

TABLE NO.		TITLE	PAGE NO.		
CHAPTER - IV					
4.1	Field Trial To	est Data	68		
4.2	Field Trial To	est Data (Both in FPS and MKS units)	71		
4.3	_	pressure prediction by the rical correlation for the field trial test data	74		
4.4	_	pressure predictions by various existing relations for the field trial test data.	77		
4.5		ror shown by various existing empirical correlation test data.	ations 80		
4.6	Statistical acc pressure pre	curacy of empirical correlations for tubing head edictions	l 83		
4.7	Surface choke theoretical me	e Flow rate prediction by the present odel	84		
4.8	Surface choke	e Flow rate prediction by Omana's model	87		
4.9	Surface choke model	e Flow rate prediction by Poettman & Beck's	90		
4.10	Surface choke	e Flow rate prediction by Ashford's model	93		
4.11	Surface choke	e Flow rate prediction by Sachdeva's model	96		
4.12	Surface choke	e Flow rate prediction by Perkins' model	99		
4.13	Surface choke	e Flow rate prediction by Ashford & Pierce mo	del 102		
4.14	Statistical acc	curacy of theoretical models for diction.	105		
4.15	Surface choke Ashford and	e Flow rate prediction by the present model wit Pierce data	h 106		
4.16	Surface choke model with O	e Flow rate prediction by the present theoretica	l 107		

TAB	LE NO. TITLE	PAGE	PAGE NO.			
CHAPTER - V						
5.1	Surface and Bottomhole choke dat Field Trial Test	a gathered from	145			
5.2	Well test and PVT. data of the test	wells	146			
5.3	Tubing head pressure prediction leads to correlation for bottomhole choke.		147			
5.4	Tubing head pressure prediction l	by various empirical correlations	148			
5.5	Statistical accuracy of empirical co	orrelations for bottomhole choke	149			
5.6	Flow rate prediction by present the for bottomhole choke	eoretical model	150			
5.7	Flow rate prediction by Poettman bottomhole choke	& Beck's model for	151			
5.8	Flow rate prediction by Ashford's	model for bottomhole choke	152			
5.9	Flow rate prediction by Ashford & bottomhole choke	Pierce's model for	153			
5.10	Flow rate prediction by Omana's i	nodel for bottomhole choke	154			
5.11	Flow rate prediction by Sachdeva'	s model for bottomhole choke	155			
5.12	Flow rate prediction by Perkins's	nodel for bottomhole choke	156			
5.13	Statistical accuracy of theoretical i	nodels for bottomhole choke	157			
5.14	Surface choke test data of test we	ell No.2	158			
5.15	Well test data through 10/64" bott	omhole choke (well no.2)	159			
5.16	Recorded bottomhole pressure dat	a with 10/64" bottomhole choke	160			

TABLE NO.		TITLE PAG	PAGE NO.	
5.17		son of surface choke data with that bottomhole terms of productivity index	161	
5.18	Static bo	ottomhole pressure data	162	
5.19	Change	in static bottom hole pressure per ton of oil production	163	
5.20	Compari	son of Energy spent in lifting unit mass of oil	164	
5.21	Bottomh	ole choke size selection- Test no.1.	165	
5.22	Bottomh	ole choke size selection- Test no.2.	166	
5,23	Bottomh	ole choke size selection- Test no.3.	167	
5.24	Bottomh	ole choke size selection- Test no.4.	168	
5.25	Bottomh	ole choke size selection- Test no.5.	169	
5.26	Bottomh	ole choke size selection- Test no.6.	170	
5.27	Bottomh	ole choke size selection- Test no.7.	171	
5.28	Bottomh	ole choke size selection- Test no.8.	172	
5.29	Bottomh	ole choke size selection- Test no.9.	173	
5.30	Bottomh	ole choke size selection- Test no.10.	174	
5.31		son of THP Prediction by choke size selection re for bottomhole choke	175	
СНА	PTER - VI			
6.1	Surface c	hoke data before Commingling production	219	
6.2	Comming	gling production data	220	

TABLE NO.		TITLE	PAGE NO.
6.3	_	ison of surface choke data with Commingling tion data	221
6.4		ngling Choke size selection - Tubinghead pressure ion with 6/64" upper choke with various lower choke	222
6.5		ngling Choke size selection - Tubinghead pressure ion with 8/64" upper choke with various lower choke	223
6.6		ngling Choke size selectionTubinghead pressure ion with 10/64" upper choke with various lower choke	224
6.7		ngling Choke size selection - Tubinghead pressure ion with 12/64" upper choke with various lower choke	225
6.8		ngling Choke size selection -Tubinghead pressure ion with 14/64" upper choke with various lower choke	226
6.9		ngling Choke size selection - Tubinghead pressure ion with 16/64" upper choke with various lower choke	227
6.10		ngling Choke size selection -Tubinghead pressure ion with 18/64" upper choke with various lower choke	228
6.11		ngling Choke size selection -Tubinghead pressure ion with 20/64" upper choke with various lower choke	229
6.12		rison of THP and flow rate Prediction by choke size so ure with that of measured values.	election 230