104

CHAPTER - IV

WALLACE CORRECTED HHOB _APPROXIMATION

4.1 - INTRODUCTION

Due to the recent advances both theoretical
and experimental - in the study of electron scattering
by atoms, the search for computationally feasible as well
as accurate theoretical methods has been enhanced. But
it is rather strange that none of the theoretical approxi-
mations explain equally successfully all the observed
phenomena in scattering problems. Hence the theoretical
physicist resorts to a particular method which applies
best to the problem under consideration. With the intro-
duction of certain modifications, the range of applicability
of the method can be widened. In certain cases it is
even found that simple modifications in a particular
approximation improve the results tremendously. But some-
times it may happen that certain highly sophisticated
calculations come out with poorer results than those of
simpler approximations. In such cases, there might be
some conspiracy of cancellation amongst the effects neg-
lected by these simpler approximations. There is a lot
of scope for the modifications of some of the commonly used

approximations such that their validity criteria are
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relaxed resulting in a wider range of applicability of
the method. In the present chapter we have appliedgthe
Wallace type of trajectory corrections to the HHOB

approximation proposed by Yates (1979).

The HHOB approximation proposed by Yates
has several attractive features. The expressions for
scattering amplitudes can be obtained in a closed form,
thus avoiding the complex numerical proceedures. The
problem of divergent integrals ( like those in GES ) is
absent and the method as such is simple and computatio-
nally easier, In the HHOB approximation the second
Born term is handled in the same manner as the glauber
approximation. At high energy the target is approximated
as being frozen. The potential experienced by the inci-
dent particle will depend on the co-ordinate I of the
target particles. 8Since the projectile wave is approxi-
mated by straight line rays passing through a set of
immobile particles ig the second Born approximation, the
phase shift of the projectile wave is the sum of phase
shifts from interaction of each target particles. One
can obtain the amplitude factor from the phase shifts-
The second Born term treated in the Glauber way thus

becomes very attractive.

In principle HHOB approximation is very

well founded for a small angle scattering. At large
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angle there is a considerable departure ( Rao and

Desai 1981, 83 ). Hence it was desirable to try

certain modifications on this approximation such that
better results can be expected out of the application of
the improved methods. The Chief motivation behind such
an idea is the work reported by Wallace (1973) who
used a technique introduced by Abarbanel and Itzkson to
obtain the leading corrections to the eikonal amplitude.
He has incorporated the trajectory correction in the ex-
pansion of the @reen's function of the eikonal approxima-
tion and carried out further analysis of the perturba-
tion series. JHowever the resulting many body Wallace
amplitude does not eliminate all the difficulties inherent
in the Glauber amplitude. In particular, the Wallace
extension of the @lauber approximation is still a zero
excitation energy approximation and therefore does not
account for long range polarisation effects at small
angles and represent inadequately absorption effects in
thé same region. As mentioned earlier, the similarity
between the modes of expansion of the @reen's function in
the eikonal and HHOB approximation also. Keeping this
in mind, in the present study, the HHOB analysis was
carried out after incorporating the correction in the
Green's function, the scattering amplitudes derived

accordingly.
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In this chapter we present a detailed study
of the Wallace corrected HHOB approximation for electron-
atom collisions. We have then applied this method to
find out the DCS of electron;hydrogen,electron~helium‘
and electron-lithium scattering in the energy fange
100 eV to 4C0O eV, The total cross—section for hydrogen
and lithium are also calculated for the energy range
100 eV to 400 eV and 100 eV to 1000 eV respecti-
vely. These are then compared with other recent calcula~

tions and experimental dats.

4.2  THEQRY

The T matrix for an elastic scattering

process in Second Born approximation can be written as
T = <pf;(V+VGOV)HJi>, (4.1)

Where V is the interaction potential and Go is the

particle propagator and is given by

dk Y > ]

— ’j
G, = r)f il " 5 (4.2)
- € k. € .
2 ~ ~0 - 5 -"tn+ i€
The wave functions | {, ( r_ , L ) > and lwf(go,gﬂ) >

are given by
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-3/2 ik, .xr
| b > = (2m) e by (xy)

(4.3)
3/2 ikeeT

| be> = (20 e T g, (),

where ki and kf are the initial and final wavevectors
for the incident and scattered particle, and ®i and
¢: are the wave functions for target in the initial

i

state and final state. The inverse of the operator Go
2 2

. -1 K P .
is G = 5 - i- - 'V + in (4.4)

O

Expanding the momentum P about the vector kn and

neglecting the square term we will have the approximate
-1
eikonal approximation of GO ,
-1

g V o (K=P) = V + in (4.5)

It

where v is the velocity in the z direction.

k = l//Q(KiT}ir)

The approximate T matrix can be obtained by the use of

g in place of G_ in (4.1)
+ - o
O = <o V8T > = <07 VP > (4.6)

where | .7 > and | §; > used here satisfy the

Lippmann Schwinger equetion with eikonal plopagator g
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used in place of the exact prepagator Go' In the

Cco-ordinate representation of these wave vectors

we have
(+) -3/2 .
¢ (x ,z,) = (2=) [1- 24— %
i o) 1 2k
n n
B t
z -iﬁinzo '
_mf © V (g 0¥g 125 250 E)
' ik oL,
dz, | @n (rj) > ] e
_ ( 2n )~3/2 elgi.go el X, (4.7)
and
*(__) ‘-3/2 "ik el '3
¢f (z, »r;) =(2n) e [ 1- 5 ¢
; i
®0 —iB. z
in“o '
. g'e V(ro, Vo1 Zo=2 ,rl)
1
dz | @n (z.) >
-3/2 -ik..r i X
= ( 2n ) e T e
(4.8)
where B. = AEVki , DE 1is the excitation

energy of the target.



Hence T° can be written as
T° = (2n) < ¢i | [ e~ T dav V] 1~ 5=~

z . '
-if. .z
£ e in-o

-0

ik, ,
<@ le *

iqg.r 1 X,

- (21:)_3(@1; Je e E oav P>

-1
The Shrodinger equation g P(r) = O allows us to

write
iX; iX (b)
Jazv(r) e = =v. [e ° - 1]
oo '
iX (b) : : ~if, z

where e © = [1- Ei— s [ e M°

k

n n -e

t
X -
V( 0! yO' ZO A ’ £O ) HO(ZO )

¥
g
and Ho( z, ) is the Heaviside function.
Therefore equation (4.9) is obtained as

-3) . iX (b)
° = ( 2n ) J db elTRo 5y (e ° -1)
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1 |
v (xo’ Yor %" % 20) dz, l q)n >

o | g, >

(4.9)

(4.10)

(4.12)
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-1

If- we: substitute &n =k literally in g we
shzll obtain

-1

o = K{k-pd -V+in (4.13)

&1 -

Fyurther let us write

-1 -1

G, = gAI-- N, (4.14)
where N, = (P~ Ke ). (P - k; ) (4.15)

Clearly corrections due to Nc are caused by momentum

deviations from both initial and final directiocons.

Using (4.13) and (4.%5) we can show that

-1 -1 -1
g = gy + Ng (4.16)

1

where N = Ag + N, and A

it

1 - Cos ©/2 ,

G is the scattering angle of the projectile. We can

thus write the2 cxpiession for GO as Go = g + QNGO

This expression of Go can be substituted

in equation (4.1}). This will produce an expansion to

the T matrix as a perturbation series

S AT S SR U S (4.18)

~3
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The first correction is obtained as
1 ]
T = - T+ J (4.19)

' (~)
where J = < o LV | 0.7 > (4.20)

The general term in the expansion is

n n-m m
T = % (gjg) A J (4.21)
m:2
m (-) m-1
where J = < [ [(7\V+NC)Lg(}\V+NC)]
f
P> (4.22)
From (4.3) we can write
! -3 tke Iy i
J ={(2r) <¢ }J e dvo[l—--‘f(‘"ﬂt$n>
f n
o 1
"‘i}:}c Z ] ik-or
in =
<¢n[£e \/(><0,y0,20)dzo(—:'1—-O
7z . ]
: ig. =z
L1-—= 2|0, ><p, 1 [ e P°
n —00
«3 4 ] ikt o£ -y
Vxg, vorzg Jdz, e 7% | 14+ —=—1% |
n
t
“ ‘iﬁinzo ! t
o, > Q)n | »{o e dz Vix, s Y02, )dz0
—-l.}i.o;_ i Z ""iﬁ, Z‘
()\V+Nc)e lo[l-—k'*-zje in o
n -0

1 T
V(x ,y,»25) dzg |9 ><0 | ¢, > (4.23)
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The last terms in ¢ and §; are first order in V
the change in action experienced by a particle which has
travelled from - « to z incase of X+ and z to o
in case of X . We assume that the product of these

are small in high energy approximation. Thus we have,

1 -3 igeb, 1 X -ik,.r
J = (2n) < o, | [ e e 9 e 1T
~-1iX ik oI iX
e T ( AV + N, ) e * 9 o ¥ dv|
¢. > (4.24)
Now we can show that
- -i X iko.r iX
e 170 ¢ +()\V+Nc)e"‘1~° e ¥

= Q ° [pb + YX+(I:) ] - YX__ . I_?_— tl(I,Ij)

(' (4.25%)

where the operator Q = [P+ g + VXO(b) ]

and  t)(r, r;) = - NV +VX . VX (4.26)
. . s M0

Here - i Y7 = =i - ik g=— (4.27)
SZ) Vi, sz

The operator Q plays a special role since it can be

commuted leftward to produce a vanishing contribution to
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the scattering amplitude. The details of the properties
of Q are described by Wallace (1973). After the
elimination of the term involving Q , equation (4.24)

can be expressed as

-3 ig.b iX
37 = (2w) ChelSem T e O TAV-VX X ]

-3 igeb, X
(2n) < | Je e t (e, z;) |

g; > (4.28)
Further we can simplify Jt as
Ao e < o, | S o192 Ny gy Lo, >
f i
. . f
- i(2n)—3 < ®f | = f elgopo v ? e_lﬁinzo

]

V(x,, vy, 2'0) | 0, >< @] az | 0, >
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The objects SZ x+ and- Y X_ are classical momentum
transfers for a particle which started at z!' = -
and travelled upto a position 2z and which started
at the position z and then travelled upto a position
z' = o Tespectively. Using the same notations as
those of Yates (1979) we can write T° ang T' as

B1 - B2

T + (T ) (4.30)
HEA

-I-O

il

’1"

i

noo . n (B2 -3
[ - AT° + (T ) 1= (2n)  <O.lf
HEA

l q)n > I ¢'5_ > (4.31)

3
-0

The terms of the oreder ki are neglected in the
above equation. The last term in the above expression
can be further simplified using the values of X+ and

X. s
; @

-3 igob
(2n ) Qe | S e VX e VX ) av | b

-3 i_g_ w _p_
_oLem o1« b1z Se ° ap,
4kn‘ n -
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o z ol 1
J dz S dz' ¥V VA dz_ |
-ty -0 ZO
oo v ' z ( t ) '
b, > - iby, i £ VV dz c-£Y z V)dz
)
z zZ
. O ' & 1 ) 1
- iB -£S_7V dz _£ Y(zo V) dz_
= Re fw2 - 1B, Refw2 (4.32)

where Refw2 is the real term of the Second Born term

of Wallace.

The Second HHOB correction can be obtained by put-

ting m = 2 in equation (4.22)

J = <§?;} (AV +NJg (AV+NJ | P>
-3

o (2n) ig . b iX

= -3 -

< 5y

Lo (°y + VX (1)) - ¥X (r;) . Py

-ty (rp) ] fazy 8 (z) - z) [ . (P

VX (m) ) = X (xp) @ Py = ()]
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- 5%; <o | S ap [_£ dzy (t)(x) +V, X .P)

Z

1 co
~£ t.(r,) dz, + -£ dz, ( -Sz;gf{ -[P,q]

+[Q,E§l} "‘{t!Q] + Qt )_J%YQX+ d22 } l ‘Di >

(4.33)

The above equation can be further simplified wusing

the same technique for Jl term. Hence we will get

+ [ty (1)) dzy | ¢y > (4.34)

-3
Neglecting the terms of the order of k and above
that we can write the equation (4.34) as

-3 ige.b iX {(b)
R L N e ©

[ [ iadz (- )\V+YX+ VI |60
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| ¢, > (4.35)

Simplifying the above equation further

-3
2 . (2n)
—l“"“"‘""‘-_

ig.b
= < b
J o O [ [J o e
ikl T 2
e %o voodz, o+ J db
1g-b () J (Tx .7x )
e = T o tXlR g + =

(4.36)



119

iXb(g) .
Substituting the value of e in the above
equation
2 : g_gs_z)j_ ‘ 2 ig.p
Io= -t e o | [NJap e
ig z'
fl-—-—%;_Ze n Ode;}__szdz

ig.b [ . e =i, z!
+ [ db e { 1 - ~%~ J e in-o

..ZV(YX+ C VX ) dzy PG> ' (4.37)

The third correction can be written in comparison with
P

Jl and 32 as
3 -3 igsb  iX (b)
J o= —i(zr) < p. | fdeT T e ©
o 3
L [ odzy 1t (x )1 /30 | 9; > (4.38)

In general we can write
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-3
g ig.b  ix (b)
. g.-b ix (b
Jo= -ileon) L <0 | S e~ e °
2kn ne« f

[ Jodz, it (z, ) Feverroatonaad ¢i > (4.39)

The T matrix can be obtained by summing wup all

the J's.

Now the amplitude term can be obtained as
2 2 n
f = -(2n) T = -(2m) £ T (4.40)
n
1]
If we include only J° and J in T then the ampli-

tude factor we will obtain as

(2) (2)
f = £ + R, 1 f (1 -MN)+ I f (1L +A)
Bl HEA HEA
+ R, f (1~ 2i By, ) (4.41)
w2
2
Inclusion of the J will give the "amplitude f as
(2) (2)
f = f + K 1°f (L-AX)+1I f (1+ A )
B1 e HEA -
. 2 2
— 1 .
+ R, £, (1 21, ) ~on° g (4.42)

2
Substituting the value of J from (4.37) we will get

(2) (2)
f = f + R 1f (L =N+ 1 £'Y7 (1+A)
B1 € Hea M Hza



¢ =2

S (9_x+-2x_) dz

-0

Now consider the term

%

i IR VI T
BRk. J do e _{;(__X_{.'_,X_&) dz

J (1 - iBinz; ) v dz; }

20 ;

“~

121
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= (Rf -id4p, RSFE ) (4.46)

Substituting the value in (4.45) we will get the ampli-

tube as

(2)
(1->\)+1mf (1+ A)
A

f = £ + Re 1 f
HE

Bl HEA

-21i - : a
+R,f (1L-2iB, ) -f +4ip, f

w2 in w3 w3
. o ! o
: iq.b -iB. z ' '
+ —t— [ db e I R P RV
' o -
iq.b iB. z '
_ 1 > f do e -~ [ e ino  y4z S
Bﬂkn o -0
) A
(¥x, - ¥X dz, = gz f (4.47)
+ - 1 81:1(n B1
-2

In the above equation all the terms of the order of Kn

are dropped out . This is not too much justified
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3

because i1f one takes higher order terms in J there
-2
are going to be terms of the order of kn .

However to maintain the symmetry we somehow justify

the assumption. Hence

(2) (2)
f = f + R 1f (L-A)+1I_ f (L+ AN)
Bl € HEA m HEA

+ Re fw2 (1 - 23'Bin ) - Re fw3 + 4J-ﬁin

%

R f !

o - — f (4.48)
w3 Bnkn B1

’ +
The difference. between f and f is that  the
2 Bl Bl

latter contains the V term as the interaction term

and further it is of the order of N o« In comparison

kn
with f this term contribution is small and thus we
Bl
will get
(2) (2)
f = £ +B 1f (1= MN)+I £ (1L+ N)
Bl HEA T HEA

+R f (1 -2iB.. )~-R f (1~41ig, )
e\ w2 in e’W3 in

(4.49)

3
Similarly if we will take J contribution we will

obtain the amplitude f as

(2) \
f = £ + R,1f (1-A)+1I f

(L+ A)
Bl HEA HEA
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+R f (1-2ig, )=-R_f (1-4ig. )
e w2 in e w3 - 0 in

+R f (1-8iB,_ ) (4.50)
e wd in

We can see from the above expression that the various

amplitudes are corresponding to the orders of Ko, K"l,

K“Q, K3 etc in X,(b). We remark that f 1is expli-
citly a function of A, Hence for small momentum

transfer, A = 0. And thus we have the T matrix as

n ix (b) iti(b)
T = £ J (b,0)==1i¢e? [ e ] (4.51)
n

Hence the amplitude will be

f R1f (2) I f (2) R.f (1 -27B. )
= f + + + - 1 s
Bl ¢ HEA ® HEA ¢ w2 - in

-R, £ (L-4iB, )R, £ (1-8 g, ) (4.52)

o .
w3 1 wa in

Obviously we can varify that when Bi —> 0 it

exactly turns out to be the eikonal approximation .

The principle difference between HHOB and the

present form 1lies in the handling of momentum transfer

dependence.

If we want to consider the large momentum

transfer we should consider A also. Now we will follow
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the same argument as the Wallace. The class of terms
n
that would survive can be given by £ J (b, o) plus

the additional undetermined functions which however
-l

will be of the order of K, or small. Thus the

corrected HHOB amplitude can be conjuctured to the
-3
successive approximation upto the order of K.n .

The important high lights of the present
method is that the corrections are done to the HHOB
approximation in analogous with the eikonal approxima-

tion.

4,3 Calculations

Hydrogen Atom :

The ground state wave function for hydrogen
atom can be written as
H
¢ (z;) =—=t— exp (-1) (4.53)

K

The interaction potential can be written as

Vv 2 S 1 (4.54)

° ‘-{O "_,,ll

The first Born amplitude will be obtained as

2(q2 + 8)
Bl (q° + 4 )
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(2) (2)
. The expressions for Re 1 fHEA and Im £ HEA

are

given in equation (3.21) and (3.19) respectively. The

expression for R _f is
¢ w2

H 2 °
R f = k. J[J (gp) Aa(b)b db (4.56)

e i 0 =

w2
o

where

A(b)

i

2
F1e Gl x (6,5 oy

-1 > 2 2 1/2
= n [ db; b, S dz, exp [-2 ( b, + z; ]

- J aw x; (b, 1;) (4.57)

Here w is th e angle between b and bl and

X, (b, ;) = —Z [ P_yyotu) - b. § P 2(u) ]

(b B) 1/
(4.58)
2 2 2
where u = (b +B +z; )/ 2bp
Since E - b -~ gl we have
A 2 )
b . ﬁ = (b - bb, cosw )/bp = dB/db (4.59)

1

The detailed calculations are given by Byron et al (1983)

The final expression 1is
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H 2 16

Re f - +
2
w2 k;2(q° + 4) k,2(q2 + 4)2

Finally for the consistent picture of DCS O(ki2) we
have included the exchange amplitude ( Byron and
Joachain 1977 ) and third Glauber eikonal series term

( Yates 1974 ). The corresponding expressions are

-2
32 2
9och = - *;*5 (q© + 4) (4.61)
i
and
. 3
(3) ik .
é i
f = fi—uj-’- [ b, exp(ig._l'go)‘(“‘:f!L
GES
(4.62)
N o
where X = - T [V az, (4.63)
i 00

Thus using the equations (4.1) to (4.63) we have
obtained the DCS and TCS in Wallace corrected HHOB
term for the elastic of electrons by hydrogen atom at

100 eV to 400 eV .and 100 eV to 1000 eV respectively.

Heljium Atom :

The well known Hartree - Fock wave function

for the ground state of helium atom can be written as
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H
¢1: ( Ti1» Io ) = P+ Q)Mgﬁ L)) (4.64)

The values of P, Q, R and S are given in equation

(3.14)

The interaction between the ingcident electron and

target atom can be written as

v = =2 e (4.65)
%o z, -5l Iz, - 5l
o =1 = =2

where Tor Tys Tp had the usual meaning.

(2) (2)

The expressions for fBl , Relf ’ Imf are given
HEA HEA

in equations (3.17), (3.28) and (3.24) respectively.

He
Re fw2 can be obtained by evaluating the expression
He -2 -3 .
Re fyo = Ky { Jo (g b) A(b)b db (4.66)
2
where A(Q) = f * q)ls (E—l’ £2) l xl(h’ E‘l’ }2) drl drz
(4.67)
and X,(b, r r)—*-?(VX)(vx)d (4.68)
Y= =1’ =2 -2 - S R z :

Following the same method used for the calculation of



129

H He
Re fw2 we can obtain the final expression for Re f
w2

as follows.

He 1 2 3 4
Re f = Re f + Re f + Re f 4+ Re f
w2 W2 w2 w2 W2
5 6
+ Re f 4+ Re. f (4.69)
w2 w2
Here
4
1 . 4
16 A 32 A
Re f = + = 5%
w2 k12 ;3 (q2 + @) ki2 4 (q2 + a°)
2 4 4
Re f B 2 26 B2 N 2 4 322B 2.2
w2 ki B (q + B ) ki B (q + B )
3 2 2 22
" e T kzﬁég?éla-i-ﬁz) ' 2zlt282§22
i a k;“ B (q° + B%)
4 2.2
6 A"B 1 2
Re f = 1048 1 +
w2 k.2 a6(q2 + @) oH(q® + 2)2




>

32 A3 B 1 2 o
w2 k2a® (P ) (o)
2
3 2 B
32 AB 1 ]
¥ (53 + z
Bks” ~q + B (q2 + g% )
6 32 A%B 1 2 o2
Re ¢ = 2AB ; 2 ]
56 LT p)
w2 k;“a (d° + «F) (q2 + az)
, 3284 [ Ll _ . 282 ]
k.2 g° & + g° 2 2.2
i (q° + 8%)

The constants A and B are given in equation (3.14).
1 - 1ttt 1t
Here o =yy , B = vy sy Y =YY where y = 2%
t [ ] t et [}

L3 ]
Yy = 14l ; vy = 261 5 y =y +y [2

For the calculatiorn of DCS we have included third glauber
term and the exchange term. The expressions are given in
equation (3.31) and (3.34) respectively. Thé ICS is
calculated for 200 eV and 400 eV.

Li atom :

The ground state wave function for Li atom is

taken as that of Veselov et al (1961)
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1
¢ = It det (ple ’ plsw bost)

with
3 1/2
a ar
pls = K3 e
5 1/2
3p g, ~FT

Ll = ] (l-a + £ )re

2s % (a2 - CIB + ﬁ2) 3
Where a = 2.694 and B = 00767

The interaction potential is taken as

\'s =;§ PR — + 1 + 1
o

e, - I, lz, = I lzg-zsl

The rotations hav? ghe usual m?a?ings. The expressions
2 {2
for fBl y Rel f s I f are given in equations
: HEA M HEA

(2.11) , (2.19) and (2.15) respectively. The third
Glauber term is given in equation (2.21).
Li -2

Re f = k

w2 i JI,(abk) Ap)b d

where  A(b) JIT x(b, £, Ty, £) 0" & av

1 2 3
= A (b) + A (b) + A (b)
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where
- . 1l
A(b) = - S b, db, dz, e Xl(b, rl)
2 3 -Ar
2

N2

3 ~)&;3
A(b) = Dop (A,,A) [ X (b,ry) e dv

=
where A= 2a ;3 A =28 ; Aj=a+8B
Here the cross term calculations are neglected since
they are less significant. Proceeding the same way as

that of ReH f we can find out BeLi f o

w2 w2
Li
The final expression for Re f is obtained as
w2
Li
Re f = [ b db J (qb) Alb)
w2

2
5 1 2 A

= "3 5 w2 T 2
N d+ N (q2+>i§).

+ 64 N2 DOP ()\.A)

1 [ 1
= [ == +
72N, Ai

2 A%

2
( q2 + Xé)

The DCS is calculated for elastic scattering by Li
atom from 100 eV to 400 eV,
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4.4 Results and Discussions :

Hydrogen Atom :

The present results for the DCS for the
elastic scattering of electirons by hydrogen atoms at
100 eV, 200 eV and 400 eV are given in table (4.1),
(4.2) and (4.3) along with other avilable theoretical
and experimental data. In table (4.4) we have shown
the present results for the TCS in the energy range
100 eV to 700 eV. The present results for the elastic
scattering of € - H are also shown in figures (4.1) to
(4.3). The valués are shown at small angles because
(i) HHOB 1is good for only small angles and (ii) the
correctness of the Wallace correction has not been esta-

blished for large angles.

In table (4.5) we have exhibited the individual

amplitudes. Re lf(z) term is of the order of k, ' only
HEA o
-2
and Re f is of the order of ki « If Bi is set
w2

(2) ,
equal to zero the Relf will vanish and the leading

HEA
term of the real part of second Born term is then propor-
tional to k, 2. The imaginary part of £(2) 55 of the

i
HEA
1

order of k;"'. If we set i = O this term exactly
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becomes Glauber's estimate of the second Born term.

It can be seen from the tables and figures
that the present results agrée very well with the exp~
erimental data., 1t may be noted that the present calc-
ulations vield better results than the simple HHOB
approximation ( Rao and Desai 1983 ). The main diffe-

rence between the present approximation and simple

HHOB apprToximation is that —ii- real term of HHOB

ky
is replaced by 12 real term of Wallace term.
k
From table. (4.5) we can see that the -—i—g
ki

term of HHOB is smaller than R, f . Hence HHOB
w2

overestimate at higher angles and underestimate at
smaller angles than the present results. The R_ 1
2) (2) €

f and Im f are different from those of HHOB
HEA HEA

terms by ( 1 + A ) and ( 1 = A) respectively.

Looking at figures ( 4.1 ) to ( 4.3 ) we see
that our results agree very well with experimental data
upto angle 50° whereas the UEBS (Byron et al 1982)
agrees up certain angles. For 100 eV the difference
between our resulis and experimental values of Williams-—s~--.
is less than 1 # . For 200 eV also the difference

between our results and Williams is very less. The
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HHOB results underestimates in this region. We can
see that UEBS results are lower in the whole angular
region. For 400 eV we can see that the DCS values

of a 11 workers agree very well.

Helium atom :

The DGS for the elastic e - He atom at
200 eV and 400 eV are calculated using the present
results are shown in Tables(4.6) and (4.7) and Figures
(4.4) and (4.5) along with other theoretical and expe=-
rimental data. Here also we have shown the results for

small angles.

From Tables and Figures we can see that our
results fairly compare with the experimental values.
For 200 eV our results are slightly higher than that
of Jansen et al (1976) and lower than that of Crooks
et al (1972). But for 400 eV our results are lower
than that of Jansen et al. For 200 eV the EBS results
are almost same as that of our results. For 400 eV EBS
results are less than that of present results. From 40°
onwgids the experimental values and theoretical values

have significant difference.

In Table (4.8) we have shown the individual

amplitude. We can see that RefW2 are lower than that
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(2) ‘
of Re2 f for the whole energy range for 200 eV and

400 eV. 2§:ée the effect of Re fw2 is to reduce the
differential cross sections The difference between
Re fw2 and Re2 fﬁéi) is significant from angles
larger than 40°. The present real. and . imaginary
terms differ from HHOB terms by (1 - A) and (1 + A)
respectively. Hence +the present DCS results are
slightly more than HHOB results at small angles and
smaller than HHOB results at. large angles. Hence
we can justify the inclusion of trajectory correction‘
for the calculation of DCS for the elastic scattering
of electrons by helium atoms. We have shown the results

for angles up to 50° since the trajectory correction

is established for small angles bnly.

Ei Atom :

In Tables ( 4.9 ) to ( 4.12 ) we have given
the DCS for the elastic scattering of electrons by
lithium atom along with other results. The results
are also shown in Figures ( 4.6 ) to ( 4.9 ). Here also
we have given the results up to 90° . The reasons are
same as those of hydrogen atom. For 100 eV we can see
that the present results are slightly lower than that
of HHOB at 5° and higher than that of HHOB after-

wards up to 60°. The difference between the present
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and HHOB is rearly 5 to 15 # . The EBS results

are higher than ours from 40° onwards.

For 200 eV also our present results increases
HHOB wup to 60° and decreases afterwards. For 300 eV
and 400 eV our results are greater than HHOB from

20° onwards.

In Tables ( 4.13a, b, ¢ and d ) we have shown
the individual amplitude terms. We can see that Refw2
and R f arehaving significant difference at large

e2 "HEA
angles. Hence we cam conclude that the trajectory
correction included for the calculation of DCS gives

better rTesults than the ordinary HHOB calculation’.



138

.H'

(z2-)s6°2 (2-)96°1 (T=Y0zeL v (2=)11€9°2 08
(z=)ee L (z=)o8* ¥ (z=)0o196°8 (c-)e8E8* G 09
(T=)ee* 1 (2-)ev*8 (T-)pT8E"T (2=)LLES" 6 0%
(1-)88°¢ (1-)e9°1 (t=)zT19€"2 (1-)1c08°1 o
(1-)60°¢S (1-)og°€ (T-)Yvsev v (T=)e98T°v o€
oT°1 (1-)ov°s (1-)2299°6 (T=)s66L°8 oc
- or*z 66EV°T 1866° T o1
- 9y ook g 8TGz°€E g
, ( Bep)
SWeTTTIM sgan H0HH jussaxg :
at1buy
*A® 001 Pbutzeqieos
H= 3 9oT3sers 101 ( I ® ) Suof3}o8s ss0xd Tetiuaraiitg aTgel



139

(z-)ge 1 (e=)¥0°9 (z2-)ot9e"° 1 (€-)TELL L 08
(z2-)L8°1 (2=)656°T (c-)oszL 2 (2-)c088° 1 09
(z-)pr°¢€ (z-)s6°e (z-)og6e° v (z=)Psce°e 0%
(2=)90° L (z-)otr*9 (2-)0sT0°8  (z-)98zE"L ot
(1=YzL T (T-)EP T (T-)680L°T (T-)T1L09°1 o€
(T-)61°¥ (1-)o8°¢ (tT-)teLT v (T-Y6LET ¥ 0z
- A rAGE LLET*T ¥180° 1 0T

- 6T1°2 9821°7 6288° 1 S
(6ep )
SWeTTTTM sgan gOHH jussexd N
A2 00Z = 3 H=-3 omsere x07 ( Ts % ) eoq 1 zep :oarqel



140

(e=)Ls 1 (e-)e9°1 (z-)otee°e (€~)89G6° T 08
(e-)8E* ¥ (e-)6€° v (2=)Teve L (E=)68¢8"* ¥ 09
(E-)LY* 6 (e-)sv8 (1-)2092°T (2-)ELGO" 6 06
(2-)90°¢ (z-)88°1 (T=)16V¥°2 (2=)eT1E6°T oY
(2-)LT°9 (2-)€0° g (1-)oses ¢ (2-)9eve G og
(1=)96°1 (T-)L9°T (1-)8L8L°T (T-)2TvL T 0z
- (1-)L2"9 (1-)0c6€°9 . 6E6E°9 ot
- 12°1 €LOTT 999T°T S

(6op)

SWETTTTM sg3n gOHH jussaig oTBuy

*A® OOF = 3
"BUTI933BOS [ - 8 OT3SETO 103 ( % )y s €% : oTqel



141

- - TEGS'T 7ove° 1 0oL
- - T89L° 1 6GLT" T 009
- - G660°¢ G9v0° ¢ 006
EV°C 1°1 A d E6LYV°T 066¥* ¢ oov
‘90° ¢ OT°€ XA A RS €901°€ 0ooe
81° ¥ Le'v G89E° ¥ GL8Z’ v 00¢
G8°9 6T°L 6T9G°L TLEC L 001
(LL6T)
- Te 3@ J99y op sgan HOHH juessIg Abrsug
*( Nom ut) Hurzszjless H - @ DOT3SBTd JOJ UOT}08S $50I0 TE30] P y'p ¢ erqEl



142

SLYO'O

89L0° 18TT* . L680" TSZ0® . 6600°  SpaT* 08

9680°0 8E60° 88YT* £L80° 80v0° 6TTO°  z8€Z* 09
I8€T°0 £50T* TLLT® 0880° 8550 T2TO°  G6OE® 06
T9€2°0 OLTT® 260z° GE60° 8GL0O° 8OTO*  Z€T¥°  OF
S6¥H°0 £8zT" T€82° T60T° 8G2T® G800° 665 OF
2996°0 8LTT® Zror” GOpT® 89pT" Z8T0°  zbvL® Oz
66EV° T ¥£90° T€€6° ° oT8T® £98T" 86ET°  Ozzé®  OT
EGEE° b LEZO" pOVE* T 6G6T° 66T 9STY*  veLe® G
yoxs ( mmo%v @m,z..H u AMMzm 2o, mam,mm <mxmﬁmm M,

(2) (2)
‘A3 00T 3®

butregjeos y - 8 IOz sapnjyyrdwe HUTIS}}IEOS BY] JO InotaAeysq ayr 3

G*¥ ¢ 9Tqel



143

L200°

£820° LGO* YLYO° 2900* ¥Z00"  9080° 08
2900° TwGEO" T9L0° 9Gt0° »OTO" 6€00°  862T° 09
£0TO" 80Y0° 8680° pHyO* Sy10° 8¥00°  6GLT°  OG
¥810° 1840° ¥80T* £E0° LTZ0* £600°  €ISZ*  O¥
GrEO® 0950° 8LET® 84¥0° PYEO® 6¥00°  L8LE®  OF
£690° £$90° 060z T€G0* z9So* 8T100*  £985° 0%
00TT® 650" LELV® 8180° 9580° €9T0°  €¥S8°  OT
L8ZT" 00z0° oTv8* 9G60° £680° TPIT*  G6G6® G
yoxo, AmmmwM <mz« w qm:,m.H a M. 8 VEH 19 19
(2) A P gy 3 ;e
*A® 00z = 1 °*°p3uU0y : G°p : BTqE]



144

000" 1010° 6TEO° 9%20° £100° 6000° 60v0° 08
6000° 6210° 60v0° T1#20~ $z00° ¥T00* 0L90* 09
LTOO° TGTO® ¥840° geZ0* 9€£00° 8100° LZ60* 0§
GE00" Z810° T6S0° LzZOo" 6€£00° €z00° GLET®  Ov
LLOO® Lzz0" 8¥L0° L120° z800° 6200° 6tz OF
1610° g6z0* ZooT"® Gzz0° 98T10° Lz00" ysov* 0%
14°1 40N £620° gtee® rA¢oN 99€0° 1100° LzvL® Ot
6090° 6GTO° LSGY® TGP0° 9940° 1910° 6126° G

L 9 S 14 € r T )

A® 00OF = 3 ***pP3uoy : g°p : 8rqE]



145

(c=)s8°8 (1-)80°T (2-)18°8 (T-)v6LO'T (T-)o0ov0° T 0s
\Aﬂlvﬂm.ﬂ - (T=Yps°T (T-)pE98°T (T-)e8GL T of
(1=)18°¢2 (T1-)ee e (1-)88°2 (T1-)99z1°¢ (1-)2991°¢ ot
(1-)82°¢ (1=)81°L (T-)e8°G (T-)LEGOD*9 (T=)TvI1°9 0cC

80°T £6°T PE*T ETTE"T 6vee°1 o1

(oL6T) (zL6T PPNy (bep)
_ T8 3@ uasuep pue syo00In s6d HOHH esed aTbuy

*A® 00 =9

futIie}leos oy - otgseTe ay3 103 ( s % ) gm aTqel

.ﬂ(o



146

(z-)e8°6 (z-)18° ¥ (z=YoL*v (z=)oL9L°E (z=)czZ0s°E 0%
(T=)69°1 (z2-)s8°8 (z=)6L°8 (2~)0S09°9 (2=)LzL1°9 oy
(T-)Lpv°C (T-)9L°T (1-)¥8L°T (T-)06TE°T (T=)L¥82°1 ot
(1-)89°¢ (t=)£9°€ (1=)62L°E (T~)0668°Z (1-)z868°C 0z
(T-)L8°L (t=-)or°s (T=)Y19°L  (T-)TO9L°9 (T-)6868°9 ot
( 9L6T ) ((vL6T ) (6op )
sgl gOHH juasaxdg
12 19 ussuep Bbxequoxg aTbuy
*A® 00V = 13

Burzajjeos oy - o of3seTe ey3 103 (s %k ) g
1- 4

L°y ¢ 9TqFrl



147

L800* 1£44% eL2T? L8zg0o* G0o0o* GLOO® 099T1° 06
6ETO° 8¥vr0* TO9ET® TL20° LO00O* 9800° otee” ov
T€Z0® 89v0°* PLGT® 1820° 6100 £600° 0gee”® ot
¢8E0° ¥8v0° 1602° 198 AN LZ00° £600° préev° 0c
GLEO® S6v0° z69¢€" 6620° 18T0° eLeo* £689° 0T
*A® OOV = 37 131® **TPjUOD ¢ g°py ¢ 8TqR]
£9€0° £260° 1218 e BCGO° 9€00° L9T0" £6Le’ 06
£TG0° £¥60° £ive’ £060° GGo0° . E8TO° (A1 ov
gcLo® S960° 151 § YA 881¥0° L600" 01zo° EVLY® o¢
1660° £860° JA*10) £ETGO* LT2O0" $9€0° £ot19° 0¢
8yeT® £€660° 86G9° cego* z8LO" BEGET® ELEL® ot
(322) v va

yoxa c39 H HH

3 3 1 1 %%y M1y VEH Te T4, o
(2) (2) (@)
A® 002 = 3 3®

Pbutxaljeos sy ~i@ 107 sopnytrdwe Futrayieoss 3yl JO InOTABY3Q BYL : 8°p : °[gel



148

(T=)91°9 (z=)8L"9 (z-)19°1 (z=)evez 9 (2~)9896°9 06
- (g=)ce*6 (z-)88°2 (T=)LTOP° T (T=)gLee 1 08

- (T=)se°1 (z-)os- ¢ (T™)oL69°2C (1-)e918°2 oL
(1-)68°8 (1-)et°z (2-)99°9 (T-)eLgt ¥ (T-)9868° ¢ 09

- (T=)99°¢ (1-)1€°1 (T-)1L6Z° S (T-)8L8G" G 0¢

- (1-)0z* L (1-)eo°¢ (1T-)0090" L (T=)ceT19° L ot

G8° T oL°T (1-)vL*8 9TEL T 8G88° T o€

EL°E 0E* G 8v°€ 89EV° ¢ T9v2° G 0g
(1)e8°1 (1)22°2 (TyeLet GO9L* 2T ol Adery 0T
(1)62°C (T)ee g (TYé6p* ¥ 68LL°EG GO9SV €S G

sg3 (WSdS) Yow ( OT) vow gOHH jussexd ©

"A® 00T = 3 Burzey3eds T - 8 OTSeT® ayy 107 ( Is % Y s ! 6y ¢ oTqRL

-



149

(1-)vz°1 (2=)85°z (e-)Le°v  (2-)689%°¢ (2~)2900°z 06
(1-)evet (2-)9¢g°e (€-)er°9  (2-)98zp*S (z=)e8Ev°€ 08
(1-)89°1 (z-)st°¢ (2=)20°T  (2-)9L¥L*6 (z=)89ee° L oL
(1=)90°2 (2=)c6°L (2-)LL°T  (T-)S000°T (1=)6ec€°1 09
(1-)oL°z (1-)ee°1 (1-)6v°e  (1-)eBGL°Z (T=)L92¥°T 0¢
(1-)06°¢ (T=)pcee (1-)81°8 (T-)OovIE*YV (1=)Yp1v0° v ot
(T=)0L°9 (T=)g6°¢ (1-)16°2 (1-)9vvi°6 (1-)1199°6 o€
6 Y v0"Z oz°1 Te€G e G68G°T 0z
£6%6 (TYoz T Lv*6 09LP°ET 12T0°¥T 0T
(T)98°2 (1)eTt ¢ (1Y09°2 vGz6°ee 0o8LG’€E G
sqgy (WSdS) vew (01) Vo gOHH juesaxg o)
"A® 00g = § DuTIe}edS i - & or3sers syy 103 ( Ts %o Y ey  : or°p : eTqEl



150

(z-)8Evs 1 (z2=)TvLG 1 06
(2-)L126°2 (2-)€996°¢ 08
(z=)vGL6°Z  (2-)6E86°C oL (z2=)¥6E0° ¢ (2=)zsoT*' v oL
(Z=)1ETE' S (2-)9GGE°G 09 (2=)91v6°L (2-)68v0°8 09
(T=)P29T°T  (T=)PL9T"T 0% (T-)S006* T (T-)¥P8T1G°T 0¢
(T-)ecoT*E (T~YL9GT°E ov (T-)688¢°¢ (1-=)L2Z29°C ov
(t-)8z8e°y  (T=)oovE°Vd o€ (t-)0t189°¢ (1-)cc9L° g o€
8190° 1 9890° 1 oz G9PGeT LGZ9°1 0z
6GZ9°9 6G29°9 o1 12L9°6 6¥LE° 6 o1
92e8°ZT 9268°22 g 9£86° 92 EPER° 97 S
§OHH Juesa1g ) HOHH juesexg )

“A® 0OF = 3 bBurzeyiess
171 ~ @ o3seTe ayjy

“z03 ( I

*A® 00€ =3 Outreljeds 17 - o

o »
S B )soq :2r°v ¢ erqel STIseTs 8yy 101 ( Ts % ) S22 TT°v ¢ eTqel .

1= 4 | 4



151

(1-)s6°6

(T-)6LGL°€E

(z-)9zt1z°1

(e-)ze81 T (T-)eT1T¢°y (T-)6088°% 06

00°T (T-)6LGT Y (E-)9GG6°T (z-)608¥°T (T-)Lp10°¢ (T-)E982°C 08
TT°T (T-)0689°y (€-)zoLE°E (c-)t1E88°T (T-)6L09°G (T-)1098°¢ oL
91°T (T-)8COv°S (E£-)TIBETI°9 (2=)102¢°2 (1-)2162°9 (1-)P069°v 09
EE°T (T-)9LLB°9 (2-)VLTIT°T (c=)oeo9°¢€ (1-)69G50°L (T—-)EEB6°G 06
or°T (1-)69€9°L (T-)66LZ°C (z=)er19°¢ (1-)Yvz06°L (1-)Gz8Z°8 ov
€6°T (T-)LGL6°8 (T-)L69L°6 (2=)T¥99°6 (1-)6L68°8 LLOE*T o]
LL'T €120°T (T-)L9TO'T (1-)e96L°1T ZLYO° T GLBE T 0z
6L°T TECO°Z (T-)pobez*e (T-)eTvT°E 8Y0€° T 68GE° ¥ 0T

L1 0819°¥ (T1~)OTPO°¥ (1-)1evL e 9GTE° T yOTE® G c
€9 VA wp VEH 2e My %y VIR Tey ey o

e {2 (2) (2)
*A® 00T 3®
butzeyieos 17 - @ 193 sepnitTdwe Hutzelziress ayy Jo xInogaeysq a8yl - e mapv t arqel



152

(1-)z6°€ (T-)082Z8°T  (v=)OELT®9 (€=-)T006°Z (1-)8186°T (T~)620L°T 06
(T=)se°v (T-)epz0°2  (¥v—)TzEZ°T (e=)0T109°¢ (T-)se62°c  (T-)8vL6°T 08
(T=)sv°vy (1-)6882°z (v=)G208°C (e=-)g9csc° v (T-)2e69°2 (T=)2stE’e oL
(1-)s8°v (1-)zzv9°z  (¥—)OT109°9 (€=)0E90°9 (1-)600z°€ (1-)6088°7 09
(T=)¥E*G (T~-)ePGT%E  (£-)OPGG°T (e=)11€9°8 (T-)g1€8°C  (T=)69¥9°€ 0%
(1-)pv°9 (T1-)6026°E  (E=)TO06°E (z-)Tege 1 (1-)9885° ¢ (T=)v616°Y ov
(T-)¥9°9 (1-)6290°C  (2-)OOTI°T (z=)zsevez (T=)TLvv° s (T=)TEPP°L ot
(T-)18°L (T-)TO¥E°9 (Z~)véEE°Z (z=)6LOE"C (1=)oLs8V°9 €Ter 1 0z
(T-)0E°6 (1-)z928°8  (2=)PvOVe°G (1=)szLz T (1=-)p08Y°8 TPOP°E ot
(T=)L1°8 G6G91°Zz  (T-)S60T°CZ (T=)619L°T (T-)82LL 6 86C6° ¥ ¢
€9, VI o VM ge My Py Y Tey [LF: 5
() () (2)
*A® 00z 3®
butxeijess 17 - 3 X037 sapn3TTdwe BUTISIIBOS By} JO INOTABYSQ 8YL ~ g ¢ €T°p ¢ OTqel



153

(1=)9z°z  (T-)0E6T°T  (G-)OBTT°T (e=)TvoE"T (T-)GEGT T (1-)zz'1 06
(T=)1€°2 (1-)9cee’T  (G-)PE9S°T (E=)tvee 1 (T-)e68€E°T (1=)zp° 1 08
(T-)Ls°z  (T1-)C66%°T  (S-)Gzee'e (e-)0t00°Z (1-)86tvG° T (1-)89°1 oL
(1-)28°2  (T-)LcEL°T (v=)OT6Z°T (e=)oeg9°2 (1=-)z110°C (1-)e1°2 09
(1=)10°t  (1-)1EL0'Zz (¥=)O008°E (E=)PO9L°E (T=)v116°2 (1-)g9°z 0¢
(1=)L9°e  (1-)068S°z  (E=)VOET°T (e-)8298° ¢ (1-)219T°¢ (1-)Le°¢€ ov
(1=)g0°v  (T-)ETEV°E  (£-)O66L°E (2=)96S0° T (T-)L6G6°E (1-)8v° ¢ o]
(T=)18*%  (1=-)PP69°Y  (T-)G962°T (2=)Lezv ¢ (T~)8¢68° ¥ Zo°T 0z
{1-)80°9 (T-)oLs8°c {1-)¥szTe'T (e=)orvo L (T=)L1¥b*9 €8°2 o1
(T-)LLeg" Toee T (T-)9L9z°T (T~)8LOT"1 (T-)6ET8°L v9° ¥ G

€9 I I ey My By YEH Tey 14, ®

(2) (2) (2)
*A® 00t 3®

putzeyzyeoss 17 -~ 8 J03 sepnyfrdwe Hurrerjeos ayy jo H.:0ﬁ>mzmn syl - 2 : ET°P ¢ BTqel



154

(1-)es T (z-)65L°8 (v=)1c0° 1 (v-)toe°L (z=)o90oL L (2=)Yov°6 06
(1-)09°1 (z-)oLL 6 (v=)otre T (v=)098°8 (2-)v691°6 (T-)6T°T 08
(1-)oL*1 (1-)601°T (v=)068°1 (E-)LTT T (1-)96TT°1T (T-)8p° T oL
(T-)9L°1 (1-)L82'1 (¥=)000°2 (e=Y6L¥°1 (T-)9e0v* 1 (1-)YoL°1 09
(1-)¢8°1 (T-)6€6°1T (e-)oot°1 (€-)260°2 (T-)LEO8B" T (1-)év°z 0¢
(1-)06°T (1-)ez6°1 (e-)002° v (e-)6¥zZ°E (1-)alLce (t=Y92° b ov
(1-)v8°¢ (1-)695°2 (E-)T19°¢ (e-)zc8* ¢ (1-)z880°¢€ (T=)9v° ¥ o€
(1-)6€°€E (T-)v89°¢ (z-)6%z° 1 (e-Y68E°T (T=)TLL6°E (1-)80°8 0z
(1=)1p° ¥ (1)1l (z-)Ls8°L (2=)69v° v (1-)ovs8e° ¢ Le*z o1
(1=)sv°v (1-)€92°6 (z-)o0z"8 (z=~)oss* L (1-)ee8¢°9 9€° v G

€9, AL AMNmm %y My %y YR Tey 18y ®

(2) (2)
*A® 00¥% 3®

mc«.uwﬁm\om ¥1 - @ 103 sspn3yrdwe HuTIall®OS BYJ JO INOTABYSQ dYL = P : £T°p ¢ aTqel



10

-2
10

a—

FI1G:4.2

m ol

1 l

ox@l

! I

[

H
200 eV

Present
UEBS

HHOB(Rao & Desai)| -
William's (1975 )

——

10

20 30
Scattering angle

40

50 60



10

-3
10

] Huu’]

I IHHI

[

! lllllll

F16:4.3

e — H
E = 400eV
—_— Present
o) UEBS
. William's
(1975) —
X HHOB

(Rao &Desai)

| [ [ [

20 30 40 50 60
Scattering angle



10

—~— ‘

" pcsla?sr ')

-2
10

FIG: 4.4

30 40
Scattering angle

e — He
E = 200eV
Ce— Present
---- EBS
X HHOB
(Rao &Desai
- 0 Crooks (1972)
foones o Sr——
- A Bromberg
— (1974)
r——-
| | | l
0 10 20 50




DCS(a,“Sr ')

10

10

10

10

!

l

|

FIG:-4.5

l l

e — He
E = 400eV
—_ Present

--—- EBS

X HHOB
(Rao & Desai)

0 Crooks(1972)
& Rudd

A Bromberg —

(1974)

10

20

30 40

Crnttarino anale

50 60



10

10

10

R

|

rTTTTT]

l

i

FTTTIT]

!

|

T TTIT]

1

FI1G: 4.6

e — Li
E = 100eV
_— Present
- — MGA(SPSM)
0 EBS
X HHOB
( Rao & Desai}]

| i

10

20

40

50 60
Scattering angle

80



7

DLUO VU, 2!

Z
10

10 pY

10

rrhi

l

F16-4.7

-

|

e
E

— —

o
X

— Li

a 200eV
Present
MGA(SPSM)

EBS

HHOB et
( Rao & Desai)

10

40 50
Scattering angle

60

70 80



- 2
10

FIG-4.8

e — LiE = 300eV

[

— o ao—

Present

HHOB
(Rao& Desai,
1983 )

10

20

30

40 50
Scattering angle

60

70 80



OCSVdeoT /

FIG- 4.9

e
E = 400eV
Present

X HHOB
(Rao &

— Desai, __|
- 1983)

FTTTTI]

I

| l 1 1 ! 1

10 20 30 40 50 60 70 80
Scattering angle



