LIST OF FIGURES

Figure No.	Title	Page No.
Figure: 2.1	Examples of targets, barriers and strategies for intracellular drug delivery	16
Figure: 2.2	Schematics of exemplary types of drug nanoparticles	21
Figure: 2.3	Chemical Structure of PLGA	23
Figure: 2.4	Sequential adsorption of polyelectrolytes on a charged particle.	30
Figure: 2.5	Schematic diagram of the SAS method	31
Figure: 2.6	Various techniques to characterize nanoparticles	32
Figure: 2.7	Schematic representation of membranes: Liposome structure (left panel) and human cell membrane (right panel).	36
Figure: 2.8	Diagram of a drug-loaded liposome both with (SSL) and without (CL) a PEG coating	38
Figure: 2.9	Phase diagram of CO ₂ system	50
Figure: 2.10	Schematic diagram of Supercritical fluid particle former.	51
Figure: 2.11	RESS system design	52
Figure: 2.12	PGSS system design	54
Figure: 2.13	Sievers et al 1999 design for the production of proteins with PGSS	54
Figure: 2.14	GAS system design	55
Figure 2.15	SAS system design	56
Figure: 2.16	SEDS coaxial tubing design used for the present study	58
Figure: 2.17	Current understanding of the mechanism of action of polymer–drug conjugates.	64
Figure: 2.18	Scheme of binding the RGD peptide to an integrin. Influence of RGD-peptide binding and possible ways into the cell	68
Figure 2.19	Molecular model of the RGD sequence conformation of the cyclic RGD peptide c(RGDfK)	69
Figure: 2.20	Schematic representation of RGD-mediated drug delivery and imaging constructs.	74
Figure:2.21	The original RGD sequence in comparison with modern high affinity ligands for $\alpha_V \beta_3$ -integrin	76

		01
Figure: 2.22	Anatomy of the breast cancer	81
Figure: 3.1	Regressed calibration curve for estimation of Docetaxel	144
Figure: 3.2	Calibration plot for PVA	146
Figure: 3.3	Calibration plot for RGD	150
Figure: 4.1	Schematic diagram of Supercritical fluid particle former	163
Figure: 4.2	Response surface plots of a) the effects of Temperature (A) and Pressure (B), b) effects of Temperature(A) and CO ₂ flow rate(C) and c) effects of Pressure (B) and CO ₂ flow rate(C) on the particle size of the SC-LP	171
Figure:4.3	Contour plots of a) the effects of Temperature (A) and Pressure (B), b) effects of Temperature(A) and CO ₂ flow rate(C) and c) effects of Pressure (B) and CO ₂ flow rate(C) on the particle size of the SC-LP	172
Figure: 4.4	Response surface plots of a) the effects of Temperature (A) and Pressure (B), b) effects of Temperature(A) and CO ₂ flow rate(C) and c) effects of Pressure (B) and CO ₂ flow rate(C) on the yield of the SC-LP	173
Figure: 4.5	Contour plots of a) the effects of Temperature (A) and Pressure (B), b) effects of Temperature(A) and CO ₂ flow rate(C) and c) effects of Pressure (B) and CO ₂ flow rate(C) on the Yield of the SC-LP	174
Figure: 4.6	Response surface plots of a) the effects of the amount of HSPC (A) and the amount of Cholesterol (B), b) effects of the amount of HSPC (A) and the amount of SPC(C) and c) effects of the amount of Cholesterol (B) and the amount of	175
Figure: 4.7	Contour plots of a) the effects of the amount of HSPC (A) and the amount of Cholesterol (B), b) effects of the amount of HSPC (A) and the amount of SPC(C) and c) effects of the amount of Cholesterol (B) and the amount of SPC(C)	176
Figure: 4.8	3D-Response surface plot (a) and Contour plot (b) showing the effect of the amount of Durg (A) and Polymer (B) on the response Y (%EE) of NPs.	185
Figure: 4.9	3D-Response surface plot (a) and Contour plot (b) showing the effect of the amount of Drug (A) and PVA (C) on the response Y (%EE) of NPs	186
Figure: 4.10	3D-Response surface plot (a) and Contour plot (b) showing the effect of the amount of Polymer (B) and PVA (C) on the response Y (%EE) of NPs.	187
Figure: 4.11	3D-Response surface plot (a) and Contour plot (b) showing the effect of the amount of Polymer (A) and PVA (B) on the response Y (particle size) of NPs	188
, .	177	, <u>,</u> , , , ,

Figure: 4.12	3D-Response surface plot (a) and Contour plot (b) showing the effect of the amount of Polymer (A) and Organic to Aq. Phase ratio (C) on the response Y (particle size) of NPs	189
Figure: 4.13	3D-Response surface plot (a) and Contour plot (b) showing the effect of the amount of PVA (B) and Organic to Aq. Phase ratio (C) on the response Y (particle size) of NPs	190
Figure: 4. 14	3D-Response surface plot (a) and Contour plot (b) showing the effect of the amount of Polymer (A) and PVA (B) on the response Y (%EE) of NPs	191
Figure: 4.15	3D-Response surface plot (a) and Contour plot (b) showing the effect of the amount of Polymer (A) and Organic to Aq. Phase ratio (C) on the response Y (%EE) of NPs	192
Figure: 4.16	3D-Response surface plot (a) and Contour plot (b) showing the effect of the amount of PVA (B) and Organic to Aq. Phase ratio (C) on the response Y (%EE) of NPs	193
Figure: 4.17	Influence of Concentration of Activating Agents	211
Figure: 4.18	Influence of amount of RGD	212
Figure: 4.19	Influence of Concentration of Activating Agents	212
Figure: 4.20	Influence of amount of RGD	212
Figure: 5.1	Particle size distribution plots of docetaxel loaded PLGA nanoparticles, before and after RGD conjugation	224
Figure: 5.2	Zeta Potential plots of docetaxel loaded PLGA nanoparticles, before and after RGD conjugation	224
Figure: 5.3	Particle size distribution plots of docetaxel loaded Liposomes, before and after RGD conjugation	225
Figure: 5.4	Zeta Potential plots of docetaxel loaded liposomes before and after RGD conjugation	225
Figure: 5.5	In-vitro release of Docetaxel from PLGA NPs before and after conjugation with RGD	227
Figure 5.6	In-vitro release of Docetaxel from Liposomes before and after conjugation with RGD	228
Figure: 5.7	In vitro serum drug release for RGD-PEG-DC-NPs and RGD-PEG-DC-LPs	229
Figure: 5.8	Morphology of Docetaxel nanoparticles using TEM	229
Figure: 5.9	Morphology of Docetaxel liposomes using TEM	230
Figure: 5.10	Morphology of Docetaxel nanoparticles using SEM	230
Figure: 5.11	Morphology of Docetaxel liposomes using SEM	231

· .	XRD photograph of (a) free drug,(b) non PEGylated	231
Figure: 5.12	PLGA NPs, (c) PEG-DC-PLGA NPs and d) RGD-PEG-	
	XRD photograph of (a) free drug,(b) non PEGylated	232
Figure: 5.13	liposomes, (c) RGD-PEG-DC liposomes	
	DSC analysis (b) free drug,(a) PEGylated liposomes, (c)	233
Figure: 5.14	physicalmixture of HSPC,SPC,cholesterol,DSPE-	
	DSC analysis (b) free drug,(a) PEGylated nanoparticles,	233
Figure: 5.15	(c) PLGA (d)RGD-PEG-DC-PLGA NPs	
	¹ H-NMR spectra of (a) PLGA, (b) PLGA-DC-RGD NPs,	
Figure 5.16	(c)RGD and (d) RGD-DC-LPs	234
	FTIR spectra of (a) DC-PLGA NPs,(b) RGD-DC-PLGA	
Figure 5.17	NPs, (c) DC-PEG-LPs and (d) RGD-DC-PEG-LPs	236
Figure: 6.1	Stability profiles-PLGA-DC-NP (a) particle size (b) zeta	249
	potential and (c) drug content Vs time in months	
Figure: 6.2	Stability profiles- PLGA-DC-RGD-NP (a) particle size (b)	250
	zeta potential and (c) drug content Vs time in months	
		259
Figure: 7.1	Hallmarks of the apoptotic and necrotic cell death process	
	Influence of Concentration on the Cellular Uptake	265
Figure: 7.2	Efficiency	
	Influence of Incubation time on the Cellular Uptake	266
Figure: 7.3	Efficiency	
· · ·	Intracellular uptake of 6-coumarin loaded PLGA-NP and	267
Figure: 7.4	RGD-PLGA-NP formulations after different time points	· · · · · ·
	Cell viability of Docetaxel and Docetaxel Nanoparticles on	274
Figure: 7.5	BT-20 cells at a) 24hrs, b) 48hrs and c) 72hrs	e
	Cell viability of Docetaxel and Docetaxel Nanoparticles on	275
Figure: 7.6	MDA-MB-232 cells at a) 24hrs, b) 48hrs and c) 72hrs	
	Cell viability of Docetaxel and Docetaxel Liposomes on	276
Figure: 7.7	BT-20 cells at a) 24hrs, b) 48hrs and c) 72hrs	
	Cell viability of Docetaxel and Docetaxel Liposomes on	277
Figure: 7.8	MDA-MB-231 cells at a) 24hrs, b) 48hrs and c) 72hrs	
	Cell cycle arrest study after 24hrs with DC (a) and after	284
Figure: 7.9	48hrs with DC (b)	
	Cell cycle arrest study after 24hrs with PLGA-DC (a), after	285
Figure: 7.10	48hrs with PLGA-DC (b) and with PLGA-DC-RGD(c)	
	Cell cycle arrest study after 24hrs with LP-DC (a), after	
Figure: 7.11	48hrs with LP-DC (b) and with LP-DC-RGD(c)	286
D : D 10		
Figure: 7.12	DNA content analysis for B1-20 cells	288
F: 7.10	American I	200
Figure: 7.13	Apoptosis and necrosis study with B1-20 cells	288
The second second	Apoptosis Necrosis study with Docetaxel, Docetaxel	000
r1gure: /.14	INanoparticles and KOD conjugated Docetaxel	290
Element 7.15	Apoptosis Necrosis study with Docetaxel, Docetaxel	201
Figure: 7.15	Liposomes and KGD conjugated Docetaxel Liposomes	291
E	Histology studies by TEM (a) Control cell (b) LPs-DC-	202
Figure: 7.16	KGD (C) PLGA-DC-KGD-NPs	293

Figure: 8.1	Mass spectra of matrix (a) and MA-GF-OH(b)	
-		311
Figure: 8.2	Mass spectra of matrix (a) and LG-OMe (b)	
		312
Figure: 8.3	Mass spectra of matrix (a) and MA-GG-OH (b)	
		313
Figure: 8.4	Mass spectra of matrix (a) and MA-GFLG-OH (b)	
		314
Figure: 8.5	Mass spectra of matrix (a) and MA-GFLG-DC (b)	
		315
Figure: 8.6	¹ H NMR spectra of a) free Docetaxel b) MA-GFLG-	
	Docetaxel and c) HPMA-Docetaxel d) Blank HPMA	316
Figure: 8.7	Cathepsin B Release Study	
		319
Figure: 8.8	Cytotoxicity curves	
		320
Figure: 8.9	DNA content analysis	
		322
Figure: 8.10a	HPMA-GFLG Docetaxel induce mitosis aberration in	
	human breast cancer BT 20 cells.	323
Figure: 8. 10b	HCT 116 cell line	
		324
Figure: 8.11	Stability studies in 100% serum, 10% serum and PBS pH	
1	7.4	325