplitude is 

given by
, iq.r

fBl - - -fir S e ” < 'Pi |V| $! > <£ (1.16)

The first Born approximation ( FBA ) for elastic sca­

ttering is thus just the elastic scattering by the static 

field of an atom. The FBA is valid for heavier atom 

for higher energies.
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A better way to include the polarisation, absor­
ption and distortion of the incident particle in compari- 
sion of FBA, is the second Born approximation ;

f - f + frB2 B1 B2 (1.17)

with fB2 = - (2it)2 < i, kf|V Gq+ V| i, ki >

(1.18)

Where we have denoted | <j3k_ > by |i, ^ >

and | <j). > by |i, kf > . Substituting G + from

(1.10) we obtain

dq^ <i, k^ |v|n, q^ y ^n, qj|Vji,k^>
B2 2 (2*r s /-

n 2 .2 .”1 - kn -

(1.19)

where |n, qx > = (2^3/5 el ^n^i5 * U*20)

The integration over the plane wave parts of the matrix 

elements yields

Sn /
z<i| £ 

i=l
<*1

(e1-^*^- 1) | n><n|

- k2+2(Cn-€L ) - i<E
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Z
x E (e 1 3 - 1) |i > (1.21)

j=l _---------------- ------

with = k^ and IC^ = - q^ (1.22)

The simplest way of solving the above expre­

ssion is the simplified Second Born approximation (SSB) 

used by Holt and Moisciwitch (1968). They replaced 

(C n - €i) by a mean excitation energy and performed 

the summati on using the closure relation. Thus under 

SSB approximation we obtain

fSB2 I d%
i£)

z z iR..r.
<i l Z Z ( e -1 - 1 )

i=l j=l

-iK-.r.
x ( e r J - 1 ) | i > (1.23)

where p^ = k^ - 2& .

Various modes of the second Born amplitude can 

be obtained from the work of Byron and Joachain (1973, 

1977), Gosh (1977), Tayal et al (1979), Yates (1979) 

and Kingston and Walters (1980). Special mention should
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be made about the High energy higher order Born (HHOB) 

approximation which will be elaborated upon in a later 

section.

Glauber Series Expansion

The Glauber approximation belongs to the class 

of Semiclassical eikonal approximations. The basic 

assumptions for such approximations are that (a) the 

energy of the incident particle greatly exceeds the 

magnitude of the potential and (b) the particle wave­

length (proportional to ) is much smaller than

the range ’a' of the potential. Under these conditions, 

the Lippmann Schwinger equation can be linearised and 

this procedure leads to the eikonal scattering wave func­

tion.

-3/2 . z
^(r) = exp ^ ^i*! “ 2k7 f u(x,y,z')dz')

' * i —oo

(1.24)

This shows that a simple modification of the phase of 

the incident plane wave leads to the eikonal wave function 

The eikonal Scattering amplitude is obtained as (Jochain 

1975)
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scattering .'amplitude is obtained as ( Jochain 1975 )

fE = / d2 & exP ^ 1*^ «XP t1 x 3

(1.25)

where b is the impact parameter and

X “ - 5k“ / U (b, z) dz (1.26)
i — 09

is called the “ikonal phase shift function.

The many-body generalisation of the above 

treatment was done by Glauber (1959). For the direct 

collision of an electron with a target containing fixed 

scatterer, the Glauber scattering amplitude is

k . r\
fG = 2'ii” «/* d b exp(i q-b) < f | exp (i Xq ) - l|i >

(1.27)

2where q is assumed to be 2 dimensional and d b is 

an element of area in the ( x, y ) plane.

The Glauber phase

XG = Xq ( b, r± ) (1.28)

The Glauber phase has a complicated expression so that 

the evaluation of (1.27) becomes very difficult except 

for H and He . Thomas and Gerjuoy (1971) have 

obtained the closed form expressions for the Glauber 

amplitude for the collision of charged particles with
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hydrogen atom. Of the various attempts made to 

evaluate the Glauber amplitude Glauber eikonal 

series ( GES ) method is significant. In this method 

( Yates 1974 ), the Glauber amplitude is written 

in the form of a series

°o n—1
fG * . 1 fGn 2

n=l

More about the GES method will be discussed in 

later section devoted for it.

Glauber eikonal series ( GES ) Method :

The GES , proposed by Yates (1974), is an 

analytical procecdure capable of providing quantitative 

estimates of the Glauber cross section.

Glauber's multiparticle amplitude formula is given 

as
i k.

ft = "ST I —O exp (i

< vf I 1 -'e*P (i x) I (Jj > (1.30)

Franco ( 1971 ) and Thomas and Chan ( 1973 ) had 

reduced the above formula to a one dimensional ~ - 

integral expression and found out the DCS. But their 

proceedures still requires a good deal of computational 

analysis before arriving at the final results.
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Yates had proposed a method involving the 

ex pansion of the amplitude in reciprocal powers of 

for fixed q = l q l and done a term wise 

analysis of the amplitude expression. Others works 

relevant to the development of this theory included 

that of Byron and Joachain ( 1973 ) and Yates (1973 ).

ix
Expansion of the phase function e in 

equation (1.30) gives

fi-w - n!1 1

k. iq.brt
where f (n) = -----— / db e 0

i-^f 2-jinl °

< \}f | Xn | ^ > (1.32)

Hence for fixed q, the differential cross section

through order ( ) i

i->f

is
ki

(l) 2 / 0\ 2
(f ) + (f 1 J ) - 2f

i->f i“ff i-?f

(1)

(3)

i->f
+ 0 ( (1.33)

which suggests that for large k^, only few terms 

in equation (1.31) are required to obtain good esti­

mates of th e Glauber cross sections. The Glauber 

phase function is
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N
£

i«l
1

r-o

]

(1*34)

By using a transformation similar to that used by 

Tenney and Yates ( 1972 ), the X is transformed to obtain 

a convenient form of f; * For this ■- and
X*“/X

| r""\.. ’£.. | are replaced by their 3 - dimensional Fourier
*-o ” -1*

integral representations.

X (bo- V =
N

1=1 P

2 / dzQ e 0 [1 - e1^* *-j]

nki
/ % e”^*-© B(p*—bfj)

P
(1.35)

where p' = p + p

Substitution of (1.35) in (1.32) and further 

simplification gives

f (n) 
i->f

271 ki
ni

( =-5_( 11 ki ) I
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< Vf l B (Pj)- - - - - - - - - - B^Pn-l^ B^2ra)UJi >

Here B(p^)

< Vf I B(p) B(q-p)

| Vj[ > and so on (1.37)

(n)
Hence ^i_>f becomes much simpler due to the uncoup­

ling of bQ and b^'s as a result of the transformation 

given by (2.41)0

For chosen co-ordinate system,

(1)
fi ^ =» first born amplitude

(2)
f i->f n k. / djQ

2 I I2p 1q - pi

(1.36)

n-1
- B(Pi, b,------- bN) ; p = Z pA

Yates had shown the feasibility and simpli­

city of the above method by applying it to electron - 

hydrogen scattering. The DCS obtained was compared 

with the exact glauber result of Thomas and Gerjuoy. 

It was shown that if the inequality >> 1 was only

marginally•satisfied, the first 3 terms of the GES 

are sufficient to give good representation of the 

Glauber cross sections for all values of q.
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Later on Singh and Tripathi (1980) used 

the GES method to analyse the scattering of electrons 

by He atom. Even though the GES method, represents 

the Glauber Scattering amplitude satisfactorily it is 

not free from the short comings associated with the 

Glauber method - i.e. , logarithmic divergence in forward 

direction and low cross section values. As mentioned 

earlier, many efforts were so far made to improve upon 

the Glauber approximation. One of the prominent effort 

was Wallace correction ( Wallace 1973 ). The details 

of this will be given in a later Chapter of the thesis.

The High energy Higher order Born approximation (HHOB) :

This was developed by Yates in 1979 . The 

primary purpose of this analysis was to develop an 

alternative high energy expression for differential
a

scattering cross section in terms of reciprocal powers of

k^ through 0(.--"g-- )c
i

In the HHOB analysis the well known genera­

lised Born Series description

of the collision process was transformed into a more 

convenient form. Thereafter, the approximate formulae were 

developed through a partial expansion of the free particle 

Green's function. The second Born term can be written as
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(2)
i->f n

; I / dr e1^”—o V, (r ) f dr*
it _ J ~t> fn~o J —o

where

G (r* ) V (r 
n ~° ni

_ t if *p
r •) e i# 0 (1.38)

V (r ) 
nm

— ^ Vn ( Xj_ — ~ “» Jm ') 1 »r i ~ ”"*rN^
•N o' 1

(Il----------------------- -In) I >.
iN'

and

G (r - r ) 
m—o “o /

, ^ -£0 }
djLL_®

(2ti)3 k*2 - km2 - i€

C — > o4* (1.39)

Now the second Born term is partially expanded parallel 

to the method of Glauber which is most akin to the high 

energy small angle potential scattering analysis of 

schiff. The basic approximations were introduced in 

the integral.

n
/• d r 
J -o

G (r 
n~o

) V (r 
n^ ~o

r ) 
~o

~ik.oi

Here, the variable transformation

(1.40)

S = k' - k was made. If-it is assumed that V is
— — —n r.
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slowly varying over the distance of a wavelength of the 

scattering electrons and that does not differ greatly

from k^ in either magnitude or direction, then the 

principal contribution to the r^1 integral occurs for 

small S. Hence, after performing the the S integra­

tion in cylindrical polar co-ordinates by choosing k^ 

as the pola r axis,

n 2k
n

-i(k.
/ dr1 e x
j _0

k ).r
-n o V (r

n^v —q
r ) 
~o

■[ 5 ^ H^zo'^ + 2^ V f s W
H( zj ) + 0(kn2 )}] (1.41)

Where H(z) is the Heaviside function. Again integra­

ting the second term of the above equation by parts 

twice and simplifying further,

n
/ <*z. -1 ^in

o H(z')

[ 1 X z
+ 2k.

l
7rf ] V (r 
r' J n • -o —o l —o

) I b'=0,

(1.42)

where p in k. - k 
l n

&E | k^, ZiE is the average

excitation energy.
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In simplifying the present approximations„ 

it is better to express the interaction potential in 

Fourier form as

, rlf , % ) = / <fe 9
-ip «b

—o

-ip Z - A
x / dpz e z 0 V (e.+pzy,

»£*,) (1.43)

where

V (g +
N ip..b. 

27~2--------2~ £ (e 3
2n (p + Pz ) j = 1

ip^zz J- 1 ) (1.44)

Substitution of (l„42) in (1.41), we get

S2)
'HEA

—“— /dr e 
271 k, ^

igr
■no i Pf I v^,. }

“ » « -iP, z_
/ d z H(z ) e 
J -O o

r / 1 A
x [V(1d - zo Y ’

£.1 - 4lJ +
i z 2
----- 2. y

2k. r'
i o

V(r - r' , r-----rK1)|—o —o —1 —1M 1N- 
b ’=0

l ^ > (1.45)
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Now, on using equation (l„43) and carrying out the 1 
2

V operation, the preceeding result can be written 

as

f = -dhr / ap / dpz f d£ f dpzHEA UKi ~

v c e + pz y » » £n ) v t e + p7 y

* ’^N ) | > x / d^ i (SL “ P “ P )* bG

epOO , p * 2
f d20 - d(PZ + Pz ho U + - * PZ

-oo e 2k.

\ OO || ||'Ipr } f dzo -d ( pz - Pi ho H (zo )
1 —ao e

4% [ i / dp (1 + 1 d
2k. dp, ( + P^ )J

(2), ^ A ,
ufi ' 2 ~ p - ^ y * p + y )

-re
P

2 2 
P + p/ dp / dpz ( ! + --2k7-Z“ )dK P7-^i

Z ' 1

(2) A
ufi ^ 3 “ £ " pzY » £ + pzy ^ ^ 

where ^ means the principal value and

$.3 t A *(2) A
ufi ^P + pzy » 31. V p^ + pz y ) = < tf I V Cp +Pzy

>1' ■£n }



24

_ t * «Avla + pz v * ‘*N l¥i>

(1.46)

In arriving at the final form of equation (1.46) it

has been necessary to use the usual integral represent­
ations of the one and two dimensional $ functions 

and the additional result

«> - isex r tf dx e H (x) = 716(01) - i (P ( ^ )

(2)
The real and imaginary parts of f are

HE A

(2) , 2 _Re «S- P J dp / dp.

HEA -00 ^ z 1

(2)

u« 1 q-- s - pzy

, * ’ \ 2%£ + Pz y ) - • 2 apd P I dE /

dPz ( P + Pz) ( a
:—z-----------r—2— u (q-p-p y ,

p + pz y ) (1.47)

and 3
i- f^ = / dP ufj ( q - p - p/y , p + p/y )

ra HEA

If p^ is set equal to zero in real part of
(2)

fHEA the first term becomes zero and the leading

(1.48)
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term is proportional to —i~2 . Similarly, the
k.

(2) 1
imaginary part of f identically becomes Glauber's

HEA

estimate of the second Born term.

Das Method

Das ( 1978) has suggested a method for 

computing scattering amplitudes and total cross 

sections. In this method he started from the Fredholm 

integral equation for the scattering amplitude. The 

Fredholm integral equation is the another way of 

representation of the Born series. The amolitude for 

scattering from intial state 0 to final state f can 

be written as

. A A
f (kf, )
fo

(2%) < CD. ( r, r.) I V. ,(r, r.)
kf — ’ —j 1 int —j

QL (r, r ) > - (2% ) < fl) (r, r.)
K0 J Kf J

I 1V. ,(r , r. ) G +V. , (r , r .)
mt - ~J o xnt — ’ — j

^o ( £ « ^ > (1.49)

+
The substitution of Gq from (,1«>10) yields

f, ^ ^ 
f o

B1 
fo v sHr

c L, L ) + i2%)2
(2n) 3 n J
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<t>kf (r.Ej)x ^int(—»—j ) exPLiq^E.»£. Wlj )

x Vint(r',r^)|Jo(r ,rj)dr J drj J drj dq drdr. ij. dr.

2 2 .,! - kn - ^

B1 A A
= f Uf, £,,) + ;• I 4lkf(£.«Lj)V1.nt(r.,r )e 2'-x0n(r )dr dr

t0 n
X / V<nt (i-'.rjjCUij)* dr’ da

2 2 . i_
q - kn - U

. fB1(kf,k ) + , f
* “f'no 71 2.2 E- J, x 2,2 ■(^u j n

dq

q2 - kn2-it

x [-(4iT) / 4)kf (r,r^) Vint (r, r.) ^(r.r^dr dr.. ]

[-(4ti ) / ^_(r ,r..) Vint (r ,r.)ff(r , r.)dr dr^j

A A= fBVkfX)+ iji//1 [ifaJfrc(2^c,') da
fo 271 n fn 2,2

(1.50)

B1
q-_k - i(-

N A
where f (Lf>k.0) i s the first Born scattering amplitude.

fo
Above equation is the Fredholm integral equation which 

gives the scattering amplitude . Theevaluation of this 

equation by iteration method gives the scattering ampli­

tude in Born series. For elastic scattering the equa­

tion (lo50) becomes
AA ^1 A A 1 I-

f (k.,k) = f ( kf > ^ ^ +----- T~ - £ J
00 -f “o 00 -f -o ~ ^2n n



27

fon (£f-a> fno(fl’U da
(1.51)

n
i €

To solve this equation Das replaced f (q, k ) by a
no ~"Otrial input scattering amplitude f^in^ (q, £ ) and 

/A A \f Ik^, k ) so obtained, denoted as output scattering
00 *"T “lO / _\\outj A a

amplitude f (k^ , k ) was utilised to obtain

differential and total cross sections. The scattering
. A ,A %

amplitude f (kx,k ) for the finite values of k oo -f -o o
satisfies the limiting conditions

B,f (£r* k ) i/X C( k ) f,J- x 
oo—f’-o k—>o o (k )

—o

and
k x—>o

d(ko) f i
(k ) 

-o
(1.52)

where C and d are complex quatities which depend on k

Therefore Das had chosen the input trial scattering function

( in)

no
(kf > JS0)

(in) a A 
fno (a-

as

'Bi

/ D .. Dx * / a ^= (a + ib ) fno (q, ko) (1.53)

where and bB are energy dependent parameters and
out in 2

he obtained them by minimising the integral of j f -f 1
1 1 oo oo 1

over the direction of kQ with respect to aB and b^. ’

Using the input trial function given in (1.53), Das
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obtained the output scattering amplitude

D out B,
fout = foo (tf- + UD + i bD) f0o

fBl + fB + (a° + 1 b°- lJ fB, (1.54)

The minimisation of | f

. D , . Dof a and b as

D (in) 2
out ” oo gives the values

D / dO SinO fB1 (fei ~ fB2R ^

f d© Sin§ [(fg^“* ^B2R^ + ^R2T 3B2I

b
D / dO SinG ffi^ ffi2j

. - g —/ dO SinG [ (f- ^b2R^ + ^B2I ^
(1.55)

Byron and Joachain (1977 a) showed that at .'large 

energy range a^will increase energy and will go to its 

asymptotic value of unity. On the other hand at large 
energy region bD will decrease with energy. Thus in 

this method the contribution of higher Born terms are 

taken into account by multiplying Second order Born 

term” by energy dependent complex parameter. A no. of 

investigati ons were done by D as and his associates 

using this method ( D as, 1979, D as et al, 1981 ;
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D3»S and Bis^was 1980, 81 ; Djas and Saha 1981,82)

Optical Model potential formalism

The elastic scattering of a given particle by 

a composite target containing several scatters are 

conveniently analysed by replacing the complicated inte­

ractions between the projectile- and the target particles 

by an optical potential ( or pseudopotential) in which 

the incident partile moves ( Joachain, 1975 ). Once 

the optical potential is determined, the original many - 

body elastic scattering problem reduces to a one body 

situation* However this reduction is impossible at 

present and approximated methods are necessary. For 

elastic scattering, the equivalent one body equation is 

given as 

2[ V + k2 - 2 V ,(r) ] F(r) » 0 (1.56)
L op t

with

V_+( r) = V„ + (r) + VMl(r) + i -Vahc(r) + Vpy(r)

(1.57)

optv —' ' st'-' ' 'polv~/ ’ ^ ’abs^' ex’

where Vst(r) , vDol_(l)> v (r) and V (r) stand
' 3D 5 tr X

for the static, polarisation, absorption and exchange 

interactions respectively.
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In general vopt^r^ ls a c°mPlex> non local, 

non spherical and energy dependent potential and its 

use as such in (1.56) gives rise to coupled differential 

equations.. For solving these equations we require a 

considerable computer time. The three most standard 

approaches used so far to account for polarisation and 

absorption processes are (i) the inclusion of a suffi­

cient number of excited electronics states or pseudos­

tates of the target, (ii) Calculation of a nonlocal 

optical potential by greens's function technique, pertur­

bation theory or Freshbach projection operator formalism 

(iii) use of local, spherically symmetric, energy depen­

dent, effective potentials obtained by high energy, low 

energy or semiclassieal approximations. Approaches 

(i) and (ii) are more rigorous than' (iii) but they 

need considerable computer time and was not easy to 

interpret as (iii). Following approach (iii), we can 

solve (1.56) using partial wave analysis.

F(r) = I Aj —- Pj (Cos ■©) (1.58)

Where Pj (Cos©) are the LeCgendre polynomials.

Substituting (1.58) in (1.56) we obtain a one dimensional

thdiffefential equation for the 1 partial wave f.(r) as

C
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k2 Vopt(r) 1(1 + 1) 3 f|(r) 0

(1.59)

f |( r) 

and

satisfies the boundary conditions fj(r) 

fj(r) kr [j 1 (kr) - i rjj(kr) + Sj

Y-*o

jj(kr) +

inl (kr) ] (1.61)

where j j 
functions

and 'h-j are the spherical Bessel and 
and 3^ is the scattering matrix given

Neumann

as

(1.61)

is the phase shift for the

to the potential V ,' ^ opt

partial wave due

We now present a brief account of the work 

carried out in this dissertation. To study the elastic 

scattering of electrons by hydrogen and helium a large no. 

of approximations based on perturbative expansion of 

scattering amplitude have been devised. To test the 

suitability and success of such methods it is desirable 

to apply these to other atoms. Lithium, being the next 

atom in the periodic table was choosen. Much theoretical 

interest has been aroused in this problem ever since 

William et al ( 1976 ) measured the DCS and total 

elastic cross sections ( TECS) for I scattering by Li.

In the intermediate energy region a large no. of inves­

tigations were carried out recently ( Gregory and
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Fink 1974 ; Walters 1976 b ; Chan and Chang 1976 ; 

Vander poorten, 1976 ; Guha and Ghosh 1979 a, b 5 

Tayal etal I960, 81 ; Gien 1981 ; Rao and Desai 

1983 a, b ; Tayal 1983, 84 ). Except Vanderpoorten 

none of the above methods give a reasonable agreement 

with the experimental results. In most of these works Li 

is represented as a one electron system. In view of the 

success of the HHOB approximation in the investigations 

on H and He ( Rao and Desai 1981, 82, 83 ; Chandra- 

prabha 1983 a, b ), we thought of applying this to e - Li 

scattering. We present the details of the theory and the 

differential cross sections and total cross sections for 

the same in chapter 2„

Das (1978) has suggested a new method for 

finding out differential scattering cross section and „ 

total cross section. Eventhough it is a simple method, 

no more difficult than a second Born computation it 

had some discrepancies. In order to remove these dis­

crepancies we have modified this method using HHOB and

Glauber approximations. The presently modified method -
!

was then applied to 5 - H, e - He and e - Li elastic
‘ i \

scattering at intermediate energies. The .detrils of 

this new method and the results of the above cases are 

furnished in Chapter 3.
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An attempt to modify the HHOB approximation 

was discussed in Chapter 4. The chief motivation behind 

such an attempt is the success of the Wallace correction 

(Wallace 1973) in improving the eikonal theory. This new 

Wallace corrected HHOB was applied to the cases of e — H, 

e - He and 5 - Li elastic scattering as test cases.

In Chapter 5 we have investigated the elastic 

e - H . scattering in the optical potential model forma­

lism. In this model many body problem is reduced to one 

body, problem. Optical potential ingeneral is a complex, 

non-spherical, non local and energy depednent potential 

consisting of static, exchange polarisation and absorption 

potentials. The absorption and polarisation were 

determined using HHOB approximation. The results obtained 

are compared with other theoretical and experimental 

data.

Lastly, in the Sixth Chapter we have summerised 

our conclusions about the present study. Some new venues 

opening up for further work also pointed out.


